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Abstract. We initiate the study of the computational complexity of
the covering radius problem for lattices, and approximation versions of
the problem for both lattices and linear codes. We also investigate the
computational complexity of the shortest linearly independent vectors
problem, and its relation to the covering radius problem for lattices.
For the covering radius on n-dimensional lattices, we show that the
problem can be approximated within any constant factor γ(n) > 1 in
random exponential time 2O(n). We also prove that suitably defined gap
versions of the problem lie in AM for γ(n) = 2, in coAM for γ(n) =
√

n/ log n, and in NP ∩ coNP for γ(n) =
√

n.
For the covering radius on n-dimensional linear codes, we show that the
problem can be solved in deterministic polynomial time for approxima-
tion factor γ(n) = log n, but cannot be solved in polynomial time for
some γ(n) = Ω(log log n) unless NP can be simulated in deterministic
nO(log log log n) time. Moreover, we prove that the problem is NP-hard for
any constant approximation factor, it is Π2-hard for some constant ap-
proximation factor, and that it is unlikely to be Π2-hard for approxima-
tion factors larger than 2 (by giving an AM protocol for the appropriate
gap problem). This is a natural hardness of approximation result in the
polynomial hierarchy.
For the shortest independent vectors problem, we give a coAM proto-
col achieving approximation factor γ(n) =

√

n/ log n, solving an open
problem of Blömer and Seifert (STOC’99), and prove that the problem
is also in coNP for γ(n) =

√
n. Both results are obtained by giving a

gap-preserving nondeterministic polynomial time reduction to the clos-
est vector problem.
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1. Introduction

Given a (possibly infinite) set of points P in a metric space M, the covering
radius of P in M is the smallest number r such that spheres of radius r centered
around all the points in P cover the entire space. Two especially important
cases are when P is a point lattice in Euclidean space, and when P is a linear
code1 over a finite field with the Hamming metric. Determining the covering
radius of a given lattice or code is a fundamental problem in the study of point
lattices and error correcting codes, but it has received very little attention so
far from a computational point of view.

In coding theory, the covering radius is a fundamental parameter of a code
and good covering codes have a number of applications and interconnections
with other areas of mathematics. An entire book has been written on the
subject and we point the reader to (Cohen et al. 1997, Chap. 1) for a discussion
of various applications of covering codes. Though the minimum distance plays
a more central role in uses of codes for error-correction, the covering radius is
also related to the error correction capability of the code, since if it is less than
the distance, the code is maximal and no vector in the Hamming space can be
added without worsening the code’s distance. Moreover, assuming we perform
maximum likelihood decoding of each received word to its nearest codeword,
the covering radius measures the largest number of errors in any correctable
error pattern (since if the number of errors exceeds the covering radius, the
nearest codeword is definitely not the transmitted codeword). For lattices,
the covering radius is closely related to the vector quantization problem. In this
problem, arbitrary real vectors are rounded to nearby points from a discrete set
(e.g., a lattice), and the covering radius of the discrete set of points represents
the maximum possible error incurred in this process. We point the reader to
(Conway & Sloane 1998) for further information about the use of lattices in
vector quantization. Beside these applications, attention to the covering radius
problem, specifically from a computational complexity point of view, has been
recently brought by Micciancio (2004) who showed that this problem can be
used to get tighter connections between the average- and worst-case complexity
of lattice problems.

In the covering radius problem, given a lattice (or a code) and some value r,
we are supposed to decide if the covering radius is at most r (see Definitions 2.3
and 2.5). Notice that the covering radius problem (CRP) involves a quantifier
alternation: determining if the covering radius is at most r is equivalent to

1Unless specified otherwise, all codes considered in this paper are linear, and we will refer
to them simply as codes.
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Figure 1.1: The complexity of the covering radius problem for lattices (some
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Figure 1.2: The complexity of the covering radius problem for codes (some
constants omitted)

proving that for any point in space there exists a point in the set (lattice or code)
within distance at most r. So, the natural algorithms to solve this problem
are in Π2, at the second level of the polynomial hierarchy (Stockmeyer 1977).
To date, the problem is not even known to be solvable in nondeterministic
polynomial time, and it is conjectured in (Micciancio 2004) that the problem
is NP-hard. In the case of linear codes, evidence that the problem cannot be
efficiently solved was given by McLoughlin (1984), who showed that computing
the exact solution of the problem is Π2-hard, giving one of the most natural
complete problems for Π2.

McLoughlin’s result is essentially the only complexity result for the covering
radius problem we are aware of. (See Section 3 for a few additional related
papers.) We remark that the result of McLoughlin (1984) only applies to linear
codes, and to the exact version of the covering radius problem. Many natural
questions immediately arise: is the covering radius of a linear code also hard
to approximate? What can we say about the covering radius problem for point
lattices?

In this paper, we initiate the study of the complexity of the covering radius
problem for point lattices, and the complexity of approximating the covering
radius in both lattices and linear codes. We also consider the related problem of
computing a maximal set of short linearly independent vectors in a lattice (the
“shortest independent vectors problem”, or SIVP), and its relation to CRP. We
present several new results about these problems. Specifically, for the promise
problems naturally associated to approximating the covering radius of an n-
dimensional point lattice within a factor γ(n) we show that (see Definition 2.3
and Figure 1.1)
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1. for any constant γ(n) > 1 the problem can be solved probabilistically in
time 2O(n);

2. for γ(n) = 2 the problem is in AM;

3. for γ(n) =
√

n/ log n the problem is in coAM;

4. for γ(n) =
√

n, the problem is in NP ∩ coNP;

5. for γ(n) = 2Ω(n log log n/ log n), the problem can be solved in random poly-
nomial time;

6. for γ(n) = 2Ω(n(log log n)2/ log n), the problem can be solved in deterministic
polynomial time.

The third result shows that approximating the covering radius of a lattice
within γ(n) = O(

√

n/ log n) is not NP-hard unless the polynomial hierarchy
collapses. Moreover, the second result shows that approximating the covering
radius within γ(n) = 2 is unlikely to be Π2-hard because the problem is also
in AM. Whether or not the problem is NP-hard (or Π2-hard) for smaller ap-
proximation factors, or even for the exact version, remains an open problem.2

Most of our results follow by simple reductions from the covering radius prob-
lem to other lattice problems, like the closest vector problem, and the shortest
independent vectors problem.

For SIVP, we show that approximating the problem within γ(n) =
√

n/ log n
is in coAM and that approximating the problem within γ(n) =

√
n is in coNP.

Previously, Blömer & Seifert (1999) proved that approximating SIVP to within
γ(n) = n/

√
log n is in coAM, and suggested that the problem might be NP-

hard for approximation factors γ(n) = n1−ε for any ε > 0. Our results improve
their coAM bound and demonstrate that their conjecture is false, unless the
polynomial hierarchy collapses.

Now let us move to the problem of approximating the covering radius of
a linear code. For this problem we can give a better picture of the situation,
and in particular can show hardness of approximation results. Specifically, for
the promise problem naturally associated to approximating the covering radius
of a linear code within a factor γ(n) (where n denotes the block length of the
code) we show that (see Definition 2.5 and Figure 1.2)

2It is mentioned in (Conway & Sloane 1998, Sec. 1.4, Page 40) that the covering radius
problem on lattices has been shown to be NP-hard, but the cited reference (van Emde Boas,
1981) does not contain any such result.
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1. the problem can be solved in polynomial time for γ(n) = 1 + logq n (for
arbitrary linear codes over the finite field with q elements 3);

2. the problem cannot be solved in polynomial time for γ(n) = c0 log log n
for some c0 > 0, unless NP can be simulated in deterministic nO(log log log n)

time;

3. the problem is NP-hard for γ(n) = c for any constant c ≥ 1;

4. the problem is in AM for γ(n) = 2;

5. the problem is Π2-hard for γ(n) = a0 for some constant a0 > 1.

The last result is a very natural hardness of approximation result for a class in
the polynomial-time hierarchy beyond NP and coNP. We would like to point
the reader to the recent surveys (Schaefer & Umans 2002a,b) on the topic of
completeness and hardness of approximation in the polynomial time hierarchy.
The fourth result suggests that the problem is Π2-hard only for small constant
approximation factors, and for γ(n) ≥ 2 the problem is unlikely to be Π2-
hard. Another interesting consequence of this is that it is unlikely that there
is a polynomial time computable transformation that takes a linear code and
outputs another linear code whose covering radius is, say, the square of the
original covering radius. Indeed, such a transformation would imply that the
covering radius problem is Π2-hard for γ(n) ≥ 2. This should be contrasted
with the fact that for the minimum distance such a construction does exist.
These consequences are described in more detail later.

