
The Hardness of 3-Uniform Hypergraph Coloring

Irit Dinur ∗ Oded Regev † Clifford Smyth‡

August 27, 2004

Abstract

We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for

any constant c. The best known algorithm [20] colors such a graph using O(n1/5) colors. Our

result immediately implies that for any constants k ≥ 3 and c2 > c1 > 1, coloring a k-uniform

c1-colorable hypergraph with c2 colors is NP-hard; the case k = 2, however, remains wide open.

This is the first hardness result for approximately-coloring a 3-uniform hypergraph that is

colorable with a constant number of colors. For k ≥ 4 such a result has been shown by [14],

who also discussed the inherent difference between the k = 3 case and k ≥ 4.

Our proof presents a new connection between the Long-Code and the Kneser graph, and

relies on the high chromatic numbers of the Kneser graph [19, 22] and the Schrijver graph [26].

We prove a certain maximization variant of the Kneser conjecture, namely that any coloring of

the Kneser graph by fewer colors than its chromatic number, has ‘many’ non-monochromatic

edges.

1 Introduction

Background

A hypergraph H = (V,E) with vertices V and edges E ⊆ 2V is 3-uniform if every edge in E has

exactly 3 vertices. A legal χ-coloring of a hypergraph H is a function f : V → [χ] such that no edge

of H is monochromatic. The chromatic number of H is the minimal χ for which such a coloring

exists.

During the past decade, significant progress has been made – via the PCP theorem – in under-

standing the complexity of many combinatorial optimization problems. It is known, for example,

that it is hard to approximate the chromatic number of a graph to within a factor of n1−ε [9]

(this holds for hypergraphs as well, see [21]). In numerous other cases, the hardness result almost

matches the algorithmic result, or perhaps some constant gap separates the two. In contrast, the

problem of approximate coloring (where the input is a hypergraph or a graph that is known to be

∗The Miller Institute for Basic Research in Science, University of California at Berkeley. Research supported by

NSF grant CCR-9987845.
†Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Supported by an Alon Fellowship

and by NSF grant CCR-9987845.
‡Department of Mathematics, Carnegie Mellon University, Pittsburgh PA 15213. Work supported in part by NSF

grants CCF-9988526 and DMS 9729992, and the State of New Jersery.

1

colorable with very few colors and the target is to color it with as few colors as possible) retains

perhaps the largest gap between the hardness results and the algorithmic results.

The best algorithms for these problems require a polynomial number of colors: for example

the best approximate coloring algorithm for 2-colorable 3-uniform hypergraphs requires O(n1/5)

colors [20], and the best coloring algorithm for 3-colorable graphs, requires Õ(n3/14) colors [5].

On the hardness side, not much is known. For graphs, the best hardness result states that using

4 colors to color a 3-colorable graph is NP-hard [17, 15]. It would already be a significant step to

prove that coloring a 3-colorable graph with O(1) colors is NP-hard.

The property of being 2-colorable is well studied in combinatorics and is also referred to as

‘property B’ (see [14] for further references). Nevertheless, prior to this work no hardness of

approximation result was known for 3-uniform hypergraphs, and in fact it wasn’t even known if it is

NP-hard to color a 3-uniform 2-colorable hypergraph with 3 colors. For 4-uniform hypergraphs and

upwards, Guruswami, H̊astad, and Sudan [14] were able to show such a separation, i.e., they showed

that it is NP-hard to color a 2-colorable 4-uniform hypergraph with any constant number of colors

(this result immediately extends to any k ≥ 4). In their work, an inherent difference between the

case k ≥ 4 and the case k = 2, 3 was raised; this was considered evidence that the case k = 3 might

be harder to understand. This difference has to do with the corresponding maximization problem

called ‘Set-Splitting’, which is the problem of 2-coloring a k-uniform hypergraph while maximizing

the number of non-monochromatic hyperedges. This problem exhibits a different behavior for k ≥ 4

and for k = 2, 3. Indeed, for k ≥ 4, a hardness result by H̊astad [16] shows that finding a solution

within 1− 2−k+1 + ε of the optimal is NP-hard for any ε > 0. This result is tight since it is trivially

matched by a random assignment. For k = 2, 3 the best approximation algorithms use semi-definite

programming [11, 27] and have a constant gap from the best gadget-constructed hardness results,

see [13].

Guruswami, H̊astad, and Sudan [14] also showed that unless NP ⊆ DTIME(nO(log log n)), there

is no polynomial-time algorithm for coloring a 2-colorable 4-uniform hypergraph with c0
log log n

log log log n

colors for some constant c0 > 0. We can show that unless NP ⊆ DTIME(2poly(log n)), there is

no polynomial-time algorithm for coloring a 2-colorable 3-uniform hypergraph with O(3
√

log log n)

colors.

