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Abstract

We show that the problems of approximating the shortest and closest vector in a lattice to within a

factor of
√

n lie in NP intersect coNP. The result (almost) subsumes the three mutually-incomparable

previous results regarding these lattice problems: Banaszczyk [7], Goldreich and Goldwasser [14], and

Aharonov and Regev [2]. Our technique is based on a simple fact regarding succinct approximation

of functions using their Fourier series over the lattice. This technique might be useful elsewhere –

we demonstrate this by giving a simple and efficient algorithm for one other lattice problem (CVPP)

improving on a previous result of Regev [26]. An interesting fact is that our result emerged from a

“dequantization” of our previous quantum result in [2]. This route to proving purely classical results

might be beneficial elsewhere.

1 Introduction

A lattice is the set of all integer combinations of n linearly independent vectors v1, . . . , vn in R
n. These

vectors are known as a basis of the lattice. The study of lattices originated some 200 years ago by Gauss

[12], who gave an algorithm to find the shortest vector in a two-dimensional lattice. Since then, lattices

have been shown to be pervasive in mathematics, and many different problems can be phrased as questions

about lattices, such as integer programming [18], factoring polynomials with rational coefficients [23], integer

relation finding [16], integer factoring and Diophantine approximation [28]. Recently, the study of lattices

gained a lot of attention in the computer science community due to the fact that lattice problems were

shown by Ajtai [3] to possess a particularly desirable property for cryptography: worst-case to average-case

reducibility.

Two lattice problems have been widely studied. The first is the Shortest Vector Problem (SVP): given a

basis v1, . . . , vn of a lattice, find the shortest nonzero lattice point in the Euclidean norm. The second is the

Closest Vector Problem (CVP): given a basis v1, . . . , vn of a lattice and a target vector v ∈ R
n find the closest

lattice point to v in the Euclidean norm. Both problems are known to be NP-complete [4, 30]. In light of

this, and the importance of lattice problems in mathematics, a very interesting question is the study of the

approximation version of these problems. The parameter of interest here is the factor of approximation β.

The problem GapSVPβ is the following: Given a basis v1, . . . , vn, decide whether the l2 norm of the shortest

nonzero vector in the lattice is at most 1 or larger than β. The problem GapCVPβ is: Given a basis v1, . . . , vn

and an extra vector v ∈ R
n, decide whether the distance of v from the lattice is at most 1 or larger than

β. The best inapproximability result for CVP is due to Dinur et al. [10] where it is shown that GapCVPβ

with β = nc/ log log n is NP-hard for some c > 0. For SVP, Khot [20] recently showed that for any ε > 0

obtaining approximation factors below 2(log n)1/2−ε

is hard unless NP ⊆ BPTIME(2poly(log n)); this improves

on a previous result of Micciancio [24]. The best probabilistic polynomial time approximation algorithm
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due to Ajtai et al. [6] obtains a 2O(n log log n/ log n)-approximation factor for both problems; it is based on the

deterministic polynomial time 2O(n(log log n)2/ log n)-approximation algorithm by Schnorr [27].

The complexity of lattice problems in the range of polynomial approximation factors is of particular

interest. For example, Ajtai’s seminal work [3] is based on the hardness of approximation in this region (see

also [5, 25]). A sequence of incomparable results gave upper bounds on the complexity of lattice problems

in the polynomial approximation region. Banaszczyk [7] showed that GapCVPn is in NP ∩ coNP, improving

on the previous result of GapCVPn1.5 ∈ NP ∩ coNP by Lagarias, Lenstra and Schnorr [22]. We note that

containment in NP is trivial, and the difficult part is showing the containment in coNP, i.e., showing the

existence of a succinct proof that a vector is far from any lattice point. Goldreich and Goldwasser [14] gave

an upper bound on the complexity of the harder problem GapCVP√
n/ log n

, but their upper bound is weaker:

they showed containment in NP ∩ coAM, which means that instead of showing the existence of a succinct

proof that a vector is far from any lattice point, they gave an interactive proof of two rounds to that effect.

In another result, the current authors showed [2] that a certain special case of GapCVP√
n is in NP∩ coQMA,

where the latter class is the quantum analogue of coNP. Essentially, this says that there exists a succinct

quantum proof that a vector is far from the lattice. See [2] for more details.

In this paper we prove the following theorem, which essentially subsumes all three results mentioned

above.

Theorem 1.1 There exists c > 0 such that GapCVPc
√

n is in NP ∩ coNP.

Of the three results, the only result that Theorem 1.1 does not completely subsume is that of Goldreich and

Goldwasser [14]. Indeed, for gaps between
√

n/ logn and
√

n our result does not apply, and so containment

in NP ∩ coNP is not known to hold.

There is a known approximation preserving reduction from GapSVP to GapCVP [15], which we include

for completeness in Appendix A. Using this reduction, we obtain the following corollary.

Corollary 1.2 There exists c > 0 such that GapSVPc
√

n is in NP ∩ coNP.