Organization. The rest of the paper is organized as follows. In Section 2 we
formally define lattice and coding problems, and basic notation and techniques
used throughout the paper. In Section 3 we give a more detailed account of pre-
vious work related to this paper. In Section 4 we present our results for lattice
problems, including proof systems and algorithms for computing the covering
radius, and the improved proof systems for the shortest independent vectors
problem. In Section 5 we present our results about the covering radius problem
for linear codes. Section 6 concludes with a discussion of open problems.

2. Preliminaries

For any real x, bxc denotes the largest integer not greater than x, and bxe =
bx + 1/2c is the rounding of x to the closest integer. We write log for the

3For the case of binary fields, we prove this result for γ(n) = log
2
n
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logarithm to the base 2, and logq when the base q is any number possibly
different from 2. Let R and Z be the sets of the reals and the integers, respec-
tively. The m-dimensional Euclidean space is denoted R

m. We use bold lower
case letters (e.g., x) to denote vectors, and bold upper case letters (e.g., M)
to denote matrices. The ith coordinate of x is denoted xi. If S ⊆ R

n is an
arbitrary region of space, and x ∈ R

n is a vector, S + x = {y + x : y ∈ S}
denotes a copy of S shifted by x. The Euclidean norm (also known as the
`2 norm) of a vector x ∈ R

n is ‖x‖ =
√

∑

i x
2
i , and the associated distance

is dist(x,y) = ‖x − y‖. The distance function is extended to sets in the
customary way: dist(x, S) = dist(S,x) = miny∈S dist(x,y) and dist(S, Z) =
minx∈S,y∈Z dist(x,y). We often use matrix notation to denote sets of vectors.
For example, matrix S ∈ R

m×n represents the set of m-dimensional vectors
{s1, . . . , sn}, where s1, . . . , sn are the columns of S. The linear space spanned
by a set of vectors S is denoted span(S) = {∑i xisi : xi ∈ R for 1 ≤ i ≤ n}.
For any set of linearly independent vectors S, we define the centered half-open
parallelepiped P(S) = {∑i xisi : −1/2 ≤ xi < 1/2 for 1 ≤ i ≤ n}. For vector
v ∈ R

n and real r, let B(v, r) = {w ∈ R
n : dist(v,w) < r} be the open ball of

radius r centered at v, and B̄(v, r) = {w ∈ R
n : dist(v,w) ≤ r} its topological

closure.
An m-dimensional lattice is the set of all integer combinations

{

n
∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in R
m (m ≥ n). The set of vectors

b1, . . . ,bn is called a basis for the lattice, and the integer n is called the rank of
the lattice. If the rank n equals the dimension m, then the lattice is called full

rank or full dimensional. A basis can be compactly represented by the matrix
B = [b1| . . . |bn] ∈ R

m×n having the basis vectors as columns. The lattice
generated by B is denoted L(B). Notice that L(B) = {Bx : x ∈ Z

n}, where
Bx is the usual matrix-vector multiplication.

For any lattice B and point x ∈ span(B), there exists a unique vector
y ∈ P(B) such that y − x ∈ L(B). This vector is denoted y = x mod B, and
it can be computed in polynomial time given B and x. The dual of a lattice Λ
is the set

Λ∗ = {x ∈ span(Λ): ∀y ∈ Λ 〈x,y〉 ∈ Z}
of all vectors in the linear span of Λ that have integer scalar product (〈x,y〉 =
∑

i xiyi) with all lattice vectors. The dual of a lattice is a lattice, and if Λ =
L(B) is the lattice generated by basis B, then B∗ = B(BTB)−1 is a basis for
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the dual lattice, where BT is the transpose of B. (Notice that if B is a basis, it
has full column rank and the square matrix BTB is invertible.) A sub-lattice
of L(B) is a lattice L(S) such that L(S) ⊆ L(B). L(S) is a full rank sub-lattice
of L(B) if it has the same rank as L(B). The determinant of a (rank n) lattice
det(L(B)) is the (n-dimensional) volume of the fundamental parallelepiped
P(B). If L(B) is full dimensional, then det(L(B)) equals the absolute value of
the determinant of the n × n basis matrix, that is, det(L(B)) = | det(B)|.

The minimum distance of a lattice L(B), denoted λ1(B), is the minimum
distance between any two distinct lattice points, and equals the length of the
shortest nonzero lattice vector:

λ1(B) = min{dist(x,y) : x 6= y ∈ L(B)}
= min{‖x‖ : x ∈ L(B) \ {0}} .

This definition can be generalized to define the ith successive minimum as the
smallest λi such that B̄(0, λi) contains i linearly independent lattice points:

λi(B) = min{r : dim(span(L(B) ∩ B̄(0, r))) ≥ i}.

Another important constant associated to a lattice is the covering radius ρ(B),
which is defined as the maximum distance dist(x,L(B)) where x ranges over
the linear span of B:

ρ(B) = max
x∈span(B)

{dist(x,L(B))}.

A deep hole is a point x ∈ span(B) at distance dist(x,L(B)) = ρ(B) from the
lattice.

We consider the following lattice problems. For simplicity we define all
problems only in their promise version, which is the formulation typically used
in computational complexity. (The reader is referred to (Micciancio & Gold-
wasser 2002) for a discussion of different formulations of these lattice problems.)
Promise problems are a natural generalization of decision problems: they are
defined by a set of YES inputs and a (disjoint) set of NO inputs. However,
unlike decision problems, the two sets are not necessarily exhaustive. A ma-
chine solves the promise problem if it accepts all the YES inputs and rejects
all the NO inputs; no assumption is made on the behavior of the machine on
inputs that are in neither of the sets. Let us also mention that the complement

of a promise problem is obtained by swapping the YES and NO instances; we
will denote this by adding the prefix “co” to the problem’s name. The follow-
ing definitions are parameterized by a positive (and typically monotone) real
valued function γ : Z

+ → R
+ of the lattice rank.
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Definition 2.1 (Shortest Vector Problem). An input to GapSVPγ is a pair
(B, d) where B is a rank n lattice basis and d is a rational number. In YES

inputs λ1(B) ≤ d and in NO inputs λ1(B) > γ(n) · d.

Definition 2.2 (Shortest Independent Vectors Problem). An input to
GapSIVPγ is a pair (B, d) where B is a rank n lattice basis and d is a rational
number. In YES inputs λn(B) ≤ d and in NO inputs λn(B) > γ(n) · d.

Definition 2.3 (Covering Radius Problem). An input to GapCRPγ is a pair
(B, d) where B is a rank n lattice basis and d is a rational number. In YES

inputs ρ(B) ≤ d and in NO inputs ρ(B) > γ(n) · d.

Definition 2.4 (Closest Vector Problem). An input to GapCVPγ is a triple
(B, t, d) where B is a rank n lattice basis, t is a target vector, and d is a rational
number. In YES inputs dist(t,L(B)) ≤ d and in NO inputs dist(t,L(B)) >
γ(n) · d.

An error-correcting code A of block length n over a q-ary alphabet Σ is a
collection of strings (vectors) from Σn, called codewords. For all codes consid-
ered in this paper, the alphabet size q is always a prime power and the alphabet
Σ = Fq is the finite field with q elements. A code A ⊆ F

n
q is linear if it is closed

under addition and multiplication by a scalar, i.e., A is a linear subspace of F
n
q

over base field Fq. For such a code, the information content (i.e., the number
k = logq |A| of information symbols that can be encoded with a codeword) is
just its dimension as a vector space and the code can be compactly represented
by an n×k generator matrix A ∈ F

n×k
q of rank k such that A = {Ax | x ∈ F

k
q}.

An alternative representation of linear codes is by their parity check matrix,
i.e., a (n − k)× n matrix H such that A = {x : Hx = 0}. An important prop-
erty of a code is its minimum distance. For any vector x ∈ Σn, the Hamming
weight of x is the number ‖x‖ of nonzero coordinates of x. (We use the same
notation ‖ · ‖, dist(·, ·), ρ etc. for both lattices and codes, as the meaning will
always be clear from the context.) The weight function ‖ · ‖ is a norm, and
the induced metric dist(x,y) = ‖x − y‖ is called the Hamming distance. The
(minimum) distance dist(A) of the code A is the minimum Hamming distance
dist(x,y) taken over all pairs of distinct codewords x,y ∈ A. For linear codes
it is easy to see that the minimum distance dist(A) equals the minimum weight
‖x‖ of a nonzero codeword x ∈ A \ {0}. If A is a linear code over Fq with
block length n, rank k and minimum distance d, then it is customary to say
that A is a linear [n, k, d]q code.
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The covering radius ρ(A) of a code A ⊆ F
n
q is defined as the smallest

integer r such that for any x ∈ F
n
q there exists a codeword y ∈ A within

distance dist(x,y) ≤ r from x. A deep hole is a point x ∈ F
n
q such that

dist(x,A) = ρ(A). When a code is represented by a parity check matrix H,
we simply write ρ(H) to denote the covering radius of the code defined by H.
The covering radius problem for linear codes is defined analogously to the one
for lattices.