Following our result, Khot [18] was able to prove, via different techniques, that it is NP-hard to

color a 3-colorable 3-uniform hypergraph with any constant number of colors. Although this result

is already contained in ours, his construction has the extra property that the bad instances do not

contain even a small independent set, while in our hypergraph construction, this is not the case.

Technique

Our technique is based on the PCP methodology, which we now briefly describe. A PCP system is

a collection of variables and tests on them, such that each test is on a constant number of variables

(say two). The PCP theorem [2, 1] states that given a PCP system, it is NP-hard to decide

whether there exists an assignment that satisfies all the tests, or any assignment satisfies only a

small fraction of the tests. Usually, hardness of approximation results are derived by composing a

PCP system (which, in the context of the composition, is called the ‘outer-verifier’) with a second

‘inner-verifier’ PCP system. In this composition, each variable in the outer system is encoded via

an error-correcting code called the Long-Code [4]. The tests of the outer system are replaced by

2

new ‘inner’ tests, that are tailored to the specific problem whose hardness is being studied. In our

case, these tests will be 3-uniform hyperedges whose coloring must not be monochromatic. The

trick is to obtain the correct interplay between the outer and inner PCP systems so as to capture

the hardness of the problem. Our construction combines the PCP of [6] as the outer system, and

an inner PCP system whose properties are derived from properties of the Kneser and Schrijver

graphs. We next describe the PCP of [6], which is known as the layered PCP.

The Layered PCP. PCP systems can be classified according to the types of tests they contain.

A PCP system is a projection PCP system if all of the tests are projections, i.e., the tests are over

two variables, and any assignment to the first variable determines the assignment to the second

variable. For technical reasons, non-projection PCP systems do not combine well with Long-Code

inner verifiers and hence we focus on projection PCP systems. The PCP theorem [2, 1] combined

with Raz’s parallel repetition theorem [25] gives a powerful projection PCP system. In this system,

there are two types of variables, X and Y . Each test looks at one X-variable and one Y -variable and

checks that the assignment given to the Y -variable matches the one determined by the X-variable.

Thus, the test graph is bipartite with parts X and Y . In our reduction, we replace each variable by

a set of vertices, and each test by a collection of hyperedges. The bipartite-ness of the tests poses

a problem because coloring all the X vertices red, and all the Y vertices orange, will be a legal

2-coloring regardless of whether the initial PCP system was satisfiable or not. We overcome the

bipartite-ness problem by utilizing a layered PCP that was constructed in [6]. This is a projection

PCP system that essentially extends the bipartite nature of the standard PCP described above

into being multipartite, with many ‘types’ of variables (rather than only X and Y). Thus, as the

number of parts increases, the number of colors required to color an unsatisfiable instance increases

as well.

The Long-Code and the Kneser Graph. The Long-Code [4] of a domain R is an important

component in numerous hardness of approximation results. One way to view it [7] is as the graph

whose 2|R| vertices are the subsets of R, and whose edges connect disjoint subsets.1 In this paper, we

consider an induced subgraph, consisting only of vertices that correspond to subsets of a prescribed

size (namely, |R| /2 −O(1)). This is known as the Kneser graph [19].

We can think of colorings of this graph as ways of encoding values in R. Let us consider the

following encoding of an element a ∈ R: color all subsets containing a red, and the rest orange. It

is easy to see that in the Kneser Graph this coloring has no red monochromatic edges, yet has many

orange ones, and in particular it is not a 2-coloring. Nevertheless, in our hypergraph this coloring

corresponds to a legal 2-coloring. We prove the following interesting property of the Kneser graph.

Namely, that any coloring of the vertices by a constant number of colors contains one ‘special’

color that is used in a non-negligible fraction of the vertices and colors two disjoint subsets. This

property enables a local list-decoding of the coloring in a manner that ensures global consistency.

It is established by proving a maximization variant of the Kneser conjecture showing that using less

than the chromatic number colors to color the Kneser graph, leaves ‘many’ monochromatic edges.

We use properties of both the Kneser graph and its induced subgraph, the Schrijver graph.

1In the original and standard definition of the Long-Code [4], the Long-Code is the collection of all possible

Boolean functions over R. In our presentation each such function is viewed as a subset of R.

3

Combining the Two Components. The constructed hypergraph will have a block of vertices

per variable of the layered PCP system. Each block is conceptually a copy of the Kneser graph

(but we will have hyperedges and not edges).

The heart of the proof lies in translating a legal coloring (with few colors) of the hypergraph

into a satisfying assignment for the PCP system. This is done by first translating the coloring

within each block, into a short list of elements of R that are supposedly encoded by that coloring.

The second and more difficult part is to prove that for distinct blocks, the short lists of decoded

values are in fact consistent with each other. This difficulty is resolved using the maximization

variant of the Kneser conjecture mentioned above.

