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can process only one job at a time. If job j is completed at time cj then wede�ne its 
ow time as fj = cj � rj (which is at least wj).In the machine scheduling problem there are two major models. The �rstis the cost model, where the goal is to minimize the total (weighted) 
ow time.The second is the bene�t model, where each job has its own deadline, and thegoal is to maximize the bene�t of jobs that meet their deadline. Both modelshave their disadvantages and the performance measurement is often misleading.In the cost model, a small delay in a loaded system keeps interfering with newjobs. Every new job has to wait a short while before the system is free. Theresult is a very large increase in total cost. This might suggest that the bene�tmodel is favorable. However, it still lacks an important property: in many realcases, jobs are delayed by some small constant and should therefore reduce theoverall system performance, but only by some small factor. In the standardbene�t model, jobs that are delayed beyond their deadline cease to contributeto the total bene�t. Thus, the property we are looking for is the possibility ofdelaying jobs without drastically harming the overall system performance.We present a bene�t model where the bene�t is a function of its 
ow time:the longer the processing of a job takes, the lower its bene�t is. More speci�-cally, each job j has an arbitrary monotone non-increasing non-negative bene�tdensity function Bj(t) for t � wj , and the bene�t gained is wjBj(fj), where fjis its 
ow time. Note that the bene�t density function may be di�erent for eachjob. The goal of the scheduler is to schedule the jobs so as to maximize thetotal bene�t, i.e., Pj wjBj(fj), where fj is the 
ow time of job j. Note thatthe bene�t density function of di�erent jobs can be uncorrelated and the ratiobetween their values can be arbitrarily large. However, we restrict each Bj(t)to satisfy Bj(t)Bj(t+ wj) � Cfor some �xed constant C. That is, if we delay a job by its length then we loseonly a constant factor in its bene�t.An on-line algorithm is measured by its competitive ratio, de�ned asmaxI OPT (I)A(I) ;where A(I) denotes the bene�t gained by the on-line algorithm A on input I ,and OPT (I) denotes the bene�t gained by the optimal schedule.As with many other scheduling problems, the uniprocessor model presentedabove can be extended to a multiprocessor model where instead of just onemachine, we are given m identical machines. A job can be processed by atmost one machine at a time. The only de�nition that needs further explanationis the de�nition of preemption. In the multiprocessor model we usually allowthe scheduler to preempt a job and later continue running it on a di�erentmachine. That operation, known as migration, can be costly in many realistic2



multiprocessor systems. A desirable property for a multiprocessor scheduler isthat it does not use migration, i.e., once a job starts running on a machine, itcontinues running there up to its completion. Our multiprocessor algorithm hasthat property with no signi�cant degradation in performance.1.2 The results in this paperThe main contribution of this paper is in de�ning a general bene�t model andproviding a constant competitive algorithm for this model. We begin by de-scribing and analyzing the uniprocessor scheduling algorithm. Later, we extendthe result to the multiprocessor case. Our multiprocessor algorithm does notuse migration. Nevertheless, there is no such restriction on the optimal algo-rithm. In other words, the competitiveness result is against a possibly migrativeoptimal algorithm.1.3 Previous workThe bene�t model of the real-time scheduling presented above is a well-studiedone. An equivalent way of looking at deadlines is to consider bene�t densityfunctions of the following `stair' form: the bene�t density for 
ow times whichare less than or equal to a certain value, is �xed. Beyond that point, the bene�tdensity is zero. The point of time in which the 
ow time of a job passes thatpoint is the job's deadline. Such bene�t density functions do not match ourrequirements because of their sharp decrease.As a result of the �rm deadline, the real-time scheduling model is hard toapproximate. The optimal deterministic competitive ratio for the uniprocessorcase is �(�), where � is the ratio between the maximum and minimum bene�tdensities [3, 4, 7]. For the special case where � = 1, there is a 4-competitivealgorithm. The optimal randomized competitive ratio for the uniprocessor caseis O(min(log�; log�)), where � is the ratio between the longest and shortestjob [6].For the multiprocessor case, Koren and Shasha [8] showed that when thenumber of machines is very large, a O(log �) competitive algorithm is possible.That result is shown to be optimal. Their algorithm achieves that competitiveratio without using migration.Another related problem is the problem of minimizing the total 
ow time.Recall that in this problem individual bene�ts do not exist and the goal functionis minimizing the sum (or equivalently, average) of 
ow times over all jobs.Unlike real-time scheduling, the uniprocessor case is solvable in polynomial timeusing the shortest remaining processing time �rst rule [2]. Using this rule,also known as SRPT, the algorithm assigns the jobs with the least remainingprocessing time to the available machines.Minimizing the total 
ow time with more than one machine becomes NP �hard [5]. In [9], Leonardi and Raz analyzed the performance of the SRPT algo-3