Definition 2.5 (Covering Radius for linear codes). An input to
GapCRPcodesγ is a pair (H, d) where H is the parity check matrix of a
code (with block length n), and d is an integer. In YES inputs ρ(H) ≤ d and
in NO inputs ρ(H) > γ(n) · d.

3. Previous Work

As we already said in the introduction, not much was previously known about
the computational complexity of the covering radius problem for codes and
lattices. For the case of linear codes, the covering radius was proved Π2-hard
to solve exactly by McLoughlin (1984). The analogous question for lattices was
explicitly posed in (Micciancio 2004) where the covering radius problem is used
to get tighter connections between the worst- and average-case complexity of
various lattice problems.

Another relevant result is the transference theorem of Banaszczyk (1993),
which shows that for any lattice L(B) and its dual L(B)∗, it holds that

(3.1) 1 ≤ 2ρ(L(B)) · λ1(L(B)∗) ≤ n.

This connection between the covering radius of a lattice and the length of the
shortest nonzero vector in the dual allows to approximately reduce (loosing a
factor n, and swapping YES and NO instances) the covering radius problem
to the shortest vector problem. For example, by combining (3.1) with known
approximation algorithms for the shortest vector problem, we obtain approx-
imation algorithms for the covering radius problem (see Theorem 4.6). By
combining (3.1) with other known results, one can obtain that approximating
the covering radius of a lattice within γ(n) is in coNP for γ(n) = O(n), in
AM for γ(n) = O(n1.5/

√
log n), and in NP for γ(n) = O(n1.5). Notice that

these bounds are considerably worse than the bounds obtained in this paper.
Our improvements are obtained by directly solving the covering radius problem
without using (3.1).

Most of our reductions are not gap-preserving, and introduce a small error,
ranging from (1 + ε) up to n. One of our reductions (namely, the one from
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SIVP to CVP) preserves the approximation factor exactly. This is similar to the
gap-preserving reduction of (Goldreich et al. 1999) which shows that GapSVPγ

reduces to GapCVPγ for any approximation factor γ(n) (possibly a function of
the lattice dimension). However, while the reduction in (Goldreich et al. 1999)
runs in deterministic polynomial time, our reduction is nondeterministic. Still
our nondeterministic reduction suffices to establish coAM and coNP results for
GapSIVP.

One last paper related to the covering radius problem for lattices is (Kannan
1992), where Kannan considers the problem of computing the covering radius
of a lattice with respect to a given input norm (different from the Euclidean
one) defined by a convex polytope specified as a system of linear inequalities.
In (Kannan 1992) it is shown that for any fixed dimension, this problem can
be solved in polynomial time.

4. Lattice Problems

In this section we present our results for the covering radius problem on point
lattices. In Subsections 4.1 and 4.2 we describe proof systems to prove that
the covering radius is small or large, and in Subsection 4.3 we give algorithms
to approximately compute the covering radius. In Subsection 4.4 we give our
nondeterministic reduction from SIVP to CVP, and the corresponding new proof
systems for the shortest independent vectors problem.

4.1. Proving that the covering radius is small. In this subsection we
give two proof systems to show that the covering radius of a lattice is small.
The first is interactive and achieves approximation factor γ(n) = 2. The second
is an NP proof system and achieves factor γ(n) =

√
n. The interactive proof

system is based on the observation that random points in space are far from
the lattice with high probability.

Lemma 4.1. For any lattice L(B),

Pr
x

(

dist(x,L(B)) ≥ ρ(B)

2

)

≥ 1

2

where x is chosen uniformly at random from P(B).

Proof. Let v be a deep hole of L(B) and consider the set v+L(B). By the
triangle inequality, for any point x, we have dist(x,L(B))+dist(x,v+L(B)) ≥
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dist(L(B),v+L(B)) = ρ(B), where the equality follows since v is a deep hole.
Since dist(x,v + L(B)) = dist((x − v) mod B,L(B)), the inequality

dist(x,L(B)) + dist((x − v) mod B,L(B)) ≥ ρ(B)

holds with probability 1 over the random choice of the vector x ∈ P(B). But
we also have

Pr
x

(

dist(x,L(B)) + dist((x − v) mod B,L(B)) ≥ ρ(B)
)

≤ Prx

(

dist(x,L(B)) ≥ ρ(B)
2

)

+ Prx

(

dist((x − v) mod B,L(B)) ≥ ρ(B)
2

)

= 2 Prx

(

dist(x,L(B)) ≥ ρ(B)
2

)

,

where x is chosen uniformly at random from P(B) and the last equality follows
since the distribution of (x − v) mod B is also uniform on P(B). �

Using the lemma, we easily get an interactive proof system for the covering
radius problem.

Theorem 4.2. GapCRP2 is in AM.

Proof. We present a constant round public coin interactive proof system for
GapCRP2. The idea is to probabilistically reduce the covering radius problem
to the closest vector problem by letting the verifier choose the target vector.
Details follow.

On input GapCRP2 instance (B, r),

◦ The verifier picks a uniformly random point x ∈ P(B) and sends it to
the prover

◦ The prover finds a lattice point u ∈ L(B) and sends it to the verifier

◦ The verifier checks that u ∈ L(B) and accepts if and only if dist(x,u) ≤ r.

We claim that the above protocol has perfect completeness and soundness error
1/2. Completeness is easy, because by definition of covering radius, for any
point x ∈ P(B), there exists a lattice point u ∈ L(B) within distance ρ(B) ≤ r
from x. Now assume ρ(B) > 2r. According to Lemma 4.1, the point x chosen
by the verifier satisfies dist(x,L(B)) ≥ ρ(B)/2 > r with probability at least
1/2. If dist(x,L(B)) > r, then the verifier rejects no matter which u the prover
sends. So, the soundness error is at most 1/2. �

The result placing GapCRP√
n in NP is based on the following relation be-

tween the covering radius ρ(B) and λn(B) for any n-dimensional lattice B.
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Lemma 4.3. For any rank n lattice B,

λn(L(B)) ≤ 2ρ(L(B)) ≤
√

nλn(L(B)).

The proof of the lemma can be found in (Micciancio & Goldwasser 2002, The-
orem 7.9, page 138). For completeness we repeat the proof below.

Proof. The upper bound 2ρ ≤ √
nλn is easy. By definition of λn, there

exist n linearly independent lattice vectors S = s1, . . . , sn ∈ L(B) such that
‖si‖ ≤ λn(B) for all i = 1, . . . , n. Let t ∈ span(B) be an arbitrary target
point and s∗1, . . . , s

∗
n be the Gram-Schmidt orthogonalization of S. Babai’s

nearest plane algorithm (Babai 1986) on input S and t, produces a lattice
vector u ∈ L(S) ⊆ L(B) such that

dist(t,u) ≤

√

√

√

√

∑

i

(‖s∗i ‖
2

)2

≤ 1

2

√

∑

i

‖si‖2

≤ 1

2

√
n max

i
‖si‖ =

√
nλn(B)/2 .

This proves that ρ(B) ≤ √
nλn(B)/2.

Now consider the lower bound λn ≤ 2ρ. Assume for contradiction λn > 2ρ
and let ε be a positive real number such that ε < λn − 2ρ. We iteratively
build a set of linearly independent lattice vectors s1, . . . , sn as follows. For any
i = 1, . . . , n, let ti be any vector of length ρ+ε orthogonal to s1, . . . , si−1, and let
si be a lattice point within distance ρ from ti. Then si is linearly independent
from s1, . . . , si−1, because the distance of si from span(s1, . . . , si−1) is at least
‖ti‖−‖si − ti‖ ≥ ε. Moreover, by triangle inequality, ‖si‖ ≤ ‖ti‖+ ‖si − ti‖ ≤
2ρ+ε < λn. By induction on i, we obtain a set s1, . . . , sn of linearly independent
lattice vectors of length ‖si‖ < λn, contradicting the definition of λn. �

Notice that the bounds proved in Lemma 4.3 are constructive in the fol-
lowing sense. Given n linearly independent lattice vectors of length at most
λn and a target vector t ∈ span(B), one can efficiently find a lattice point
within distance (

√
n/2)λn ≤ √

nρ from the target. Similarly, given access to
an oracle that on input a lattice B and a target vector t ∈ span(B) finds a
lattice point within distance ρ from the target, one can efficiently compute n
linearly independent lattice vectors of length at most 2ρ ≤ √

nλn. We now use
the lemma to prove the following:
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Theorem 4.4. GapCRP√
n is in NP.