2 The Kneser Graph

In this section we define the Kneser graph and describe some of its important properties. For

n ≥ 2s + 1, the Kneser graph KGn,s has the set
([n]

s

) def
= {S ⊆ [n] | |S| = s} as its vertex set and

two vertices S1, S2 are adjacent iff S1 ∩S2 = φ. In other words, each vertex corresponds to an s-set

and two vertices are adjacent if their corresponding sets are disjoint. In this paper we are mainly

interested in the case where s is smaller than n/2 by a constant. These graphs have the important

property that the chromatic number is high although large independent sets exist. For a discussion

of Kneser graphs and other combinatorial problems, see the excellent book by Matoušek [23].

There exists a simple way to color this graph with n − 2s + 2 coloring. In 1955, Kneser [19]

conjectured that there is no way to color the graph with less colors, i.e., χ(KGn,s) = n − 2s + 2.

The first to prove this conjecture was Lovász in 1978 [22]. Many other proofs and extensions are

known (see, e.g., [8, 3, 24]) and the latest and simplest one is by Greene [12]. Our goal in this

section is to prove the following property of the Kneser graph: in any coloring of the vertices of the

Kneser graph with less colors than its chromatic number, there must exist many monochromatic

edges. The way we prove this is by considering certain induced subgraphs of the Kneser graph

known as Schrijver graphs. The proof follows from the fact that these induced subgraphs have the

same chromatic number as the whole Kneser graph.

Let us now define the Schrijver graph SGn,s,π. Given a permutation π of [n], we say that an s-

subset S ∈
([n]

s

)

is π-stable if it does not contain two π-adjacent elements modulo n, i.e., if π(i) ∈ S

then π(i+ 1) /∈ S and if π(n) ∈ S then π(1) /∈ S. We denote the number of stable s-sets by
(n

s

)

stab

(notice that it is independent of π). The graph SGn,s,π contains a vertex for each π-stable s-subset

of [n] and two vertices are adjacent if their corresponding sets are disjoint. Clearly, SGn,s,π is an

induced subgraph of KGn,s. Interestingly, the chromatic number of the Schrijver graph is the same,

i.e., χ(SGn,s,π) = n− 2s + 2 [26].

We begin with a simple bound on the number of vertices in a Schrijver graph:

Claim 2.1
(n

s

)

stab
≤

(n
n−2s

)

Proof: Consider a stable set S according to the permutation π(i) = i. Define T as the set of all

i ∈ [n] such that i /∈ S and i − 1 /∈ S (and 1 is included in T if 1 /∈ S and n /∈ S). Notice that T

uniquely defines S. The claim follows from the fact that T is a set of n− 2s elements.

The following is the main lemma of this section:

4

Lemma 2.2 In any coloring of KGn,s by n−2s+1 colors there exists a monochromatic edge whose

color is used in at least a 2
(n−2s+1)(n

s)stab

≥ 2
(n−2s+1)(n

n−2s)
fraction of the vertices.

Proof: Fix a coloring of KGn,s by n−2s+1 colors. For every permutation π, the induced subgraph

SGn,s,π contains a monochromatic edge since χ(SGn,s,π) = n − 2s + 2. Therefore, there exists a

color, say red, such that at least 1
n−2s+1 of the Schrijver graphs contain a red monochromatic edge.

Consider the following distribution on the vertices of KGn,s: choose a random permutation π and

then a random vertex in SGn,s,π. The probability of choosing a red vertex is at least 1
n−2s+1 · 2

(n

s)stab

since we first have to choose a Schrijver graph that contains a red monochromatic edge and then

one of the two end points of the monochromatic edge. Since each SGn,s,π contains the same number

of vertices and each vertex of KGn,s is contained in the same number of SGn,s,π, this distribution

is equivalent to the uniform distribution on the vertices of KGn,s. Therefore, the fraction of red

vertices is at least 2
(n−2s+1)(n

s)stab

.

3 The Layered PCP

We use the layered PCP construction of Dinur et al. [6]. In an l-layered PCP there are l sets of

variables, X1, . . . ,Xl. We refer to Xi as the ith layer. The range of variables in Xi is denoted Ri.

For every 1 ≤ i < j ≤ l there is a set of tests Φij where each test ϕ ∈ Φij depends on exactly one

x ∈ Xi and one y ∈ Xj . For any two variables we denote by ϕx→y the test between them if such a

test exists. Moreover, the tests in Φij are projections from x to y, that is, for every assignment to

x there is exactly one assignment to y for which the test accepts.

Theorem 3.1 (Theorem 3.3 in [6]) For any parameters l, u there exists a reduction from an

NP-hard problem of size n to the problem of distinguishing between the following two cases in an

l-layered PCP Φ with nO(ul) variables over a range of size 2O(ul). Either there exists an assignment

that satisfies all the tests or, for every i < j, not more than 2−Ω(u) of the tests in Φij can be

satisfied by an assignment. Moreover, for any 1 < m < l and for any m layers i1 < . . . < im
and sets Sj ⊆ Xij for j ∈ [m] such that Sj ≥ 2

m |Xij | there exist two sets Sj and Sj′ such that the

number of tests between them is at least 1
m2 of the number of tests between the layers Xij and Xij′ .