rithm. They showed that it achieves a competitive ratio of O(log(minf�; nmg))where � is the ratio between the longest and shortest processing time. Theyalso showed that SRPT is optimal with two lower bounds for on-line algo-rithms, 
(log nm ) and 
(log�). A fundamental property of SRPT is the use ofmigration. In a recent paper [1], an algorithm which achieves almost the samecompetitive ratio is shown. This algorithm however does not use migration.2 The algorithmThe basic idea of the algorithm is to schedule a job whose current bene�t densityis as high as possible. The problem with such an algorithm is that it maypreempt jobs in order to gain a small improvement in the bene�t density andhence delay a large number of jobs. To overcome this problem we schedule anew job only if its bene�t density is signi�cantly higher than that of the currentjob. In addition, we prefer partially processed jobs to non-processed jobs ofsimilar bene�t density. The algorithm combines the above ideas and is formallydescribed below.We begin by de�ning three `storage' locations for jobs. The �rst is the poolwhere new jobs arrive and stay until their processing begins. Once the schedulerdecides a job should begin running, the job is removed from the pool and pushedinto the stack where its processing begins. Two di�erent possibilities exist atthe end of a job's life cycle. The �rst is a job that is completed and can bepopped from the stack. The second is a job that after remaining too long in thestack got thrown into the garbage collection. The garbage collection holds jobswhose processing we prefer to defer. The actual processing can occur when thesystem reaches an idle state. Throwing a job in the garbage collection meanswe gain nothing from it and we prefer to throw it away in order to make roomfor other jobs.The job at the top of the stack is the job that is currently running. Theother jobs in the stack are preempted jobs. For each job j, denote by sj the timeit enters the stack. We de�ne its breakpoint as the time sj+2wj . If a job is stillrunning when it reaches its breakpoint, it is thrown into the garbage collection.We also de�ne priorities for each job in the pool and in the stack. The priorityof job j at time t is denoted by dj(t). For t � sj , it is Bj(t + wj � rj) and fortime t > sj , it is d̂j = Bj(sj +wj � rj). In other words, the priority of a job inthe pool is its bene�t density if it would have run to completion starting at thecurrent time t. Once it enters the stack its priority becomes �xed, i.e. remainsthe priority at time sj .We describe Algorithm ALG1 as an event-driven algorithm. The algorithmtakes action at time t when a new job is released, when the currently runningjob is completed or when the currently running job reaches its breakpoint. Ifsome events happen at the same time we handle the completion of jobs �rst.� A new job l arrives. If dl(t) > 4d̂k, where k is the job at the top of4



the stack or if the stack is empty, push job l into that stack and run it.Otherwise, just add job l to the pool.� The job at the top of the stack is completed or reaches its breakpoint.Then, pop jobs from the top of the stack and insert them into the garbagecollection as long as their breakpoints have been reached. Unless the stackis empty, let k be the index of the new job at the top of the stack. Continuerunning job k only if dj(t) � 4d̂k for all j in the pool. Otherwise, get thejob from the pool with maximum dj(t), push it into the stack, and run it.� Whenever the machine is idle (i.e., no jobs in the stack or in the pool) runany uncompleted job from the garbage collection until a new job arrives.We note several facts about this algorithm:Observation 2.1 Every job enters the stack at some point in time. Then, bytime sj + 2wj , it is either completed or reaches its breakpoint and gets throwninto the garbage collection.Observation 2.2 The priority of a job is monotone non-increasing over time.Once the job enters a stack, its priority remains �xed until it is completed orthrown away. At any time the priority of each job in a stack is at least 4 timeshigher than the priority of the job below it.Observation 2.3 Whenever the pool is not empty, the machine is not idle, thatis, the stack is not empty. Moreover, the priority of jobs in the pool is alwaysat most 4 times higher than the priority of the currently running job.3 The analysisWe begin by �xing an input sequence and hence the behavior of the optimalalgorithm and the on-line algorithm. We denote by fOPTj the 
ow time of jobj by the optimal algorithm. As for the on-line algorithm, we only consider thebene�t of jobs which were not thrown into the garbage collection. Denote theset of these jobs by A. So, for j 2 A, let fONj be the 
ow time of job j by theon-line algorithm. By de�nition,V OPT =Xj wjBj(fOPTj )and V ON �Xj2AwjBj(fONj ) :We also de�ne the pseudo-bene�t of a job j by wj d̂j . That is, each job donates abene�t of wj d̂j as if it runs to completion without interruption from the moment5