Proof. The proof is by reduction to the exact version of SIVP, which is
known to be in NP. The reduction is simple: given GapCRP√

n instance (B, r),
the output is GapSIVP1 instance (B, 2r). Notice that if (B, r) is a YES instance
of GapCRP√

n, then ρ(B) ≤ r, and by Lemma 4.3, λn(B) ≤ 2ρ(B) ≤ 2r, i.e.,
(B, 2r) is a YES instance of GapSIVP1. Conversely, if (B, r) is a NO instance of
GapCRP√

n, then ρ(B) >
√

nr, and by Lemma 4.3, λn(B) ≥ 2ρ(B)/
√

n > 2r,
i.e., (B, 2r) is a NO instance of GapSIVP1.

The NP proof system for GapCRP√
n combines this simple reduction with

the obvious NP proof for GapSIVP1: on input GapCRP√
n instance (B, r), the

prover sends n linearly independent lattice vectors s1, . . . , sn of length ‖s‖ ≤
λn(B) to the verifier, and the verifier checks that indeed s1, . . . , sn are linearly
independent lattice vectors in L(B) and ‖si‖ ≤ 2r for all i = 1, . . . , n. �

4.2. Proving that the covering radius is large. In this subsection we
give proof systems to show that the covering radius is large. The proof systems
are based on analogous results for the closest vector problem.

Theorem 4.5. GapCRPO(
√

n) is in coNP and GapCRP
O(
√

n/ log n)
is in coAM.

Proof. The idea is to reduce (in nondeterministic polynomial time) the
covering radius problem to the closest vector problem, by letting the prover
choose the target point.

For the coNP proof system, on input GapCRP instance (B, r), we first (non-
deterministically) guess a deep hole, i.e., a point v ∈ span(B) at distance
dist(v,L(B)) = ρ(B) from the lattice. Then, we use the recently discov-
ered proof system of Aharonov & Regev (2004) to show that (B,u, r) is a
NO instance of GapCVPO(

√
n). Specifically, Aharonov & Regev (2004) show

that GapCVPO(
√

n) ∈ coNP by giving a polynomial time verifier V such that for
any (B,v, t),

◦ if dist(v,L(B)) > Ω(
√

nt) then there exists a witness w = w(B,v, t) such
that V (B,v, t, w) accepts

◦ if dist(v,L(B)) ≤ t, then for any witness w, V (B,v, t, w) rejects.

The verifier for GapCRPO(
√

n) works in the obvious way. On input GapCRPO(
√

n)

instance (B, r) and witness (v, w), run V (B,v, r, w) and accept if and only if
V accepts.
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The proof of GapCRP
O(
√

n/ log n)
∈ coAM is similar. Here, instead of the

coNP proof system of (Aharonov & Regev 2004) we use the result of Goldreich
& Goldwasser (2000) showing that GapCVP

O(
√

n/ log n)
∈ coAM, i.e., there exists

a constant round public coin interactive proof system for coGapCVP
O(
√

n/ log n)
.

We construct a constant round interactive proof system for coGapCRP
O(
√

n/ log n)

where the prover sends, as its first message, a deep hole v to the verifier,
and then interactively proves that v is far from the lattice using the constant
round public coin protocol from Goldreich & Goldwasser (2000). Therefore
GapCRP

O(
√

n/ log n)
is in coAM. �

4.3. Algorithms for the covering radius problem. In this subsection
we give algorithms to approximate the covering radius of a lattice. The first
algorithm immediately follows from well known relations between the covering
radius problem and other lattice problems.

Theorem 4.6. The problem GapCRPγ(n) can be solved in probabilistic poly-

nomial time when γ(n) = 2O(n log log n/ log n) and in deterministic polynomial time
when γ(n) = 2O(n(log log n)2/ log n).

Proof. On input lattice B, compute the dual lattice B∗, and use the prob-
abilistic algorithm of Ajtai et al. (2001) to find a 2O(n log log n/ log n) approxima-
tion to the length of the shortest vector in the dual lattice. It follows from
the transference theorem in Equation 3.1 that the inverse of this length is a
n · 2O(n log log n/ log n) = 2O(n log log n/ log n) approximation of the covering radius of
the input lattice. The second result follows by a similar argument from the
2O(n(log log n)2/ log n) approximation algorithm of Schnorr (1987). �

The proof of the above theorem is based on relations between the covering
radius and other lattice quantities that always introduce errors that are poly-
nomial in the rank of the lattice. In particular, even if we solve SVP exactly,
the above reduction would only give a O(n) approximation of the covering
radius. Below, we give an exponential time algorithm that achieves approxi-
mation factors arbitrarily close to 1. The algorithm is based on the following
observation.

Lemma 4.7. For any lattice basis B and integer M > 0, there exists a point

v = a1 · b1 + . . . an · bn

such that ai ∈ {0, 1/M, 2/M, . . . , (M − 1)/M} for all i, and dist(v,L(B)) ≥
(1 − 1/M)ρ(B).
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Proof. Let v′ be a deep hole of the lattice. We would like to round it to
a point v of the above form. First, consider the vector M · v′. Since L(B)
has covering radius ρ(B), there must exist a lattice point Bu ∈ L(B) whose
distance from M · v′ is at most ρ(B). This implies that the distance between
v′ and Bu/M is at most ρ(B)/M . Moreover, by the triangle inequality,

dist(Bu/M,L(B)) ≥ dist(v′,L(B)) − dist(Bu/M,v′)

≥ (1 − 1/M)ρ(B) .

Let a = (u mod M)/M be the vector obtained reducing all the entries of u mod-
ulo M , and dividing the result by M . Clearly, for all i, ai ∈ {0, 1

M
, 2

M
, . . . , M−1

M
}.

Moreover, the difference a−u/M is an integer vector, so, B(a−u/M) belongs to
the lattice L(B), and dist(Ba,L(B)) = dist(Bu/M,L(B)) ≥ (1 − 1/M)ρ(B).

�

Theorem 4.8. For any ε > 0, there exists an algorithm that runs in time
2O(n) and approximates CRP to within factor 1 + ε.

Proof. In Ajtai et al. (2002), it is shown that for any ε > 0 there exists a
1+ ε approximation algorithm for CVP that runs in time 2O(n). Let M = d1/εe
and let v1, . . . ,vn generate a lattice L(B) of covering radius ρ(B). Our CRP

algorithm tries all Mn points of the form

a1 · v1 + . . . + an · vn

such that ai ∈ {0, 1/M, 2/M, . . . , (M − 1)/M}. For each such point u, it calls
the CVP algorithm in order to obtain a value du such that

dist(u,L(B)) ≤ du ≤ (1 + ε) dist(u,L(B)).

The output of the algorithm is ρ′ = max du/(1 − ε) over all such u. By Claim
4.7, for one of the points u, dist(u,L(B)) ≥ (1 − ε)ρ(B) and hence ρ′ ≥ ρ(B).
Moreover, dist(u,L(B)) ≤ ρ(B) for all u and therefore ρ′ ≤ (1+ε)/(1−ε)ρ(B).
This completes the proof since ε is arbitrary. �

4.4. Improved proof systems for the Shortest Independent Vectors

Problem. It is known that GapSIVPO(n) is in coNP; this follows from the
transference theorem of Banaszczyk (1993) relating λn and λ1. Another known
result is that GapSIVPO(n/

√
log n) is in coAM (Blömer & Seifert 1999). We note

that their result can be easily derived from the results of this paper by com-
bining the relation between λn and ρ established in Lemma 4.3 with the coAM
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proof system for GapCRP
O(
√

n/ log n)
of Theorem 4.5. The resulting factor is

γ(n) = O(n/
√

log n) because the reduction from SIVP to CRP implicit in
Lemma 4.3 introduces a

√
n error.