A sketch of the proof is included in the appendix.

4 The Hypergraph Construction

Theorem 4.1 (Main Theorem) For any integer χ ≥ 2, it is NP-hard to color a 2-colorable

3-uniform hypergraph using χ colors.

Proof: Let Φ be a PCP instance with layers X1, . . . ,Xl, as described in Section 3, with parameters

l = 2χ2, and u to be chosen later. We present a construction of a 3-uniform hypergraph G = (V,E).

Vertices. For each variable x in layer Xi we construct a block of vertices V [x]. This block

contains a vertex for each subset of Ri of size b(|Ri| − χ)/2c, i.e.,

V [x] =

(

Ri

b(|Ri| − χ)/2c

)

.

5

Altogether,

V =
⋃

x∈∪Xi

V [x] .

Throughout this section we slightly abuse notation by writing a vertex rather than the subset

it represents.

Hyperedges. Before explicitly specifying the hyperedges, let us explain the idea in constructing

them. This is closely related to the (simple) proof of completeness (Lemma 4.2). Consider the

following natural block-coloring of a block V [x] according to an assignment a for x. Simply color all

the vertices that contain a red, and all the rest orange. For two variables x, y sharing a test ϕx→y,

we add all possible hyperedges on the vertices of V [x] ∪ V [y] such that all natural block-colorings

corresponding to an assignment a for x and b for y satisfying the test, remain legal colorings. In

fact, we take only a proper subset of these hyperedges as they already suffice for our soundness

argument.

More precisely, we construct hyperedges between blocks V [x] and V [y] only if there exists a test

ϕx→y ∈ Φ. We put a hyperedge between any v1, v2 ∈ V [x] and u ∈ V [y] whenever v1 ∩ v2 = φ and

ϕx→y(Ri \ (v1 ∪ v2)) ⊆ u. In summation,

E =
⋃

ϕx→y∈Φ

{{v1, v2, u} | v1, v2 ∈ V [x], u ∈ V [y], v1 ∩ v2 = φ and ϕx→y(Ri \ (v1 ∪ v2)) ⊆ u} .

The best way to get more intuition on this definition is to consider the case where every block

is colored by a natural block-coloring, and to notice that this is a legal coloring of the hypergraph

iff the underlying assignment satisfies all of the tests. See the proof of completeness, shortly below.

Note that our hyperedges are always between two layers Xi and Xj of the PCP. Moreover, they

are ‘directed’ in the sense that if i < j then two vertices are chosen from a block in Xi and one

vertex is chosen from a block in Xj .

Remark. Interestingly, it is easy to see that this construction has rather large independent sets

(consisting of almost half the number of the vertices) no matter what the underlying PCP is. For

example, we can choose from each block all the vertices that contain a certain assignment, say the

first one. Moreover, it is possible to construct two independent sets (i.e., two colors) that cover

almost all of the hypergraph, leaving out only a sub-constant part. We briefly sketch this example,

which originally appeared in [10]. Consider any x ∈ Xi, i ∈ [l] and let Ti be any subset of Ri of

size |Ri|
2 . The first independent set contains all the vertices in V [x] whose intersection with Ti is of

size more than |Ti|
2 . Similarly, the second independent set contains all the vertices in V [x] whose

intersection with Ri \ Ti is more than |Ti|
2 . These are indeed independent sets because two vertices

in the first independent set intersect on Ti and similarly for the second independent set. Also, most

of the vertices in V [x] are in one of the independent sets. Informally, this is true because the size

of the intersection of a vertex in V [x] and Ti has a standard deviation of Θ(
√

|Ri|).

Lemma 4.2 (Completeness) If Φ is satisfiable then G is 2-colorable.

Proof: Let A be a satisfying assignment for Φ, i.e., A maps each variable x ∈ Xi to an assignment

in Ri such that all the tests are satisfied. In the block V [x] we color all the vertices that contain

6

the assignment A(x) red and all the rest orange (i.e., the natural block-coloring corresponding

to A(x)). There are no red monochromatic edges because two red vertices inside the same block

have a non-empty intersection. Now we show that there are no orange monochromatic edges. Let

{v1, v2, u} be an arbitrary hyperedge and let x, y, i be such that v1, v2 ∈ V [x], x ∈ Xi and u ∈ V [y].