it enters the stack. De�ne the pseudo-bene�t of the online algorithm asV PSEUDO =Xj wj d̂j :For 0 � t < wj , we de�ne Bj(t) = Bj(wj). In addition, we partition the setof jobs J into two sets, J1 and J2. The �rst is the set of jobs which are stillprocessed by the optimal scheduler at time sj , when they enter the stack. Thesecond is the set of jobs which have been completed by the optimal schedulerbefore they enter the stack.Lemma 3.1 For the set J1, Pj2J1 wjBj(fOPTj ) � C � V PSEUDO.Proof: We note the following:wjBj(fOPTj ) � C � wjBj(fOPTj + wj) � C � wjBj(sj � rj + wj) = C � wj d̂jwhere the �rst inequality is by our assumptions on Bj and the second is by ourde�nition of J1. Summing over jobs in J1, we haveXj2J1 wjBj(fOPTj ) � CXj2J1 wj d̂j � C � V PSEUDO :Lemma 3.2 For the set J2, Pj2J2 wjBj(fOPTj ) � 4C � V PSEUDO.Proof: For each j 2 J2, we de�ne its `optimal processing times' as�j = ftjjob j is processed by OPT at time tg:Xj2J2 wjBj(fOPTj ) = Xj2J2 Zt2�j Bj(fOPTj )dt� Xj2J2 Zt2�j Bj(t� rj)dt� C �Xj2J2 Zt2�j dj(t)dt:According to the de�nition of J2, during the processing of job j 2 J2 by theoptimal algorithm, the on-line algorithm still keeps the job in its pool. ByObservation 2.3 we know that the job's priority is not too high; it is at most 4times the priority of the currently running job and, speci�cally, at time t 2 �j ,6



its priority is at most 4 times the priority of the job at the top of the stack inthe on-line algorithm. Denote that job by j(t). So,C �Xj2J2 Zt2�j dj(t)dt � 4C �Xj2J2 Zt2�j d̂j(t)dt� 4C � Zt2[�j d̂j(t)dt� 4C � Zt d̂j(t)dt� 4C �Xj2J wj d̂j = 4C � V PSEUDO :Corollary 3.3 V OPT � 5CV PSEUDO.Proof: Combining the two lemmas we get,V OPT = Xj2J1 wjBj(fOPTj ) +Xj2J2 wjBj(fOPTj )� C � V PSEUDO + 4C � V PSEUDO= 5CV PSEUDO :Lemma 3.4 V PSEUDO � 2C � V ONProof: We show a way to divide a bene�t of C � V ON between all the jobs suchthat the ratio between the gain allocated to each job and its pseudo-gain is atmost 2.We begin by ordering the jobs so that jobs are preempted only by jobsappearing earlier in the order. This is done by looking at the preemption graph:each node represents a job and the directed edge (j; k) indicates that job jpreempts job k at some time in the on-line algorithm. This graph is acyclicsince the edge (j; k) exists only if d̂j > d̂k. We use a topological order of thisgraph in our construction. Jobs can only be preempted by jobs appearing earlierin this order.We begin by assigning a bene�t of wj d̂j to any job j in A, the set of jobsnot thrown into the garbage collection. At the end of the process the bene�tallocated to each job, not necessarily in A, will be at least 12wj d̂j .According to the order de�ned above, we consider one job at a time. Assumewe arrive at job j. When j 2 A, it already has a bene�t of wj d̂j assigned to it.Otherwise, job j gets thrown into the garbage collection. This job enters thestack at time sj and leaves it at time sj + 2wj . During that time the scheduler7