In this subsection we improve both of these results by a factor of
√

n.
Namely, we show that GapSIVP

O(
√

n/ log n)
is in coAM and that GapSIVPO(

√
n)

is in coNP. Equivalently, we show that coGapSIVP
O(
√

n/ log n)
is in AM and that

coGapSIVPO(
√

n) is in NP. Both results follow from the following theorem:

Theorem 4.9. For any γ(n), there exists a nondeterministic polynomial time
algorithm that on input a coGapSIVPγ(n) instance (B, d) outputs polynomially
many coGapCVPγ(n) instances (Si, ti, d), i = 1, . . . , M , such that

◦ If (B, d) is a YES instance, then for some nondeterministic choice of the
algorithm, every (Si, ti, d) is a YES instances.

◦ If (B, d) is a NO instance, then for every nondeterministic choice of the
algorithm, some (Si, ti, d) is a NO instance.

Proof. Let (B, d) be the input to the algorithm, where B is a basis of an
n-dimensional lattice. For concreteness, we assume that the entries of B as
well as d are all integers; this is without loss of generality since we can always
scale rational values without increasing the size of the input by more than a
polynomial. The algorithm nondeterministically chooses a basis S = [s1, . . . , sn]
of size polynomial in the size of the input. Let M denote some large enough
polynomial in the input size to be determined later. First of all, the algorithm
checks that S is a basis of L(B), i.e., L(S) = L(B). (If not, it outputs M
copies of some fixed NO instance of coGapCVPγ(n).) If S is indeed a basis,
then it outputs M coGapCVPγ(n) instances (Si, 2

i−1sn, d), i = 1, . . . , M , where
Si := [s1, . . . , sn−1, 2

isn].
We need to prove that if (B, d) is a YES instance, then there exists a

polynomial-sized basis S such that all (Si, 2
i−1sn, d) are YES instances, while

if (B, d) is a NO instance, then for any basis S there exists an i ∈ {1, . . . , M}
such that (Si, 2

i−1sn, d) is a NO instance.
Assume (B, d) is a YES instance of coGapSIVPγ(n), i.e., λn(B) > γ(n)·d, and

define basis S as follows. Let s′1, . . . , s
′
k be a maximal set of linearly independent

lattice vectors of length at most γ(n) · d, i.e., a set of vectors such that any
lattice vector of length at most γ(n) · d is in span(s′1, . . . , s

′
k). Since λn(B) >

γ(n) · d, it must be that k < n. Let s1, . . . , sk be a basis for the sublattice
L(B) ∩ span(s′1, . . . , s

′
k), and complete it into a basis S = [s1, . . . , sn] for the
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entire lattice L(B). We remark that since s′1, . . . , s
′
k are integer vectors of

length at most γ(n)·d, their bit-size is at most O(n log(γ(n)·d)) and is therefore
polynomial in the input size. Moreover, since S can be computed in polynomial
time from B and s′1, . . . , s

′
k using standard techniques, we obtain that the bit-

size of the basis S is also polynomial in the input size.
We want to prove that (L(Si), 2

i−1sn, d) is a YES instance of coGapCVPγ(n)

for all i, i.e., for any integer i ∈ {1, . . . , M} and lattice vector y ∈ L(Si), we
have ‖2i−1sn − y‖ > γ(n) · d. Fix i and lattice vector y ∈ L(Si). Notice
that 2i−1sn − y ∈ L(S), and 2i−1sn − y does not belong to span(s1, . . . , sk) =
span(s′1, . . . , s

′
k) because it uses 2i−1sn an odd number of times and k < n. It

follows, by the maximality of {s′1, . . . , s′k}, that ‖2i−1sn − y‖ > γ(n) · d.
Let us now assume (B, d) is a NO instance of coGapSIVPγ(n), i.e., λn(B) ≤ d,

and let S be an arbitrary basis for L(B). We prove that there exists an i ∈
{1, . . . , M} such that (L(Si), 2

i−1sn, d) is a NO instance of coGapCVPγ(n), i.e.,
dist(2i−1sn,L(Si)) ≤ d. Since λn(B) ≤ d, there exist n linearly independent
lattice vectors of length at most d. Since span(s1, . . . , sn−1) has dimension
n − 1, they cannot all belong to span(s1, . . . , sn−1). So, let v ∈ L(B) such
that ‖v‖ ≤ d and v /∈ span(s1, . . . , sn−1). Write v =

∑n
i=1 aisi and assume

without loss of generality that an ≥ 0. (If not, replace v with −v.) Since
v /∈ span(s1, . . . , sn−1) we get that an 6= 0. Let i0 be the maximum i ≥ 1 such
that an is divisible by 2i−1, i.e., an/2i0−1 is an odd integer. Later, we will see
that i0 ≤ M . For this i0 it holds that v+2i0−1sn ∈ L(Si0). Hence, the distance
of 2i0−1sn from L(Si0) is at most ‖v‖ ≤ d.

Finally, in order to choose M , consider the quantity d/‖s∗n‖ where s∗n is the
projection of sn on the subspace orthogonal to span(s1, . . . , sn−1). Since this
quantity can be computed in polynomial time from the basis s1, . . . , sn and d,
it follows that its bit-size is polynomial in the size of the input. Moreover, by
projecting v on the same subspace we obtain that ‖v‖ ≥ an‖s∗n‖. Since ‖v‖ ≤ d
we have that an is at most d/‖s∗n‖ and hence its bit-size is also polynomial. In
particular, we can choose M to be a polynomial in the input size such that
an ≤ 2M−1. With this choice, it is easy to see that i0 ≤ M . �

Combining the nondeterministic algorithm from the above theorem with the
coAM and coNP results of (Aharonov & Regev 2004; Goldreich & Goldwasser
2000) we immediately get the following corollary.

Corollary 4.10. GapSIVPγ(n) is in coAM for γ(n) = O(
√

n/ log n) and in
coNP for γ(n) = O(

√
n).

Proof. According to (Aharonov & Regev 2004), coGapCVPγ(n) is in NP for
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γ(n) = O(
√

n). So let A be a nondeterministic Turing machine that solves
coGapCVPO(

√
n). Let B a nondeterministic Turing machine as in the above

theorem for γ(n) = O(
√

n). We construct a nondeterministic Turing machine
C that on input a coGapSIVPO(

√
n) instance, runs B to generate polynomially

many coGapCVPO(
√

n) instances, applies A to all of them, and outputs the
logical AND of the answers output by A.

We claim that C solves coGapSIVPO(
√

n) and hence coGapSIVPO(
√

n) ∈ NP.
Indeed, if the coGapSIVP input instance is a YES instance, then for some nonde-
terministic choice of B, all coGapCVP instances output by B are YES instances.
Hence, for each of these instances, and for some nondeterministic choice of al-
gorithm A, the instance is accepted by A. Taking the logical AND of all the
answers, C also accepts. Now assume that C is given as input a NO coGapSIVP

instance. Then no matter what nondeterministic choices are made by B, one
of the coGapCVP instances produced by B must be a NO instance. For this in-
stance, A necessarily rejects no matter what nondeterministic choices it makes.
Since C outputs the logical AND of all answers produced by A, machine C
rejects too.

A similar argument shows that coGapSIVP
O(
√

n/ log n)
is in AM. According

to (Goldreich & Goldwasser 2000), there exists an AM protocol that solves
coGapCVPγ(n) for γ(n) = O(

√

n/ log n). Let A be such a protocol and B as
above. Then we can define C as an AM protocol that first applies B to obtain
a list of coGapCVP instances, and then, for each of these instances runs the AM

protocol given by A. The rest of the argument is essentially identical. �

5. Coding Problems

In this section we prove our results concerning the covering radius on linear
codes. In Subsection 5.1 we present a simple polynomial time approximation
algorithm for linear codes over arbitrary finite fields achieving approximation
factor 1 + logq n where n is the block length of the code and q the alphabet
size. Then, in Subsection 5.2 we adapt similar results from lattices to prove that
approximating the covering radius of a code within factor 2 is in AM. Finally,
in Subsections 5.3 and 5.4 we present our Π2-hardness and NP-hardness results
for approximating the covering radius of a code within constant approximation
factors, as well as hardness of approximation within O(log log n) factors under
the stronger assumption that NP 6⊆ DTIME(nO(log log log n)). All our results hold
for linear codes over an arbitrary (fixed) alphabet. In particular, they hold for
the special case of binary codes.
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5.1. Approximation algorithm for CRP on codes. We begin with the
following standard lemma that characterizes the covering radius of linear codes.

Lemma 5.1. Let C be an [n, k] linear code over a field F defined by a (n−k)×n
parity check matrix H so that C = {c ∈ F

n | Hc = 0}. Then the covering
radius of C is the smallest r such that for every y ∈ F

n−k there exists a vector
z ∈ F

n of weight at most ‖z‖ ≤ r for which Hz = y.