Assume that both v1 and v2 are orange. Since there exists a hyperedge between them, v1 and v2 are

disjoint. Therefore, A(x) ∈ Ri \ (v1 ∪ v2) which implies that ϕx→y(A(x)) ∈ ϕx→y(Ri \ (v1 ∪ v2)) ⊆ u

where the last containment is again because {v1, v2, u} is a hyperedge. But ϕx→y(A(x)) = A(y)

since A is a satisfying assignment and therefore A(y) ∈ u and u is red.

Lemma 4.3 (Soundness) If G is χ-colorable then Φ is satisfiable.

Proof: Fix a coloring of the graph G. The first step in our proof is to ‘list-decode’ this coloring,

i.e., to find a list of candidate-assignments for each variable. For any variable x ∈ Xi, i ∈ [l],

consider the vertices inside the block V [x]. We can map them to the vertices of the Kneser graph

KG|Ri|,b(|Ri|−χ)/2c. According to Lemma 2.2 we can find a color cx with the following two properties:

1. The subset U [x] ⊆ V [x] of vertices colored cx contains at least an Ω(1
χ |Ri|−(χ+1)) fraction of

the vertices in V [x].

2. There are two vertices vx,1, vx,2 ∈ U [x] such that vx,1 ∩ vx,2 = φ.

Let B(x) be the set Ri \ (vx,1 ∪ vx,2). This is the list of ‘decoded’ values. Notice that it contains

at most χ+ 1 assignments. We say that the variable x is colored with cx, and denote as above by

U [x] ⊆ V [x] the set of vertices V [x] colored with cx.

The next step in the proof is to establish consistency. Define the color of a layer i ∈ [l] to be

the color in which the largest number of its variables are colored. Notice that at least 1
χ of the

variables of the layer must be colored with the color of the layer. Finally, we can find l
χ = 2χ layers

that are colored with the same color, say red. Using the properties of the PCP with the set of red

layers and the red variables within each layer, we conclude that there exist two layers Xi and Xj

such that 1
4χ2 of the tests between them are tests between red variables. Let us denote by X the

red variables in Xi and by Y the red variables in Xj .

We can now define an assignment to the variables in X and Y such that many of the tests

between them are satisfied. For a variable x ∈ X we choose a random assignment from the set

B(x). For a variable y ∈ Y we choose the assignment that agrees with the maximal number of

B(x)’s,

A(y) = maxvara∈RY
|{x ∈ X | ϕx→y ∈ Φ and a ∈ ϕx→y(B(x))}| .

The heart of the proof lies in the following claim.

Claim 4.4 Fix y ∈ Y . Consider the collection2 of subsets of Rj

{ϕx→y(B(x)) |x ∈ X shares a test with y} . (1)

Then there is some a ∈ Rj contained in at least α = Ω(χ−2 · 3−χ · (ul)−1) of these sets.

2One should think of this collection as a multiset, i.e., we allow the same subset to appear more than once.

7

Let us first see that this claim completes the proof. Indeed, it follows that the expected fraction

of X,Y tests satisfied by A is at least α/(χ + 1) because with probability 1/ |B(x)| ≥ (χ + 1)−1

the element of B(x) that is assigned to x is consistent with the assignment for y. Recalling that

tests between X and Y represent Ω(χ−2) of the tests between layers Xi and Xj, we get that

Ω(χ−3α) = Ω(χ−53−χ(ul)−1) of the tests between layers Xi and Xj are satisfied. Choosing u to be

c · χ with a big enough constant c, this is more than 2−Ω(u) and hence Φ is satisfiable.

Proof: (of Claim 4.4) We first prove in Claim 4.5 that the family defined in (1) cannot contain too

many pairwise disjoint sets. We then rely on a simple combinatorial claim (Claim 4.6) to show that

there must be one element present in many of the sets.

Why aren’t there many pairwise disjoint sets in the collection (1)? If there were too many

such sets, this would prevent U [y] from being large. Indeed, consider a variable x such that the

test ϕx→y exists. Since the vertices vx,1, vx,2 and the vertices in U [y] are colored red, there are

no hyperedges between them. Therefore, by definition of the hyperedges, all the vertices u ∈ U [y]

must not contain ϕx→y(B(x)). This poses a restriction on the size of U [y]. We make this formal in

the following claim. The reader might want to skip its proof at first read.

Claim 4.5 Let A1, . . . , Aq ⊆ [n] be pairwise disjoint, |Ai| ≤ s. Let F = {F ∈
([n]

k

)

| ∀i F 6⊇ Ai}.
Then if n

3 ≤ k ≤ 2n
3 we have

q ≤ 3s

[

1

2
log n+ c0 − log

(

|F|/
(

n

k

))]

where c0 is an absolute constant.

Proof: Consider the probability distribution µ on 2[n] where each element i ∈ [n] is chosen to be in

the set with probability k
n and out of it with probability 1 − k

n . Thus, µ(F) = (k
n)|F |(1 − k

n)n−|F |

and for F ⊆ 2[n] we define µ(F) =
∑

F∈F µ(F).

