Non-interactive correlation distillation,
inhomogeneous Markov chains, and the reverse
Bonami-Beckner inequality

Elchanan Mossel  Ryan O’Donnellf Oded Regev
Jeffrey E. Steif Benny SudakoV

Abstract

In this paper we studgion-interactive correlation distillation (NICD)a
generalization of noise sensitivity previously consideire[5, 31, 39]. We
extend the model tBlICD on trees In this model there is a fixed undirected
tree with players at some of the nodes. One node is given aramlif random
string and this string is distributed throughout the nekyarith the edges of
the tree acting as independent binary symmetric channdis. gbal of the
players is to agree on a shared random bit without commungeat

Our new contributions include the following:

e In the case of &-leaf star graph (the model considered in [31]), we
resolve the open question of whether the success prolyatilist go
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to zero ask — oo. We show that this is indeed the case and provide
matching upper and lower bounds on the asymptotically ctiraite
(a slowly-decaying polynomial).

¢ Inthe case of thé-vertex path graph, we show that it is always optimal
for all players to use the same 1-bit function.

¢ Inthe general case we show that all players should use moadioc-
tions. We also show, somewhat surprisingly, that for certaes it is
better if not all players use the same function.

Our techniques include the use of trewerseBonami-Beckner inequality.
Although the usual Bonami-Beckner has been frequently bséate, its re-
verse counterpart seems not to be well known. To demonstsag&ength,
we use it to prove a new isoperimetric inequality for the dite cube and a
new result on the mixing of short random walks on the cube. tAgiotool
that we need is a tight bound on the probability that a Markosirc stays
inside certain sets; we prove a new theorem generalizingsaadgthening
previous such bounds [2, 3, 6]. On the probabilistic side,uae the “re-
flection principle” and the FKG and related inequalities rder to study the
problem on general trees.



1 Introduction

1.1 Non-interactive correlation — the problem and previouswork

Our main topic in this paper is the problem mdn-interactive correlation distil-
lation (NICD), previously considered in [5, 31, 39]. In its most generairfdhe
problem involvesk players who receive noisy copies of a uniformly random bit
string of lengthn. The players wish to agree on a single random bit but are not
allowed to communicate. The problem is to understand thenéxb which the
players can successfully distil the correlations in thegings into a shared random
bit. This problem is relevant for cryptographic informatigeconciliation, random
beacons in cryptography and security, and coding theoey[34.

In its most basic form, the problem involves only two playéh® first gets
a uniformly random string: and the second gets a copyn which each bit ofr
is flipped independently with probability If the players try to agree on a shared
bit by applying the same Boolean functighto their strings, they will fail with
probability P[f(z) # f(y)]. This quantity is known as theoise sensitivity of
f ate, and the study of noise sensitivity has played an importaletin several
areas of mathematics and computer science (e.g., inappabxity [26], learning
theory [17, 30], hardness amplification [33], mixing of sh@ndom walks [27],
percolation [10]; see also [34]). In [5], Alon, Maurer, andgderson showed that
if the players want to use a balanced functigmo improvement over the naive
strategy of lettingf (x) = x; can be achieved.

The paper [31] generalized from the two-player problem NIGRk-player
problem, in which a uniformly random stringof lengthn is chosenk players re-
ceive independentcorrupted copies, and they apply (possibly differentpbaéd
Boolean functions to their strings, hoping that all outpiis lagree. This gen-
eralization is equivalent to studying high norms of the BonrBeckner operator
applied to Boolean functions (i.€|7, f||x); see Section 3 for definitions. The re-
sults in [31] include: optimal protocols involve all plagarsing the same function;
optimal functions are always monotone; for= 3 the first-bit (‘dictator’) is best;
for fixed ¢ and fixedn andk — oo, all players should use the majority function;
and, for fixedn andk ande — 0 ore — 1/2 dictator is best.

Later, Yang [39] considered a different generalization ¢€N, in which
there are only two players but the corruption model is défferfrom the “binary
symmetric channel” noise considered previously. Yang stbthat for certain
more general noise models, it is still the case that the whictanction is optimal;
he also showed an upper bound on the players’ success rateénasure model.



1.2 NICD on trees; our results

In this paper we propose a natural generalization of the Nh@idels of [5, 31],
extending to a tree topology. In our generalization we hametavork in the form
of a tree;k of the nodes have a ‘player’ located on them. One node bretslea
truly random string of length. The string follows the edges of the trees and even-
tually reaches all the nodes. Each edge of the tree indeptndetroduces some
noise, acting as a binary symmetric channel with some fixesisaver probability
e. Upon receiving their strings, each player applies a badmoolean function,
producing one output bit. As usual, the goal of the playete &gree on a shared
random bit without any further communication; the protoscuccessful if alk
parties output the same bit. (For formal definitions, sedi@e@.) Note that the
problem considered in [31] is just NICD on the star graplt &f 1 nodes with the
players at the: leaves.