We summarize the current complexity of lattice problems as a function of the approximation ratio β in

Figure 1.
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Figure 1: The complexity of lattice problems (some constants omitted)

1.1 Proof Overview

As mentioned before, the containment in NP is trivial and it suffices to prove, e.g., that GapCVP100
√

n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : R
n → R

+ that is periodic over the lattice L, i.e., for all x ∈ R
n

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two

properties: it is non-negligible (i.e., larger than some 1/poly(n)) for any point that lies within distance√
log n from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.
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2. Encode f

We show that there exists a succinct description (which we denote by W ) of a function fW that

approximates f at any point in R
n to within polynomially small additive error. We now use W as the

witness in the NP proof.

3. Verify f

We construct an efficient NP verifier that, given a witness W , verifies that v is far from the lattice.

The verifier verifies first that fW (v) is small, and also that fW (x) ≥ 1/2 for any x that is close to the

lattice.

Step 1 The function f already appeared in [7], and in fact, the two properties mentioned in Step 1 were

already proven there. The function is defined as a sum of Gaussians centered around each lattice point.

Step 2 This step is the core of the proof. Here we show that the function f can be approximated pointwise

by a polynomial size circuit with only an inverse polynomial additive error. A naive attempt would be to

store f ’s values on some finite subset of its domain, and use these points for approximation on the rest of the

domain. However, it seems that for this to be meaningful, we would have to store an exponential number of

points.

Instead, we consider the Fourier series of f , denoted f̂ . By definition, the domain of f̂ is the dual lattice

(defined as the set of all points in R
n with integer inner product with all lattice points). It turns out that f̂

has a useful property: it is a probability measure over the dual lattice. In other words, it is a non-negative

function and the sum of all its values is 1. This allows us to view f as an expectation of a random variable,

and so by the Chernoff-Hoeffding bound, polynomially many samples from the distribution on the dual lattice

given by f̂ would suffice. This leads us to the following lemma. We will later define ` as some polynomial in

n and L` as a very fine grid in R
n. For now, one can think of the lemma as applying to any x ∈ R

n and not

only to x ∈ L`.

Lemma 1.3 (The Pointwise Approximation Lemma) Let L be an n-dimensional lattice, and let f be

a function from R
n to R that is periodic over L and whose Fourier series f̂ is a probability measure over the

dual lattice L∗. For any constant c > 0 define N to be n2c+2`. Let w1, . . . , wN be vectors in the dual lattice

chosen randomly and independently from the distribution f̂ . Then with probability at least 3/4,

fW (x)
def
=

1

N

N
∑

i=1

cos(2π〈x, wi〉) (1)

satisfies that |fW (x) − f(x)| ≤ n−c for all x ∈ L`.

We note that the requirement that the Fourier series is a probability measure can be somewhat relaxed.

Indeed, it is easy to generalize our proof to the case in which the sum of the absolute values of the Fourier

coefficients of f (that is, the l1 norm of the Fourier series) is polynomially bounded.

A closely related lemma was previously used in the work of Bruck and Smolensky [8]. There, the authors

were interested in functions on the Boolean cube {0, 1}n. Our lemma can be seen as an adaptation of their

lemma to the continuous world. Another related idea is that of truncating the small Fourier coefficients to

achieve good approximation of f . This is done, for example, by Kushilevitz and Mansour in [21], as well

as in various other contexts (e.g., signal processing). However, in those cases, one is interested in a good

approximation in the l2 norm, while here we require a good approximation in the l∞ norm, i.e., pointwise.1

1To demonstrate the difference between these two notions of approximation, consider a very sparse lattice. By the properties

of f described in Step 1, it can be seen that f is essentially 0 on all except an exponentially small part of the space. In such a

case, it can be shown that all the Fourier coefficients of f are exponentially small. Truncating them would lead to the constant

function 0, which is a good approximation in the l2 norm but not in the l∞ norm.
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Given this lemma, it is natural to define the witness as the list w1, . . . , wN of vectors in the dual lattice;

this list is also referred to as W . We note that these vectors are typically short and hence computing them

directly seems difficult.

Step 3 Here we construct an efficient NP verifier that, given W , verifies that a point is far from the lattice.

Given a lattice L and a vector v, it accepts if the distance of v from L is greater than
√

n and rejects if this

distance is less than 1/100. This shows that GapCVP100
√

n is in coNP (after appropriate rescaling).

The verifier starts by performing the following test: compute fW (v), as defined in (1), and reject if it

is at least, say, 1/2. We can do this because when the distance of v from L is greater than
√

n, f(v) is

exponentially small and hence fW (v) must be at most 1/poly(n) < 1/2 (assuming the witness W is chosen

from f̂ as it should be).

This verifier, however, is clearly not strong enough: the prover can ‘cheat’ by sending wi’s that have

nothing to do with f̂ or with the lattice, and for which fW (v) is small even though v is within distance

1/100 of the lattice. One might try to avoid such cheating by verifying that fW is close to f everywhere,

or, alternatively, that the wi’s were indeed chosen from the correct distribution f̂ . We do not know how to

construct such a verifier. Instead, we provide a weaker verifier (and indeed, lose a factor of
√

log n in the

approximation ratio, in comparison to what one could expect given the properties of f).