actually processes the job for less than wj time. So, job j is preempted for morethan wj time. For any job k running while job j is preempted, we denote byUk;j the set of times when job j is preempted by job k. Then, we move a bene�tof jUk;j j � d̂j from k to j. Therefore, once we �nish with job j, its allocatedbene�t is at least wj d̂j .How much bene�t is allocated to each job j at the end of the process? Wehave seen that before moving on to the next job, the bene�t allocated to job jis at least wj d̂j (whether or not j 2 A). When job j enters the stack at timesj it preempts several jobs; these jobs appear later in the order. Since jobs areadded and removed only from the top of the stack, as long as job j is in thestack, the set of jobs preempted by it remains unchanged. Each job k of thisset gets a bene�t of at most wj d̂k from j. However, since all of these jobs existtogether with j in the stack at time sj , the sum of their priorities is at most12 d̂j (according to Observation 2.2). So, after moving all the required bene�t,job j is left with at least 12wj d̂j , as needed.In order to complete the proof,V PSEUDO = Xj wj d̂j = 2Xj 12wj d̂j� 2Xj2Awj d̂j� 2CXj2AwjBj(sj � rj + 2wj)� 2CXj2AwjBj(fONj )� 2C � V ON :Theorem 3.5 Algorithm ALG1 is 10C2 competitive.Proof: By combining the previous lemmas, we conclude thatV ON � V PSEUDO2C � V OPT10C2 :4 Multiprocessor schedulingWe extend Algorithm ALG1 to the multiprocessor model. In this model, thealgorithm holds m stacks, one for each machine, as well as m garbage collec-tions. Jobs not completed by their deadline get thrown into the corresponding8



garbage collection. Their processing can continue later when the machine is idle.As before, we assume we get no bene�t from these jobs. The multiprocessorAlgorithm ALG2 is as follows:� A new job l arrives. If there is a machine such that dl(t) > 4d̂k where kis the job at the top of its stack or its stack is empty, push job l into thatstack and run it. Otherwise, just add job l to the pool.� The job at the top of a stack is completed or reaches its breakpoint. Then,pop jobs from the top of that stack as long as their breakpoints have beenreached. Unless the stack is empty, let k be the index of the new job atthe top of the stack. Continue running job k only if dj(t) � 4d̂k for all jin the pool. Otherwise, get the job from the pool with maximum dj(t),push it into that stack, and run it.� Whenever a machine is idle (i.e., no jobs in its stack or in the pool) runany uncompleted job from its garbage collection until a new job arrives.We de�ne J1 and J2 in exactly the same way as in the uniprocessor case.Lemma 4.1 For the set J1, Pj2J1 wjBj(fOPTj ) � C � V PSEUDO.Proof: Since the proof of Lemma 3.1 used the de�nition of J1 separately foreach job, it remains true in the multiprocessor case as well.The following lemma extends Lemma 3.2 to the multiprocessor case:Lemma 4.2 For the set J2, Pj2J2 wjBj(fOPTj ) � 4C � V PSEUDO.Proof: For each j 2 J2, we de�ne its `optimal processing times' by machine i as�j;i = ftjjob j is processed by OPT on machine i at time tg:Xj2J2 wjBj(fOPTj ) = Xj2J2 X1�i�m Zt2�j;i Bj(fOPTj )dt� Xj2J2 X1�i�m Zt2�j;i Bj(t� rj)dt� C �Xj2J2 X1�i�m Zt2�j;i dj(t)dt:According to the de�nition of J2, during the processing of job j 2 J2 by theoptimal algorithm, the on-line algorithm still keeps the job in its pool. ByObservation 2.3 we know that the job's priority is not too high; it is at most 4times the priority of the currently running jobs and, speci�cally, at time t for9



machine i such that t 2 �j;i, its priority is at most 4 times the priority of thejob at the top of stack i in the on-line algorithm. Denote that job by j(t; i). So,C �Xj2J2 X1�i�m Zt2�j;i dj(t)dt � 4C �Xj2J2 X1�i�m Zt2�j;i d̂j(t;i)dt� 4C � X1�i�m Zt2[�j;i d̂j(t;i)dt� 4C � X1�i�m Zt d̂j(t;i)dt� 4C �Xj2J wj d̂j = 4C � V PSEUDO :Lemma 4.3 V PSEUDO � 2C � V ON .Proof: By using Lemma 3.4 separately on each machine we obtain the sameresult for the multiprocessor case.Combining all the results together we getTheorem 4.4 Algorithm ALG2 for the multiprocessor case is 10C2 competi-tive.References[1] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the 
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ow time withrelease time constraint. Theoretical Computer Science, 75(3):347{355, 1990.10
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