The probability that a fixed Ai is not completely contained in a µ-random subset is at most

1 − (k/n)s. Since the Ai’s are pairwise disjoint,

µ(F) ≤
(

1 −
(

k

n

)s)q

≤ exp

(

−q
(

k

n

)s)

.

Since all k-sets appear with equal probability, we have

|F|/
(

n

k

)

= µ (F) /µ

((

[n]

k

))

.

From Stirling’s formula we get n! = Θ(nne−n√n) and hence

µ

((

[n]

k

))

=

(

n

k

)(

k

n

)k (

1 − k

n

)n−k

= Θ

(
√

n

k(n− k)

)

which for n
3 ≤ k ≤ 2n

3 equals Θ(1/
√
n). Combining the above equations means that

|F|/
(

n

k

)

= O

(√
n exp

(

−q
(

1 − k

n

)s))

.

8

Taking logarithms we get

q

(

1 − k

n

)s

≤ 1

2
log n+ c0 − log

(

|F|/
(

n

k

))

for some constant c0 > 0. Since n
3 ≤ k ≤ 2n

3 this implies the conclusion of the claim.

We use the above claim with A1, . . . , Aq a maximum collection of pairwise disjoint sets in

Equation (1), n = |Rj | , k = b(|Rj | − χ)/2c, and s = χ+ 1. Notice that in this case U [y] ⊆ F and

recall that U [y] contains at least an Ω(1
χ |Rj|−(χ+1)) fraction of the vertices in V [y]. Hence,

− log

(

|F|/
(|Rj |
b(|Rj | − χ)/2c

))

≤ − log

(|U [y]|
|V [y]|

)

≤ (χ+ 1) log |Rj | + log χ+O(1) = O(χ log |Rj |).

Therefore, using the claim,

q ≤ 3χ+1

(

1

2
log |Rj | + c0 +O(χ log |Rj |)

)

= O(χ · 3χ · log |Rj |) = O(χ · 3χ · ul) .

Having bounded q, we complete the proof with the following simple claim:

Claim 4.6 Let A1, . . . , An be a collection of n sets of size at most s such that there are at most q

pairwise disjoint sets in the collection. Then, there must be an element contained in at least n/qs

sets in this collection.

Proof: Let Ai1 , . . . , Aiq′ be any maximal sub-collection of pairwise disjoint sets. By assumption,

q′ ≤ q. Each of the remaining n − q′ subsets must intersect ∪q′

m=1Aim . Since |∪Aim | ≤ qs, there

must be an element contained in (n− q′)/(qs) + 1 ≥ n/qs subsets.

Claim 4.6 with A1, . . . , An the sets in (1) and s = χ+1, implies that there exists an assignment

for y that is contained in at least a fraction α = q−1(χ+ 1)−1 = Ω(χ−1 · 3−χ · (ul)−1 · (χ+ 1)−1) of

the sets in (1).

This completes the proof of Lemma 4.3.

It is worthwhile to mention that we rely on the quantitative aspects of the parallel repetition

theorem [25]. In particular, it is essential for our proof that after u repetitions the soundness error

becomes smaller than 1/uO(1) (of course Raz proved that it decreases exponentially in u which is

all the better). This is in contrast to the usual scenario where it only matters that the soundness

error goes to zero as u goes to infinity.

Theorem 4.7 Assuming NP * DTIME(2poly(log n)), there is no polynomial time algorithm that

colors a 2-colorable 3-uniform hypergraph using O(3
√

log logN) colors where N is the number of

vertices in the hypergraph.

Proof: We note that in the previous proof, we can take χ = c 3
√

log log n where c > 0 is any

constant and n is the size of the NP-hard problem instance from which the reduction begins. The

parameters we chose are l = O(χ2) and u = O(χ). Therefore, the size of the hypergraph we

construct is N = nO(ul)22O(ul)
= 2poly(log n). The proof is completed by noting that log logN =

log(poly(log n)) = O(log log n).

9

5 Discussion

The construction we presented relies on the properties of the Kneser graph in a strong way. This

allowed us to prove the hardness of coloring in a direct way and not via the size of the maximal

independent set, as was done in essentially all previous results. We believe that the Kneser graph

might be useful in understanding the hardness of approximate coloring for graphs, a problem that

is notoriously difficult.

6 Acknowledgements

We would like to thank Benny Sudakov for introducing us to the Kneser graph, and to both Benny

Sudakov and Noga Alon, for insightful discussions. We also thank the anonymous referees for many

helpful comments.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness

of approximation problems. J. ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. J. ACM,

45(1):70–122, 1998.

[3] I. Bárány. A short proof of Kneser’s conjecture. J. Combin. Theory Ser. A, 25(3):325–326,

1978.

[4] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability—towards

tight results. SIAM J. Comput., 27(3):804–915, 1998.