To test the witness W , we verify that the wi’s ‘look like’ vectors chosen from f̂ , according to some simple

statistical tests. We will later see that these tests suffice to provide soundness. But what do vectors chosen

from f̂ look like? We identify two important properties. First, by definition we see that all the wi’s are in

L∗. Second, it turns out that with high probability, for any unit vector u ∈ R
n it holds that 1

N

∑N
i=1 〈u, wi〉2

is bounded from above by some constant, say 3. Intuitively, this follows from the fact that the length of the

wi’s is roughly
√

n and that they are not concentrated in any particular direction. The proof uses another

lemma due to Banaszczyk [7].

Fortunately, the verifier can check these two properties efficiently. The first property is easy to check by,

say, solving linear equations. But how can we check the second property efficiently? It seems that we have

to check it for all vectors u. However, we observe that we can equivalently check that the largest eigenvalue

of the n× n matrix W ·WT , where W is the n×N matrix whose columns are the vectors w1, . . . , wN , is at

most 3N . Computing the eigenvalues of this matrix can be done in polynomial time.

To summarize, the verification consists of three tests. The verifier first checks that fW (v) < 1/2, it then

checks that W consists of vectors from the dual lattice, and finally, it checks that the largest eigenvalue of

W · WT is at most 3N . If any of these tests fails, the verifier rejects.

We now claim that the protocol is sound, by proving that any witness W that passes the last two tests,

satisfies fW (x) ≥ 1/2 for all x within distance 1/100 from the lattice. To see this, we note that by the

definition of fW , the fact that W consists of dual vectors guarantees that the function fW is periodic on L.

Indeed, for any v ∈ L, 〈v + x, wi〉 = 〈v, wi〉 + 〈x, wi〉 with the first term being integer. Hence, it is enough

to show that fW (x) ≥ 1/2 for any x satisfying ‖x‖ ≤ 1/100. For such x, the eigenvalue test implies that for

most i’s, |〈x, wi〉| is small. Therefore, for such x most of the cosines in the definition of fW (x) are close to

1. This implies that fW (x) is greater than 1/2 and soundness follows.

Remark: It might seem that we were somewhat wasteful in Step 1. Indeed, we do not really need the

function f to be exponentially small; any negligible function of n, or even some small constant, would be

good enough. So one might hope to improve the factor
√

n by proving that for any point x of distance at

least, say, n0.499 from the lattice, f(x) is smaller than, say, n− log n. Unfortunately, this is false. It is known

that there are lattices for which f(x) is very close to 1 for points x whose distance to the lattice is as large

as c
√

n for some constant c > 0. See [7] for more details.
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1.2 Another Application: The Closest Vector Problem with Preprocessing

Steps 1 and 2 imply that important information regarding the lattice can be encoded in a short description,

though this description may be very hard to find. Note that this description is independent of the target

vector v. Hence, if we had infinite time to preprocess the lattice before seeing the vector v, we could

prepare the approximating function fW and then, when given v, calculate fW (v) in polynomial time. This

is exactly the setting in the Closest Vector Problem with Preprocessing (CVPP). The problem is defined

as follows: given a lattice, we are allowed to preprocess it and to output a polynomially long description,

without any computational restrictions on the preprocessing phase. Then, given a preprocessed lattice and

a query point v ∈ R
n, the algorithm is supposed to efficiently approximate the distance of v from the lattice.

The motivation for this problem comes from cryptography and coding theory. See [11] for a more precise

definition and a further discussion and references. The best known inapproximability result is that CVPP is

NP-hard to approximate to within a factor of
√

3 [26], and the best polynomial time approximation algorithm

is for a factor n [26]. Steps 1 and 2 in our proof immediately imply an efficient
√

n/ logn approximation

algorithm for CVPP.

Theorem 1.4 For any constant c > 0, the problem GapCVPP
c
√

n/ log n
can be solved in polynomial time.

Note that by using standard methods, a solution to a gap problem can be converted to a solution to the

corresponding approximation problem. Hence, the above theorem implies that for any constant c > 0 there

exists a c
√

n/ log n approximation algorithm for CVPP.

1.3 Speculation

Note that Step 3 is not the best that one can hope for: the function f has the property that it is non-

negligible in the
√

log n vicinity of lattice points. Yet, we are only able to verify that the given function fW

is non-negligible in a constant distance. It is possible that the verification procedure can be improved so

that it includes the
√

log n vicinity of lattice points. This would imply the following speculation.

Speculation 1.5 GapCVP√
n/ log n

is in NP ∩ coNP.

Recall that this problem is currently known to be in NP∩coAM [14]. The factor
√

n/ logn arises naturally in

both our work (from properties of Gaussians) and in [14] (from properties of intersections of high dimensional

spheres). We note that going below
√

n/ logn would probably require some substantially new ideas, and in

fact, might be impossible; it may be the case that this is where the NP-hardness is manifested.

1.4 Relation to Quantum Computation

It is intriguing to note that our result emerged from a “dequantization” of a quantum result [2], in which we

showed that coGapSVP√
n is contained in the quantum analogue of the class NP, called QMA, in which both

witness and verifier are quantum. In the dequantization process we replaced both witness and verifier by

classical objects. This result thus continues an existing thread of quantum-inspired purely-classical results

(e.g., [19, 1]). We would like to emphasize, however, that the proof we present in the present paper is

completely classical, and bares little resemblance to the original quantum proof. In fact, the new proof is

stronger and holds not only for SVP but also for CVP.