The lemma is used to obtain a very simple log n approximation of the cov-
ering radius.

Theorem 5.2. For any prime power q, GapCRPcodesγ(n) over q-ary codes can
be solved in polynomial time for γ(n) = logq(n(q − 1)) ≤ 1 + logq n.

Proof. The parity check matrix of an [n, k] code has column rank exactly
(n − k), and therefore using Lemma 5.1, it follows that the covering radius r
of an [n, k] linear code is at most n − k. On the other hand, a simple volume
bound shows that qk

∑r
i=0

(

n
i

)

(q − 1)i ≥ qn. This implies nr(q − 1)r ≥ qn−k, or,
solving for r,

r ≥ (n − k)

logq(n(q − 1))
.

Therefore the bound (n − k)/ logq(n(q − 1)) is a factor logq(n(q − 1)) approxi-
mation to the covering radius. �

We remark that the simple algorithm in the proof of Theorem 5.2 is poly-
nomial in log q. So, the result holds even for codes over alphabets of variable
size q(n).

5.2. Proving that the covering radius is small. In this section we adapt
the AM proof system for lattices presented in Subsection 4.1 to linear codes.
The proof system for codes is virtually identical to the one for lattices, with
only syntactical modifications.

Lemma 5.3. For every linear code A ⊆ F
n
q ,

Pr
x

(

dist(x,A) ≥ ρ(A)

2

)

≥ 1

2

where x is chosen uniformly at random from F
n
q .
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Proof. Similar to the one for Lemma 4.1. �

The lemma is used to obtain an interactive protocol for GapCRPcodes2 as
in Theorem 4.2.

Theorem 5.4. For any prime power q, GapCRPcodes2 on q-ary codes is in
AM.

As before, the proof system is polynomial in log q, so the result holds for
codes over variable alphabet size q(n) as well.

5.3. Π2-hardness of approximating within some constant factor. CRP

on linear codes is one of the most natural complete problems for Π2 — this
hardness result is due to McLoughlin (1984). For general codes, when the
input is a list of codewords, the covering radius problem was shown to be
coNP-complete by Frances & Litman (1997), see also (Cohen et al. 1997, Chap.
20).4 These results are for the exact version of the problem. In this subsection
and the next, we prove hardness results for approximating CRP on linear codes.
The first result stated below shows that there is some constant factor up to
which approximating the covering radius is Π2-complete, thereby giving a very
natural hardness of approximation result that falls in the second level of the
polynomial time hierarchy.

Theorem 5.5. There is a constant c > 1 such that for any prime power q,
GapCRPcodesc on q-ary codes is Π2-complete.

Proof. GapCRPcodesc can be solved in Π2 even in its exact version, i.e.,
c = 1. We need to prove that for some constant c > 1 the problem is also
Π2-hard. For simplicity, we first prove the theorem for binary codes (i.e., for
q = 2), and then describe how to adapt the proof to codes over arbitrary
alphabets.

The proof is by reduction from the problem Gap∀∃-3-SAT-Bg defined as
follows. An instance of Gap∀∃-3-SAT-Bg is defined by a pair (C, t) where t is

4We remark that computational problems on linear codes are not a special case of the
same problems for arbitrary codes, because in the linear case the code is usually represented
as a generator or parity check matrix. This allows to compactly represent an exponentially
large set of codewords, and the efficiency of the algorithms is usually expressed as a function
of the size of this implicit representation. Efficient algorithms that take arbitrary codes as
input (e.g., represented as an explicit list of codewords), can become exponential time when
applied to linear codes.
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an integer and C is a set of clauses5 such that each clause contains at most
3 variables, each variable occurs in at most B clauses, and the variables are
partitioned into two sets: a set A of universal variables, and a set E of existential

variables. For notational convenience, in the rest of this proof we represent
truth assignments as subsets of A ∪ E, where a variable is included in the
subset if and only if it is assigned the value true. An instance (C, t) is a YES

instance if for every Boolean assignment to the universal variables W ⊆ A
there exists an assignment to the existential variables X ⊆ E such that X ∪W
satisfies at least t of the clauses in C. An instance (C, t) is a NO instance if
there exists an assignment to the universal variables W ⊆ A such that for every
assignment to the existential variables X ⊆ E, X ∪ W satisfies at most t/g of
the clauses in C. In Ko & Lin (1995) it is proved that there exists a positive
integer B and a constant g > 1 such that Gap∀∃-3-SAT-Bg is Π2-hard. Let
(C, t) be an input instance of Gap∀∃-3-SAT-Bg with |A ∪ E| = n variables and
|C| = m clauses. The following simple observations show that we can always
assume that t > n/3.

◦ We assume that each universal variable occurs both in positive and
negated form in C. This assumption is not restrictive because if a univer-
sal variable occurs only in positive or negated form, then we can simply
remove all its occurrences from C, and obtain a Gap∀∃-3-SAT-Bg instance
equivalent to the original one. If, during this process a clause becomes
empty, then the clause itself is removed from the formula.

◦ We assume that each existential variable occurs both in positive and
negated form in C. This assumption is also not restrictive because if an
existential variable occurs only in positive or negated form, then we can
always satisfy all the clauses containing this variable. So, an equivalent
Gap∀∃-3-SAT-Bg instance can be obtained by removing all the clauses
containing this variable from C, and decreasing t by the number of re-
moved clauses.

◦ Finally, assuming that each variable occurs in both positive and negated
form, we can also assume without loss of generality that t > n/3, where
n is the number of variables. This is because any assignment V ⊆ A∪E
satisfies at least one occurrence for each variable (for a total of at least
n variable occurrences). Since each clause contains at most 3 variables
occurrences, the assignment also satisfies at least n/3 clauses. So, if

5A clause is a disjunction l1∨ . . .∨ lm of m literals, where each literal li is either a variable
symbol x or its negation ¬x.
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t ≤ n/3, then (C, t) is certainly a YES instance, and the reduction can
trivially output a YES instance of the covering radius problem.

Now, assume we are given a Gap∀∃-3-SAT-Bg instance (C, t) with m clauses
and n variables such that t > n/3. Notice that n ≤ 3m because each clause
contains at most 3 variables, and m ≤ Bn because each variable occurs at most
B times. In particular, t > n/3 ≥ m/3B. We map C to a linear code such
that if (C, t) is a YES instance then the covering radius of the code is at most
n + d(m− t)/Be, while if (C, t) is a NO instance then the covering radius is at
least n + d(m− t/g)/Be. This proves that the covering radius of a linear code
is Π2-hard to approximate within a factor

n + d(m − t/g)/Be
n + d(m − t)/Be >

n + (m − t/g)/B

n + (m − t)/B + 1

= 1 +
(1 − 1/g)t− B

Bn + m − t + B

> 1 +
(1 − 1/g)n − 3B

(6B − 1)n + 3B

> 1 +
(1 − 1/g)

6B
> 1.

where in the second inequality we used t > n/3 and m ≤ Bn, and the third
inequality (which holds for all sufficiently large n) follows by taking the limit
for n approaching infinity. The linear code is described by a parity check matrix
H with m + n + |A| rows. The rows are divided into three blocks:

◦ a block of m rows, indexed by the clauses in C,

◦ a block of n rows, indexed by the variables in A ∪ E, and

◦ a block of |A| additional rows indexed by the universal variables A.

Notice that there are two distinct rows for each universal variable, one in the
second and one in the third block. For each subset of clauses L ⊆ C, subset
of variables V ⊆ A ∪ E and subset of universal variables W ⊆ A, let [L, V, W ]
denote the (m + n + |A|)-dimensional vector that equals 1 at the positions
corresponding to the elements of the sets L, V and W and 0 everywhere else.
Also, for any variable v, let C[+v] (resp., C[−v]) be the set of clauses that
contain a positive (resp., negative) occurrence of the variable v.

The columns are divided into various groups, and are defined as follows:
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◦ For every x ∈ A, and subset of clauses L ⊆ C[+x], there are two columns
[L, {x}, {x}] and [L, ∅, {x}].

◦ For every x ∈ A, and subset of clauses L ⊆ C[−x], there is a column
[L, {x}, ∅].

◦ For every y ∈ E, and subset of clauses L ⊆ C[+y], there is a column
[L, {y}, ∅].

◦ For every y ∈ E, and nonempty6 subset of clauses L ⊆ C[−y], there is a
column [L, {y}, ∅].

◦ For every nonempty subset of clauses L ⊆ C of size at most |L| ≤ B,
there is a column of the form [L, ∅, ∅].