[5] A. Blum and D. Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Inform.

Process. Lett., 61(1):49–53, 1997.

[6] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and the hardness of

hypergraph vertex cover. In Proc. 35th ACM Symp. on Theory of Computing (STOC), pages

595–601, 2003.

[7] I. Dinur and S. Safra. The importance of being biased. In Proc. 34th ACM Symp. on Theory

of Computing (STOC), pages 33–42, 2002.

[8] V. L. Dol′nikov. Transversals of families of sets. In Studies in the theory of functions of several

real variables (Russian), pages 30–36, 109. Yaroslav. Gos. Univ., Yaroslavl′, 1981.

[9] U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput. System Sci.,

57(2):187–199, 1998.

[10] P. Frankl and Z. Füredi. Extremal problems concerning Kneser graphs. J. Combin. Theory

Ser. B, 40(3):270–284, 1986.

10

[11] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,

42(6):1115–1145, 1995.

[12] J. E. Greene. A new short proof of Kneser’s conjecture. Amer. Math. Monthly, 109(10):918–

920, 2002.

[13] V. Guruswami. Inapproximability results for set splitting and satisfiability problems with

no mixed clauses. In Approximation algorithms for combinatorial optimization (Saarbrücken,

2000), volume 1913 of Lecture Notes in Comput. Sci., pages 155–166. Springer, Berlin, 2000.

[14] V. Guruswami, J. H̊astad, and M. Sudan. Hardness of approximate hypergraph coloring. SIAM

J. Comput., 31(6):1663–1686, 2002.

[15] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. In 15th An-

nual IEEE Conference on Computational Complexity (Florence, 2000), pages 188–197. IEEE

Computer Soc., Los Alamitos, CA, 2000.

[16] J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[17] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number.

Combinatorica, 20(3):393–415, 2000.

[18] S. Khot. Hardness of coloring 3-colorable 3-uniform hypergraphs. In Proc. 43rd Annual IEEE

Symp. on Foundations of Computer Science (FOCS), pages 23–32, 2002.

[19] M. Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2),

Abteilung, S. 27, 1955.

[20] M. Krivelevich, R. Nathaniel, and B. Sudakov. Approximating coloring and maximum inde-

pendent sets in 3-uniform hypergraphs. J. Algorithms, 41(1):99–113, 2001.

[21] M. Krivelevich and B. Sudakov. Approximate coloring of uniform hypergraphs. J. Algorithms,

49(1):2–12, 2003.

[22] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A,

25(3):319–324, 1978.

[23] J. Matoušek. Using the Borsuk-Ulam theorem. Universitext. Springer-Verlag, Berlin, 2003.

Lectures on topological methods in combinatorics and geometry, written in cooperation with

Anders Björner and Günter M. Ziegler.

[24] J. Matoušek. A combinatorial proof of Kneser’s conjecture. Combinatorica, 24(1):163–170,

2004.

[25] R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[26] A. Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wisk. (3), 26(3):454–

461, 1978.

11

[27] U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming

relaxations, with applications to MAX CUT and other problems. In Annual ACM Symposium

on Theory of Computing (Atlanta, GA, 1999), pages 679–687. ACM, New York, 1999.

Appendix

We include a proof of Theorem 3.1. This theorem was proven in Dinur et al. [6], and we repeat

the proof for self-containment only.

Theorem 3.1 (Theorem 3.3 in [6]) For any parameters l, u there exists a reduction from an

NP-hard problem of size n to the problem of distinguishing between the following two cases in an

l-layered PCP Φ with nO(ul) variables over a range of size 2O(ul). Either there exists an assignment

that satisfies all the tests or, for every i < j, not more than 2−Ω(u) of the tests in Φij can be

satisfied by an assignment. Moreover, for any 1 < m < l and for any m layers i1 < . . . < im
and sets Sj ⊆ Xij for j ∈ [m] such that Sj ≥ 2

m |Xij | there exist two sets Sj and Sj′ such that the

number of tests between them is at least 1
m2 of the number of tests between the layers Xij and Xij′ .

Proof Sketch: We begin with the parallel repetition lemma [25] applied with parameter u to the

3SAT5 problem of [1]. This provides us with a reduction from an NP-hard problem of size n to a

PCP Ψ over two sets of variables Y (with range RY of size 7u) and Z (with range RZ of size 2u)

where the number of variables is nO(u). The tests ψy,z are only between a variable y ∈ Y and a

variable z ∈ Z and are projections from RY to RZ , i.e., for any given assignment to y ∈ Y there

exists exactly one consistent assignment to z ∈ Z. The problem is to decide whether there exists

an assignment that satisfies all the tests or no assignment satisfies more than 2−Ω(u) fraction of the

tests. One property of the resulting PCP that we use is its uniformity: the distribution created by

uniformly taking a variable y ∈ Y and then uniformly choosing one of the variables in z ∈ Z with

which it has a test is a uniform distribution on Z. This property follows from the fact that 3SAT5

instances are SAT instances in which every clause contains exactly 3 variables and every variables

appears in exactly 5 clauses.