1.5 Organization

The rest of the paper is organized as follows. Section 2 gives the basic notations and definitions. In Section

3 we define f and prove its required properties. In Section 4 we prove the pointwise approximation lemma,

show that f satisfies the conditions of the lemma, and deduce that there exists a polynomial size circuit that
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approximates f . In Section 5 we show how the previous two sections imply an improved algorithm for CVPP.

In Section 6 we complete the proof of the main theorem. For the sake of completeness, we add two known

results in the appendices: Appendix A gives the reduction from GapSVPβ to GapCVPβ , whereas Appendix

B shows why our results (as well as previous results) imply that the lattice problems we are considering are

unlikely to be NP-hard.

2 Preliminaries

2.1 Lattices

For an introduction to lattices, see [25]. A lattice in R
n is defined as the set of all integer combinations of n

linearly independent vectors. This set of vectors is known as a basis of the lattice and is not unique. Given

a basis (v1, . . . , vn) of a lattice L, the fundamental parallelepiped is defined as

P(v1, . . . , vn) =

{

n
∑

i=1

xivi

∣

∣

∣

∣

xi ∈ [0, 1)

}

.

Note that a lattice has a different fundamental parallelepiped for each possible basis. However, everything

we do is independent of the basis, and so we will use the notation P(L) instead of P(v1, . . . , vn). We denote

by det(L) the volume of the fundamental parallelepiped of L or equivalently, the determinant of the matrix

whose columns are the basis vectors of the lattice (again, this is independent of the basis). For a point

x ∈ R
n we define d(x, L) as the minimum of ‖x − y‖ over all y ∈ L.

For any n-dimensional lattice L, the dual lattice of L, denoted L∗, is an n-dimensional lattice defined as

the set of all points in R
n with integer inner products with all lattice points,

L∗ = {y ∈ R
n | ∀x ∈ L 〈x, y〉 ∈ Z}.

2.2 Shortest and Closest Vector in a Lattice

A shortest (non-zero) vector of L is a vector x ∈ L, such that ‖x‖ 6= 0 and is minimal. The following is the

gap version of the shortest vector problem.

Definition 2.1 (coGapSVP) For any gap parameter β = β(n) the promise problem coGapSVPβ is defined

as follows. The input is a basis for a lattice L. It is a YES instance if the length of the shortest vector is

more than β. It is a NO instance if the length of the shortest vector is at most 1.

We also define the gap version of the closest vector problem.

Definition 2.2 (coGapCVP) For any gap parameter β = β(n) the promise problem coGapCVPβ is defined

as follows. The input is a basis for a lattice L and a vector v. It is a YES instance if d(v, L) > β. It is a

NO instance if d(v, L) ≤ 1.

Notice that we can replace the values β and 1 by, say, β/100 and 1/100 respectively without really

affecting the complexity of the problems. This follows from an easy reduction that simply rescales the input

by a factor of 100.

2.3 Precision Issues

Each vector in the input basis v1, . . . , vn is given with polynomially many bits. We assume that the target

vector v is given to us in the form
∑

aivi where each 0 ≤ ai < 1 is represented by at most ` bits where

` = poly(n) is some fixed global parameter. To this end we define, for a given lattice L, a refined lattice

L` = L/2`. In other words, L` is given by all integer combinations of the basis vectors 1
2` v1, . . . ,

1
2` vn. Notice

that we have v ∈ L`.
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2.4 Fourier Series and Fourier Transform

We now describe the Fourier series and the Fourier transform including some of their basic properties. For

a more in-depth treatment including proofs of some of the claims below, see, e.g., [29].

A function f : R
n → R is said to be periodic over a lattice L if f(x) = f(x + y) holds for all x ∈ R

n

and for all y ∈ L. For such an f , one can define its Fourier series as follows. The Fourier coefficient of f at

w ∈ L∗, denoted by f̂(w), is defined to be

f̂(w) =
1

det(L)

∫

z∈P(L)

f(z)e−2πi〈w,z〉dz.

(It can be shown that the above definition is independent of the basis we choose for L, because f(z)e−2πi〈w,z〉

is periodic over L.) The Fourier series of f at x is defined by

∑

w∈L∗

f̂(w)e2πi〈w,x〉.

Fact 2.3 For any sufficiently smooth function f : R
n → R that is periodic over some lattice L and any

x ∈ R
n, the Fourier series of f at x is equal to f(x).

The Fourier transform of a function h : R
n → R is defined as

∀w ∈ R
n ĥ(w) =

∫

Rn

h(x)e−2πi〈x,w〉dx.

If h : R
n → R is a Gaussian, h(x) = e−π‖x‖2

, then its Fourier transform turns out to also be a Gaussian,

ĥ(w) = e−π‖w‖2

.

2.5 Some Useful Lemmas

The following technical claim shows that all the sums that we use are well defined.