This completes the description of the reduction. It remains to prove that
the reduction is correct.

Assume first that (C, t) is a YES instance, i.e., for every assignment W ⊆ A
there is an assignment X ⊆ E such that W ∪X satisfies at least t clauses in C.
We want to bound the covering radius of the code defined by the parity check
matrix H. By Lemma 5.1, we need to prove that for any vector y = [L, V, W ]
there exists a subset of the columns of H of size at most n + d(m − t)/Be
that adds up to y. Fix some y = [L, V, W ] and let X ⊆ E be an assignment
such that W ∪ X satisfies at least t clauses in C. Order the variables A ∪ E
in some arbitrary way, and for each variable v ∈ A ∪ E, select the column
[Lv, {v} ∩ V, {v} ∩ W ], where

Lv =

{

C[+v] ∩ L \ ⋃

w<v Lw if v ∈ W ∪ X,
C[−v] ∩ L \ ⋃

w<v Lw otherwise.

Notice that all these columns belong to matrix H, and their sum is the vector
[C ′∩L, V, W ], where C ′ is the set of clauses satisfied by the assignment W ∪X.
Since W ∪ X leaves at most m − t clauses unsatisfied, the size of L \ C ′ is
at most m − t. So, we can obtain the vector [L, V, W ] by adding at most
d(m − t)/Be more columns of the form [L′, ∅, ∅], where |L′| ≤ B. This proves
that the covering radius of the code H is at most n + d(m − t)/Be.

Now assume (C, t) is a NO instance, i.e., there exists an assignment W ⊆ A
such that for every assignment X ⊆ E, the number of clauses satisfied by W∪X
is at most t/g. We want to prove that the covering radius of the code H is at

6In this and the next case, we restrict L to be nonempty just to avoid unnecessary (e.g.,
repeated or identically zero) columns.
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least n + d(m − t/g)/Be. Let z = [C, A ∪ E, W ]. By Lemma 5.1 it is enough
to prove that any subset of columns of H that add up to z must have size at
least n + d(m− t/g)/Be. Let K be a smallest subset of columns of H that add
up to z. Assume that for every x ∈ A, K contains at most one column of the
form [L, V, {x}]. This assumption is without loss of generality because for any
two columns [L1, V1, {x}] and [L2, V2, {x}], the sum [L1, V1, {x}] + [L2, V2, {x}]
is a vector of the form [L, V, ∅] where L ⊆ L1 ∪L2 ⊆ C[+x] has size at most B,
and V ⊆ V1 ∪ V2 ⊆ {x}. So, we can replace [L1, V1, {x}] and [L2, V2, {x}] with
[L, ∅, ∅] and [∅, V, ∅] without changing the sum.

We next associate each variable v ∈ A∪E with a set Lv ⊂ C and a column
cv (from K) of the form [Lv, V, W ] for some V ∪ W ⊆ {v}. First, note that in
order to add up to [C, A∪E, W ], for every v ∈ W , K must contain at least one
column of the form cv = [Lv, V, {v}], and this column must necessarily satisfy
Lv ⊆ C[+v]. Also, for every v ∈ A \ W , K cannot contain any column of the
form [L, V, {v}] because of our assumption that K contains at most one column
of the form [L, V, {v}]. Hence, for every v ∈ A \ W , K must contain a column
of the form cv = [Lv, {v}, ∅] and Lv ⊆ C[−v]. Similarly, for every v ∈ E, K
must contain a column of the form cv = [Lv, {v}, ∅], where Lv ⊆ C[+v] or
Lv ⊆ C[−v].

To summarize, our mapping is such that Lv ⊆ C[+v] for all v ∈ W , Lv ⊆
C[−v] for all v ∈ A \ W , and Lv is a subset of either C[−v] or C[+v] for all
v ∈ E. Let X be the set of all v ∈ E such that Lv ⊆ C[+v]. The assignment
W ∪ X satisfies all the clauses in

⋃

v Lv. Therefore, the set
⋃

v Lv has size at
most t/g. In particular, the sum of the n columns cv (for v ∈ A ∪ E) equals 0
in at least m− t/g of the coordinates in the first block. Since any column of H

contains at most B nonzero entries in the first block, K must include at least
d(m − t/g)/Be additional columns in order to add up to [C, A ∪ E, W ]. This
proves that the covering radius is at least n + d(m − t/g)/Be, and concludes
the proof of the theorem for the case of binary codes.

The reduction for q-ary codes is similar. Just replace each column c in
the parity check matrix H with the set of all q-ary columns with exactly the
same zero coordinates as c. Since each vector in H has at most B + 2 nonzero
coordinates, this increases the size of the matrix by at most a factor (q−1)B+2,
which is polynomial in n for any polynomially bounded q(n). The rest of the
proof is an easy adaptation of the one for the binary alphabet case. We remark
that the inapproximability factor c > 1+(1−1/g)/6B is independent from the
alphabet size q. �
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We observe that although the proof of Theorem 5.5 holds also for codes
with variable alphabet size q(n), this time q(n) must be polynomially bounded
in order to ensure that the reduction is polynomial time.

Remark: In light of Theorem 5.4, GapCRPcodesc is unlikely to be Π2-hard
for c ≥ 2. Indeed, if for some c ≥ 2 GapCRPcodesc were Π2-hard under Karp
reductions, then we would have that coNP ⊆ Π2 ⊆ AM. Boppana et al. (1987)
show that coNP ⊆ AM implies a collapse of the polynomial time hierarchy to
the second level.

5.4. NP-hardness of approximating within arbitrary constant fac-

tors. An immediate consequence of Theorem 5.5 is that GapCRPcodesc is
also NP-hard for some constant c > 1. But what about arbitrarily large con-
stants? A standard method to prove NP-hardness of approximation for arbitrar-
ily large constants is to first prove NP-hardness for some constant factor, and
then amplify the constant using some polynomial time computable transfor-
mation. For example, Dumer et al. (2003) give a polynomial time computable
transformation that on input a code C with minimum distance d(C), outputs
a code C′ with minimum distance d(C′) = d(C)2, and use this transformation
to prove that the minimum distance of a linear code is NP-hard (under ran-
domized reductions) to approximate within any constant. The question here
is: is there a polynomial time computable transformation that on input a lin-
ear code C with covering radius ρ(C) outputs a new code with covering radius
ρ(C′) = ρ(C)2 (or, more generally, ρ(C′) = f(ρ(C)) for some function f such
that limn→∞ fn(1+ ε) = +∞ for all ε > 0)? Unfortunately, such a transforma-
tion is unlikely to exist for the covering radius. Indeed, such a transformation
(or even a weaker transformation with limn fn(1 + ε) > 2) would also imply
the Π2-hardness of approximating the covering radius within factors greater
than 2; by the remark following Theorem 5.5, this would imply the collapse of
the polynomial time hierarchy. So, in order to prove that the covering radius
problem is NP-hard to approximate within factors higher than 2, a different
approach is needed.

In this section, we present a reduction from set cover that shows that ap-
proximating the covering radius of a linear code within any constant factor
is NP-hard, and approximating it within Ω(log log n) is also hard under the
stronger assumption that NP 6⊆ DTIME(nO(log log log n)). Our starting point is
the following hardness result for set cover. Recall that a set cover instance
consists of a universe and a collection of subsets of the universe, with the goal
being to cover the universe using the fewest possible subsets (see, e.g., Garey
& Johnson (1979)).
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Theorem 5.6. There exist absolute constants a, b, c > 0 such that for every
function B : N → N where B(n) ≤ nlog log n, there is a reduction that maps any
instance φ of 3SAT on n variables into a set cover instance I consisting of at
most Na sets, each of size at most B(n), over a universe of size N = nb log log B(n),
and a parameter p, such that

◦ if φ is satisfiable, then I admits a set cover comprising of at most p sets;

◦ if φ is not satisfiable, then every set cover of I requires at least cp log B(n)
sets.

Furthermore, the reduction runs in nO(log log B(n)) time.

The above result, in particular the dependence of the gap on the size of the
sets in the instance, is not explicitly stated as such in the literature, but it is
implicit in previous work. We point the interested reader to (Trevisan 2001)
where a statement similar to the one above is explicitly shown for B(n) that is
a constant independent of n, by a suitable choice of parameters in (Feige 1998).
The goal there was to show a ln B − o(lnB) gap, whereas for our application
an O(log B(n)) gap suffices. Therefore, one can show the above theorem by
using the 2-prover 1-round proof systems that follow from Raz’s parallel rep-
etition theorem (Raz 1998) (with u = O(log log B(n)) parallel repetitions) in
the original set cover reduction of Lund & Yannakakis (1994); see the survey
by Arora & Lund (1996) for a nice exposition of this reduction.