We construct Φ as follows. The variables Xi of layer i ∈ [l] are the elements of the set ZiY l−i,

i.e., all l-tuples where the first i elements are Z variables and the last l− i elements are Y variables.

The variables in layer i have assignments from the set Ri = Ri
ZR

l−i
Y corresponding to an assignment

to each variable of Ψ in the l-tuple. It is easy to see that |Ri| ≤ 2O(ul) for any i ∈ [l] and that the

total number of variables is nO(ul). For any 1 ≤ i < j ≤ l we define the tests in Φij as follows. A

test exists between a variable xi ∈ Xi and a variable xj ∈ Xj if they contain the same Ψ variables

in the first i and the last l − j elements of their l-tuples. Moreover, for any i < k ≤ j there should

be a test in Ψ between xi,k and xj,k. More formally,

Φij = {ϕxi,xj
| xi ∈ Xi, xj ∈ Xj ,∀k ∈ [l] \ {i+ 1, . . . , j}

xi,k = xj,k,∀k ∈ {i+ 1, . . . , j} ψxi,k,xj,k
∈ Ψ}.

As promised, the tests ϕxi,xj
are projections. Given as assignment a to xi, we define the consistent

assignment b to xj as bk = ψxi,k,xj,k
(ak) for k ∈ {i+ 1, . . . , j} and bk = ak otherwise.

The completeness of Φ follows easily from the completeness of Ψ. That is, assume we are

given an assignment A : Y ∪ Z → RY ∪ RZ that satisfies all the tests. Then, the assignment

12

B :
⋃

Xi →
⋃

Ri defined by B(x1, . . . , xl) = (A(x1), . . . , A(xl)) is a satisfying assignment. For

the soundness part, assume that there exist two layers i < j and an assignment B that satis-

fies more than 2−Ω(u) of the tests in Φij. We partition Xi into classes such that two variables

in Xi are in the same class iff they are identical except possibly on coordinate j. The vari-

ables in Xj are also partitioned according to coordinate j. Since more than 2−Ω(u) of the tests

in Φij are satisfied, it must be the case that there exist a class xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,l

in the partition of Xi and a class xj,1, . . . , xj,j−1, xj,j+1, . . . , xj,l in the partition of Xj be-

tween which there exist tests and the fraction of satisfied tests is more than 2−Ω(u). We de-

fine an assignment to Ψ as A(y) = (B(xi,1, . . . , xi,j−1, y, xi,j+1, . . . , xi,l))j for y ∈ Y and as

A(z) = (B(xj,1, . . . , xj,j−1, z, xj,j+1, . . . , xj,l))j for z ∈ Z. Notice that there is a one-to-one and

onto correspondence between the tests in Ψ and the tests between the two chosen classes in Φ.

Moreover, if the test is Φ is satisfied, then the test in Ψ is also satisfied. Therefore, A is an

assignment to Ψ that satisfies more than 2−Ω(u) of the tests.

To prove the second part of the theorem let 1 < m < l, and set δ = 2/m. Take any m layers

i1 < . . . < im and sets Sj ⊆ Xij for j ∈ [m] such that Sj ≥ δ|Xij |. Consider a random walk

beginning from a uniformly chosen variable x1 ∈ X1 and proceeding to a variable x2 ∈ X2 chosen

uniformly among the variables with which x1 has a test. The random walk continues in a similar

way to a variable x3 ∈ X3 chosen uniformly among the variables with which x2 has a test and

so on up to a variable in Xl. Denote by Ej the indicator variable of the event that the random

walk hits a variable in Sj when in layer Xij . From the uniformity of Ψ it follows that for every j,

P (Ej) ≥ δ = 2
m . Moreover, by using the inclusion-exclusion principle, we get:

1 ≥ P (
∨

Ej) ≥
∑

j

P (Ej) −
∑

j<k

P (Ej ∧ Ek) ≥ 2 −
(

m

2

)

maxj<kP (Ej ∧ Ek)

which implies

maxj<kP (Ej ∧ Ek) ≥ 1/

(

m

2

)

>
1

m2
.

Fix j and k such that P (Ej ∧ Ek) ≥ 1
m2 and consider a shorter random walk beginning from a

random variable in Xij and proceeding to the next layer and so on until hitting layer ik. Since Ej is

uniform on Xij we still have that P (Ej ∧Ek) ≥ 1
m2 where the probability is taken over the random

walks between Xij and Xik . Also, notice that there is a one-to-one and onto mapping from the set

of all random walks between Xij and Xik to the set Φij ,ik . Therefore, 1
m2 of the tests between Xij

and Xik are between Sj and Sk.

13