Claim 2.4 For any n-dimensional lattice L and for any x ∈ R
n, the sum

∑

y∈L e−π‖x−y‖2

is finite.

Proof: Notice that

1 =

∫

y∈Rn

e−π‖x−y‖2

= lim
m→∞





∑

y∈L/m

e−π‖x−y‖2



 det(L/m)

where L/m denotes the lattice scaled down by a factor m. Hence, there exists an integer m0 such that

2 ≥





∑

y∈L/m0

e−π‖x−y‖2



det(L/m0).

Hence,
∑

y∈L e−π‖x−y‖2 ≤ ∑

y∈L/m0
e−π‖x−y‖2

is finite.

We now quote two lemmas due to Banaszczyk [7] that we use throughout the proof.

Lemma 2.5 (Lemma 1.5 in [7]) For any n-dimensional lattice L, x ∈ R
n and c > 1√

2π
, one has

∑

y∈L,‖x−y‖>c
√

n e−π‖x−y‖2

∑

y∈L e−π‖y‖2
≤ 2(c

√
2πe · e−πc2

)n = 2−Ω(n).

7



This lemma was used in [7] to show several tight connections between a lattice and its dual (these are

known as ‘transference theorems’). Its proof is non-trivial; for another proof, see Štefankovič’s thesis [31].

Lemma 2.6 (Lemma 1.3 in [7]) For any n-dimensional lattice L and any unit vector u ∈ R
n we have

∑

y∈L 〈y, u〉2e−π‖y‖2

∑

y∈L e−π‖y‖2
≤ 1

2π
.

To get some intuition on this bound, let us mention that we can get arbitrarily close to 1
2π by choosing

L to be a very dense lattice. In fact, it is not difficult to see that we obtain an equality if we replace sums

with integrals.

2.6 The Chernoff-Hoeffding Bound

We will use the Chernoff-Hoeffding bound [17], which states the following. Let X1, . . . , XN be N identically

distributed independent random variables, such that for all i, Xi ∈ [a, b]. Then SN =
∑

i Xi satisfies that

Pr(|SN − E[SN ]| ≥ Nε) ≤ 2e−Nε2/(b−a)2 . (2)

2.7 Epsilon Nets

Definition 2.7 Given a set S in R
n, we say that A ⊆ S is an ε-net for S if for every s ∈ S there exists a

point a ∈ A such that ‖a − s‖ ≤ ε.

Claim 2.8 Let S be the unit sphere in R
n. There exists an ε-net for S of size at most (2

√
n/ε)n.

Proof: Let C be [−1, 1]n, i.e., the n-dimensional cube of edge length 2, and notice that C contains S.

Partition C into (2
√

n/ε)n small cubes of edge length ε/
√

n. For each small cube that intersects S, choose

an arbitrary point in the intersection and include it in the ε-net. It is easy to see that the collection of these

points constitutes an ε-net on the sphere, because any point in the sphere belongs to one of the small cubes,

and the diameter of each small cube is exactly ε.

3 Define f

We define the function g : R
n → R as

g(x) =
∑

y∈L

e−π‖x−y‖2

.

This sum is finite by Claim 2.4. We then define

f(x) =
g(x)

g(0)
.

The following lemmas show that the value of f indicates the distance from the lattice.

Lemma 3.1 Let c > 1√
2π

be any constant. Then for any x ∈ R
n, if d(x, L) ≥ c

√
n then f(x) ≤ 2−Ω(n).

Proof: The proof follows trivially from Lemma 2.5.

Lemma 3.2 Let c > 0 be any constant. Then for any x ∈ R
n, if d(x, L) ≤ c

√
log n then f(x) > n−10c2

.
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Proof: Notice that because of the periodicity of f over the lattice, it is sufficient to prove that if ‖x‖ ≤
c
√

log n then f(x) > n−10c2

. This follows if we show that for any x ∈ R
n, f(x) ≥ e−π‖x‖2

. To show this we

write

g(x) =
∑

y∈L

e−π‖x−y‖2

=
1

2

∑

y∈L

(

e−π‖x−y‖2

+ e−π‖x+y‖2
)

= e−π‖x‖2
∑

y∈L

e−π‖y‖2 1

2

(

e−2π〈x,y〉 + e2π〈x,y〉
)

≥ e−π‖x‖2
∑

y∈L

e−π‖y‖2

= e−π‖x‖2

g(0)

where the last inequality follows from the fact that for any positive real r, r + 1
r ≥ 2.

4 Encode f

Claim 4.1 The Fourier series of f is given by

f̂(w) =
e−π‖w‖2

∑

z∈L∗ e−π‖z‖2
.

Proof: By definition of g and the Fourier series,

ĝ(w) =
1

det(L)

∫

x∈P(L)





∑

y∈L

e−π‖x−y‖2



 e−2πi〈x,w〉dx

for any w ∈ L∗. By the definition of L∗, we have 〈x, w〉 = 〈x − y, w〉 mod 1 for any y ∈ L and so

ĝ(w) =
1

det(L)

∫

x∈P(L)





∑

y∈L

e−π‖x−y‖2

e−2πi〈x−y,w〉



 dx

=
1

det(L)

∫

z∈Rn

e−π‖z‖2

e−2πi〈z,w〉dz.