We now give an approximation preserving reduction from set cover to
GapCRPcodes to prove the following:

Theorem 5.7. Assume that NP 6⊆ DTIME(nO(log log log n)). Then there exists
a constant c0 > 0 such that for any prime power q, GapCRPcodesc0 log log n over
q-ary codes with block lengh n is not solvable in polynomial time.

Theorem 5.8. For any constant c > 1 and prime power q, GapCRPcodesc on
q-ary codes is NP-hard.

The proof of Theorem 5.8 is identical to the proof of Theorem 5.7 given
below, with the only difference that we reduce from set cover instances of The-
orem 5.6 where B(n) is a large enough constant (independent of n). Since
the reduction we describe below runs in time nO(log log B(n))qB(n), the reduction
for constant B(n) = O(1) is polynomial time and proves the NP-hardness of
GapCRPcodesc. We remark that both proofs hold true even for codes over
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variable alphabet size q(n). However, while in Theorem 5.8 q(n) can be an ar-
bitrary polynomially bounded function of the block length, in Theorem 5.7 q(n)
must be at most q(n) = O(log log n), because B(n) = log n and larger values
of q(n) would increase the running time of the reduction above nO(log log log n).
For larger (but still polynomially bounded) values of q(n), Theorem 5.7 holds
true, but under the stronger assumption that NP 6⊆ DTIME(nO(log n)).

Proof (of Theorem 5.7). For simplicity, we prove the theorem for binary
codes, and then describe how to adapt the proof to arbitrary alphabets.

Let I = (U ; S1, S2, . . . , Sm) be an instance of set cover with universe U =
{1, 2, . . . , N} and each Sj ⊂ U of size at most B(n), as produced by Theo-
rem 5.6. In particular, N = nO(log log B(n)) and m = NO(1) = nO(log log B(n)).
Define a 0, 1 matrix H with N rows, one for each element of U , and

∑

j 2|Sj |

columns, one for each subset of Sj for every j, 1 ≤ j ≤ m. We will index the
rows of H by i, 1 ≤ i ≤ N , and the columns by (j, T ) where 1 ≤ j ≤ m and
T ⊆ Sj. The entries of the matrix are defined as follows:

Hi,(j,T ) =

{

1 if i ∈ T ,
0 otherwise.

Consider the binary linear code C = {c | Hc = 0} defined by the par-
ity check matrix H. By Lemma 5.1, the covering radius of C equals k if
k is the minimum value for which Hz = y has a solution z of weight at
most k for every y ∈ {0, 1}N . We prove that k is in fact exactly the size
of the smallest set cover of instance I. The reduction produces a code of
block length N∗ ≤ m · 2B(n) ≤ nO(log log B(n))2B(n) and can be carried out
in time nO(log log B(n))2B(n). With the choice B(n) = log n in the hardness
result of Theorem 5.6, we obtain that a polynomial time algorithm for ap-
proximating the covering radius within factor O(log log n) implies that NP ⊆
DTIME(nO(log log log n)). For this choice of B(n), the block length N∗ of C satisfies
N∗ = nO(log log log n), and therefore log log n = Θ(log log N∗). Therefore, assum-
ing that NP 6⊆ DTIME(nO(log log log n)), we conclude that there is no polynomial
time c0 log log N∗ approximation algorithm for the covering radius problem on
linear codes of block length N∗, for some c0 > 0.

It remains to prove that k in fact equals the size of the smallest set cover of I.
Let z be a vector of Hamming weight at most k such that Hz = 1N and consider
the set of columns for which z has a nonzero coordinate. These columns add up
to 1N , and since each column corresponds to a subset of some Sj , it follows that
the corresponding sets Sj surely cover the universe U . Therefore, the minimum
set cover has size at most k. Conversely, let S = 〈Sj1, Sj2, . . . , Sj`

〉 be a set cover;
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we will show that k ≤ `. Let y ∈ {0, 1}N be arbitrary; we will show that there
are at most ` columns of H, one from each of the “clusters” {(js, T ) | T ⊆ Sjs

}
for 1 ≤ s ≤ `, which add up to y. Associate each i = 1, . . . , N for which yi = 1
with a set Sjs

such that i ∈ Sjs
. This is possible since S is a set cover. Then,

for each s = 1, . . . , `, define Ts ⊆ Sjs
as the set of all i’s associated to Sjs

. It
is readily checked that the ` columns (js, Ts) of H add up to precisely y. This
concludes the proof for the case of binary codes.

The reduction can be easily adapted to q-ary codes by replacing each column
c in the parity check matrix H with the set of all q-ary columns that have
exactly the same zero coordinates as c. This increases the block length N∗

of the code (and the running time of the reduction) from nO(log log B(n))2B(n) to
nO(log log B(n))qB(n). The rest of the proof is a straightforward adaptation of the
proof for binary codes. �

Remark: In the above reduction, the block length of the code is at least qB(n)

and the gap in the reduction is O(log B(n)). Hence the best hardness factor as
a function of the block length N we can hope to show for covering radius using
the above approach is O(log log N).

6. Conclusion

There are numerous open questions raised by our work; below we discuss some
of them.

◦ We proved that the covering radius problem for linear codes is Π2-hard
to approximate within some constant factor, and NP-hard for arbitrary
constant factors. Does the same hold true for lattices? It is not clear if
and how our hardness proofs for linear codes can be adapted to lattices,
and we leave proving the hardness of the covering radius problem (in its
exact and approximation versions) as an open problem.

◦ In this paper, we focused on lattice problems in the Euclidean norm
`2, but other norms can be interesting as well. All our results can be
immediately adapted to arbitrary `p norms (for any p ≥ 1) using the fact
that all `p norms are within a factor

√
n from the `2 one. This introduces a√

n loss in the approximation factors. An interesting question is whether
our results can be reproduced in any `p norm without loosing this

√
n

term. Of special interest is the `∞ norm, since problems in this norm
generally appear to be harder than in other `p norms. (For example,
the shortest vector problem was long known to be NP-hard in the `∞
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norm (van Emde Boas 1981), and later proved to be hard to approximate
within almost polynomial factors (Dinur 2000), while proving the NP-
hardness in the `2 norm remained an open problem till the work of Ajtai
(1998), Micciancio (2001) and Khot (2004), and to-date it is known to be
NP-hard only for constant approximation factors, and under randomized
reductions or unproven number theoretic conjectures.) Can one show
that CRP on lattices in the `∞ norm is NP-hard or even Π2-hard in its
exact or approximation version?

◦ Theorem 4.2 shows that the problem of approximating the covering radius
of a lattice within a factor 2 is in AM. Can the factor 2 be improved?
One possible way to improve this factor is to improve the bound ρ(B)/2
in Lemma 4.1. Specifically, is there a constant c < 2 such that for any
lattice B the distance of a random point from B is at least ρ(B)/c with
some non-negligible probability? By considering the lattice Z

n, it can be
seen that c has to be at least

√
3. Indeed, for any c <

√
3, the probability

that the distance of a random point from the lattice Z
n is at least ρ(Zn)/c

is exponentially small in n. The smallest value possible for c is therefore
between

√
3 and 2.

We remark that the proof of Lemma 4.1 is valid for any norm, not neces-
sarily the Euclidean one. It turns out that for certain norms, Lemma 4.1
is essentially optimal. Lyubashevsky (2004) has shown that for the `1

and `∞ norms, there are lattices such that for any c < 2 the probability
that a random point is at `1 (resp. `∞) distance at least ρ(B)/c from the
lattice is exponentially small in the dimension of the lattice. Moreover,
for any p ≥ 1, there is constant cp > 1 such that the bound in the lemma
in the `p norm cannot be improved below ρ(B)/cp.

◦ We believe that O(log n) is the right answer for approximating CRP on
linear codes. Can one show that GapCRPcodesΩ(log n) is NP-hard (or quasi-
NP-hard)? Our reduction in Subsection 5.4 also raises questions concern-
ing the complexity of the set cover problem itself. In particular, can
one show the NP-hardness (as opposed to, say, hardness under the as-
sumption NP 6⊆ DTIME(nO(log log n))) of approximating set cover with sets
of size at most B(n) within a O(logB(n)) factor for the entire range
Ω(1) ≤ B(n) ≤ nΩ(1)? Currently this seems to be explicitly known only
for B(n) that is a constant independent of n.
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