This is exactly the Fourier transform of a Gaussian divided by det(L), and hence we have (see Subsection

2.4)

ĝ(w) =
1

det(L)
e−π‖w‖2

.

To derive f̂(w) we have to divide by g(0). By Fact 2.3,

g(0) =
∑

w∈L∗

ĝ(w) =
1

det(L)

∑

w∈L∗

e−π‖w‖2

,

which gives us the desired result.

Corollary 4.2 The Fourier series of f is a probability measure on the dual lattice (i.e., it is non-negative

and the sum over all points in the dual lattice is 1).

We are thus in a situation which satisfies the conditions of Lemma 1.3. It remains to prove the lemma.

Proof of Lemma 1.3: By the conditions of the lemma, the Fourier coefficients of f are non-negative and

their sum is 1. We apply Fact 2.3 and obtain

f(x) =
∑

w∈L∗

f̂(w)e2πi〈w,x〉 =
∑

w∈L∗

f̂(w) cos(2π〈w, x〉)

9



where the last equality follows from the fact that both f and f̂ are real, and so the imaginary part cancels

out. Hence f(x) can be seen as the expectation of cos(2π〈w, x〉) (whose values range between −1 and 1),

where w is chosen according to the probability measure f̂ ,

f(x) = Ew∼f̂ [cos(2π〈w, x〉)].

Let x ∈ R
n. By the Chernoff-Hoeffding bound, (2), we have that the probability that the mean of N samples

is not within a window of n−c of the correct expectation is 2−Ω(N/n2c). We now want to show that this holds

simultaneously for all x ∈ L`. Since f is periodic over the lattice, it suffices to consider x in P(L) ∩ L`.

By definition of L`, there are exactly 2`n such points. Hence, by the union bound, the probability that the

approximation is within n−c window of the correct expectation at all points in L` simultaneously is at least

1 − 2n`2−Ω(N/n2c). Since N = n2c+2` we get exponentially good confidence.

Applying the lemma in our case implies that with high probability, fW approximates f everywhere in L`

to within polynomial precision. In particular, since v ∈ L`, we have that fW (v) approximates f(v) to within

polynomial precision.

Remark: In fact, the above lemma is stronger than what we need for our main application, namely for the

proof of Theorem 1.1. We will only need the lemma to hold for any given x, but not necessarily simultaneously

for all x ∈ L`, and so for our main application the final union bound in the proof is unnecessary. However,

for the CVPP application, which follows next, we need the full strength of the above lemma.

5 Interlude: The Closest Vector Problem with Preprocessing

Proof of Theorem 1.4: Let c > 0 be an arbitrary constant. By Lemma 1.3, there exists some N = poly(n)

and a sequence w1, . . . , wN such that the function fW defined by them approximates f at any point in L`

to within 1
4n−10/c2

. Given a lattice L, the preprocessing step outputs such a sequence w1, . . . , wN . Given

a vector v and the preprocessed lattice w1, . . . , wN , the computation step involves a simple computation of

fW (v). If its value is more than 1
2n−10/c2

then we decide that d(x, L) ≤
√

log n/c; otherwise, we decide that

d(x, L) >
√

n. The correctness of the algorithm follows from Lemmas 3.1, 3.2 and 1.3.

6 Verify fW

In this section we prove Theorem 1.1 by showing that GapCVP100
√

n is in coNP. We do this by providing a

coNP verifier for a rescaled problem, where the NO instances have distance at most 1/100 from L, and the

YES instances have distance more than
√

n from L. The witness is a sequence of vectors w1, . . . , wN , where

N is chosen to be a large enough polynomial in n, say, N = n4`. It will be convenient to refer to the witness,

equivalently, as an n × N matrix W whose columns correspond to w1, . . . , wN .

The verifier performs three tests and accepts if and only if all of them are satisfied:

(a) Checks that fW (v) < 1/2,

(b) Checks that the wi’s are in the dual lattice L∗,

(c) Checks that the maximal eigenvalue of the n × n positive semidefinite matrix WWT is at most

3N .

It is easy to see that the verifier can be implemented in polynomial time.
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6.1 Soundness

Assume that v is a NO instance, i.e., its distance from L is at most 1/100 and assume that tests (b), (c)

accept. We will show that test (a) must reject. First, since test (b) accepts, we have that fW is periodic over

L. Let τ(v) denote the vector given by v minus the lattice point closest to v. Notice that ‖τ(v)‖ ≤ 1/100.

Since fW is periodic on the lattice, fW (v) = fW (τ(v)). It thus suffices to prove that fW (τ(v)) ≥ 1/2, or, for

that matter, that fW (x) ≥ 1/2 for all x in a ball of radius 1/100 around the origin.

This is done as follows. Let x be such that ‖x‖ ≤ 1/100. Since test (c) accepts, we have that

1

N

N
∑

j=1

〈x, wj〉2 =
1

N
xT WWT x ≤ 1

N

3N

10000
=

3

10000

where the inequality follows by expressing x in the eigenvector basis of WWT . Using the inequality cosx ≥
1 − x2/2 (valid for any x ∈ R) we get

fW (x) =
1

N

N
∑

j=1

cos(2π〈x, wj〉) ≥ 1 − 4π2

2N

N
∑

j=1

〈x, wj〉2 ≥ 1 − 6π2

10000
>

1

2
.

6.2 Completeness

Suppose v is a YES instance, i.e., its distance from L is at least
√

n. We show that a random witness

chosen according to f̂ satisfies each of the above tests with probability at least 3/4. Clearly, this implies the

existence of a witness that satisfies all tests. Test (b) is always satisfied because f̂ ’s support is on L∗.

Claim 6.1 The probability that a random witness chosen according to f̂ satisfies test (a) is more than 3/4,

i.e., fW (v) < 1/2 with probability at least 3/4.

Proof: The proof follows trivially from Lemma 3.1 combined with Lemma 1.3.

For the proof that test (c) is satisfied, we need the following geometrical lemma.

Lemma 6.2 Let δ, K, r be some positive numbers and let D be a distribution on R
n such that for any fixed

unit vector u,

Ew∼D

[

〈u, w〉2
]

≤ r2

and, moreover,

Pr
w∼D

(‖w‖ ≥ Kr) < δ.

Let W = [w1, . . . , wN ] be a matrix obtained by picking each column independently at random according to

distribution wi ∼ D. Then, with probability at least 1− 2e−N/K4

(4
√

nK2)n −Nδ (over the choice of matrix

W ) the maximum eigenvalue of the n × n matrix WWT is at most 3Nr2.

Proof: The largest eigenvalue of W · WT is at most 3Nr2 if and only if

1

N

N
∑

i=1

〈u, wi〉2 ≤ 3r2

for all unit vectors u ∈ R
n. In the following, we show that this condition is satisfied with the desired

probability. Let ξ : R
n → R

n be the function defined by ξ(x) = x if ‖x‖ ≤ Kr and ξ(x) = 0 otherwise.

Clearly, for any unit vector u,

Ew∼D

[

〈u, ξ(w)〉2
]

≤ Ew∼D

[

〈u, w〉2
]

≤ r2.
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Moreover, the random variable 〈u, ξ(w)〉2 takes values in the interval [0, (Kr)2]. Hence, the Chernoff-

Hoeffding bound (2) implies that for fixed any unit vector u, a sequence of samples w1, . . . , wN from D

satisfies

1

N

N
∑

i=1

〈u, ξ(wi)〉2 ≤ 2r2 (3)

with probability at least 1 − 2e−N/K4

.

We now need to extend the argument to hold for all u’s simultaneously. Let ε = 1
2K−2. By Claim 2.8,

there exists an ε-net A on the unit sphere containing at most (2
√

n/ε)n points. We now apply the union

bound on the set of all vectors u in A. It follows that (3) holds with probability at least 1−2e−N/K4

(4
√

nK2)n

for all u ∈ A simultaneously.

Next, we show that if (3) holds for all u ∈ A, then a slightly weaker version of it holds for all unit vectors.

Consider an arbitrary unit vector u′. Let u ∈ A be the closest point to u′ in A. Notice that ‖u − u′‖ ≤ ε.

Thus,

∣

∣

∣

1

N

N
∑

i=1

〈u′, ξ(wi)〉2 −
1

N

N
∑

i=1

〈u, ξ(wi)〉2
∣

∣

∣ ≤ 1

N

N
∑

i=1

|〈u′ − u, ξ(wi)〉〈u′ + u, ξ(wi)〉|

≤ 2ε max
i

‖ξ(wi)‖2 ≤ 2ε(Kr)2 = r2.

This yields that with probability at least 1 − 2e−N/K4

(4
√

nK2)n over the choice of the wi’s it holds that

1

N

N
∑

i=1

〈u, ξ(wi)〉2 ≤ 2r2 + r2 = 3r2

for all unit vectors u. It remains to notice that with probability at least 1 − Nδ, ξ(wi) = wi for all i.

Lemma 6.3 The probability that a random witness chosen according to f̂ satisfies test (c) is at least 3/4.

Proof: According to Lemma 2.5, the probability that the norm of a vector chosen from f̂ is more than,

say,
√

n, is 2−Ω(n). Moreover, Lemma 2.6 states that for any unit vector u, the average norm squared of the

projection on u of a vector w chosen from f̂ is at most 1
2π ,

Ew∼f̂

[

〈u, w〉2
]

≤ 1

2π
.

We now apply Lemma 6.2 with r = 1, K =
√

n, and δ = 2−Ω(n). This yields that the maximum eigenvalue

of W · WT is at most 3N with probability at least 1 − 2−Ω(n2).
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A Reducing GapSVP to GapCVP

Lemma A.1 If for some β = β(n), GapCVPβ is in coNP then so is GapSVPβ.

Proof: Consider an instance of GapSVPβ given by the lattice L whose basis is (b1, . . . , bn). We map it

to n instances of GapCVPβ where the ith instance, i = 1, . . . , n, is given by the lattice Li spanned by

(b1, . . . , bi−1, 2bi, bi+1, . . . , bn) and the target vector bi. In the following we show that this mapping has the

property that if L is a YES instance of GapSVPβ then at least one of (Li, bi) is a YES instance of GapCVPβ

and if L is a NO instance then all n instances (Li, bi) are NO instances. This will complete the proof of the

lemma since a NO witness for L can be given by n NO witnesses for (Li, bi).

Consider the case where L is a YES instance. In other words, if

u = a1b1 + a2b2 + · · · + anbn

denotes the shortest vector, then its length is at most 1. Notice that not all the ai’s are even for otherwise

the vector u/2 is a shorter lattice vector. Let j be such that aj is odd. Then the distance of bj from the

lattice Lj is at most ‖u‖ ≤ 1 since bj + u ∈ Lj . Hence, (Lj , bj) is a YES instance of GapCVPβ . Now consider

the case where L is a NO instance of GapSVPβ . That is, the length of the shortest vector is more than β.

Since for any i ∈ [n], bi /∈ Li this implies that d(bi, Li) > β. Hence, (Li, bi) is a NO instance of GapCVPβ .

B GapSVP√
n and GapCVP√

n are unlikely to be NP-hard

It is easy to see that Theorem 1.1 implies that if GapSVPc
√

n or GapCVPc
√

n are NP-hard under Karp

reductions then NP ⊆ coNP and the polynomial hierarchy collapses (c is the constant from that theorem).

In this section we show that the same is true for Cook reductions.
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This does not follow immediately from our main theorem. Indeed, there is nothing special about a

problem in coNP being NP-hard under Cook reductions (for example, coSAT is such a problem). However,

in our case, the problem in question, namely GapCVPc
√

n, is also known to be in NP. We might now hope

to show that if a problem in NP ∩ coNP is NP-hard under Cook reductions, then the polynomial hierarchy

collapses. This implication is not too difficult to show for total problems (i.e., languages). However, we are

dealing with promise problems and for such problems this implication is not known to hold. In a nutshell,

the difficulty arises because a Cook reduction might perform queries that are neither a YES instance nor a

NO instance and for such queries we have no witness.

This issue can be resolved by using the fact that not only GapCVPc
√

n ∈ NP but also CVP ∈ NP (and

similarly for SVP). In other words, no promise is needed in order to show that a point is close to the lattice.

In the following, we will show a proof that holds for any problem with the above properties. We remark that

a similar proof has already appeared before (see [25, 9, 13]) and we repeat it here mainly for completeness.

Lemma B.1 Let Π = (ΠYES, ΠNO) be a promise problem and let ΠMAYBE denote all instances outside ΠYES∪
ΠNO. Assume that Π is in coNP and that the (non-promise) problem Π′ = (ΠYES ∪ ΠMAYBE, ΠNO) is in NP.

Then, if Π is NP-hard under Cook reductions then NP ⊆ coNP and the polynomial hierarchy collapses.

Proof: Assume there exists a Cook reduction from, say, SAT to Π. That is, there exists a polynomial time

procedure T that solves SAT given access to an oracle for Π. Notice that while the oracle is guaranteed to

answer YES on queries from ΠYES and NO on queries from ΠNO, its answers on queries from ΠMAYBE are

arbitrary and should not affect the output of T .

Since Π ∈ coNP, there exists a verifier V1 and a witness w1(x) for every x ∈ ΠNO such that V1 accepts

(x, w1(x)). Moreover, V1 rejects (x, w) for any x ∈ ΠYES and any w. Similarly, since Π′ ∈ NP, there exists a

verifier V2 and a witness w2(x) for every x ∈ ΠYES ∪ ΠMAYBE such that V2 accepts (x, w2(x)). Moreover, V2

rejects (x, w) for any x ∈ ΠNO and any w.

We would like to show that SAT is in coNP. Let Φ be a SAT instance and let x1, . . . , xk be the set of

oracle queries which T performs on input Φ. Our witness consists of k pairs, one for each xi. For xi ∈ ΠNO

we include the pair (NO, w1(xi)) and for xi ∈ ΠYES ∪ΠMAYBE we include the pair (YES, w2(xi)). The verifier

simulates T ; for each query xi that T performs, the verifier reads the pair corresponding to xi in the witness.

If the pair is of the form (YES, w) then the verifier checks that V2(xi, w) accepts and then returns YES to T .

Similarly, if the pair is of the form (NO, w) then the verifier checks that V1(xi, w) accepts and then returns

NO to T . If any of the calls to V1 or V2 rejects, then the verifier rejects. Finally, if T outputs that Φ is

satisfiable, the verifier rejects and otherwise it accepts.

The completeness follows easily. More specifically, if Φ is unsatisfiable then the witness described above

will cause the verifier to accept. In order to prove soundness, assume that Φ is satisfiable and let us show

that the verifier rejects. Notice that for each query xi ∈ ΠNO the witness must include a pair of the form

(NO, w) because otherwise V2 would reject. Similarly, for each query xi ∈ ΠYES the witness must include

a pair of the form (YES, w) because otherwise V1 would reject. This implies that T receives the correct

answers for all of its queries inside ΠNO ∪ΠYES and must therefore output the correct answer, i.e., that Φ is

satisfiable and then the verifier rejects.
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