We now describe our new results:

The k-leaf star graph:  We first study the samie-player star problem considered
in [31]. Although this paper found maximizing protocols iartain asymptotic
scenarios for the parametérsn, ande, the authors left open what is arguably the
most interesting setting: fixed, & growing arbitrarily large, and unbounded in
terms ofz andk. Although it is natural to guess that the success rate ofltyeps
must go to zero exponentially fast in termskgfthis turns out not to be the case;
[31] notes that if all players apply the majority functionitlwn large enough)
then they succeed with probabilify(k~¢()) for some finite constan®'(¢) (the
estimate [31] provides is not sharp). [31] left as a majorropeblem to prove
that the success probability goesitask — oc.

In this paper we solve this problem. In Theorem 4.1 we showtttesuc-
cess probability must indeed go to zerokas- oco. Our upper bound is a slowly-
decaying polynomial. Moreover, we provide a matching lol@und: this follows
from a tight analysis of the majority protocol. The proof afraipper bound de-
pends crucially on the reverse Bonami-Beckner inequalityimportant tool that
will be described later.

The k-vertex path graph: In the case of NICD on the path graph, we prove
in Theorem 5.1 that in the optimal protocol all players sdause the same 1-bit
function. In order to prove this, we prove in Theorem 5.4, & tight bound on the
probability that a Markov chain stays inside certain setgr tBeorem generalizes
and strengthens previous work [2, 3, 6].
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Arbitrary trees:  In this general case, we show in Theorem 6.3 that there always
exists an optimal protocol in which all players use monotlumetions. Our anal-
ysis uses methods of discrete symmetrization together thégh-KG correlation
inequality.

In Proposition 6.2 we show that for certain trees it is béfteot all players
use the same function. This might be somewhat surprisingr alfl, if all players
wish to obtain the same result, won't they be better off ushregsame function?
The intuitive reason the answer to this is negative can bé&mqu by Figure 1.
players on the path and players on the star each ‘wish’ to aliffeaent function.
Those on the star wish to use the majority function and thosthe path wish to
use a dictator function. Indeed, we will show that this stggtyields better success
probability than any strategy in which all players use thees#&unction.

Figure 1: The grapfi” with k; = 5 andks = 3

1.3 The reverse Bonami-Beckner inequality

Let us start by describing the original inequality (see Tkev3.1), which con-
siders an operator known as the Bonami-Beckner operater§setion 3). It is
easy to prove that this operator is contractive with respeeny norm. How-
ever, the strength in the Bonami-Beckner inequality is thsthows that this oper-
ator remains contractive froth, to L, for certain values op andq with g > p.
This is the reason it is often referred to as a hypercontraatiequality. The in-
equality was originally proved by Bonami in 1970 [12] andrttiedependently by
Beckner in 1973 [8]. It was first used to analyze discrete lgrobk in a remark-
able paper by Kahn, Kalai and Linial [27] where they consdethe influence of
variables on Boolean functions. The inequality has proeebe of great impor-
tance in the study of combinatorics{f, 1} [15, 16, 22], percolation and random
graphs [38, 23, 10, 14] and many other applications [9, 47385, 18, 19, 28, 33].
Far less well-known is the fact that the Bonami-Beckner iradity admits a
reversed form. This reversed form was first proved by ChrBteell [13] in 1982.
Unlike the original inequality, the reverse inequality sdlgat some low norm of



the Bonami-Beckner operator applied to a non-negativetiomcan be bounded
belowby some higher norm of the original function. Moreover, thems involved

in the reverse inequality are all at mdstvhile the norms in the original inequality
are all at leasi. Technically these should not be called norms since theyado n
satisfy the triangle inequality; nevertheless, we usettriginology.

We are not aware of any previous uses of the reverse BonaakifBe in-
equality for the study of discrete problems. The inequalggms very promising
and we hope it will prove useful in the future. To demonstitdestrength, we
provide two applications:

Isoperimetric inequality on the discrete cube: As a corollary of the reverse
Bonami-Beckner inequality, we obtain in Theorem 3.4 a typsaperimetric in-
equality on the discrete cube. It differs from the usual &opetric inequality
in that the “neighborhood” structure is slightly differerlthough it is a simple
corollary, we believe that the isoperimetric inequalitynteresting. It is also used
later to give a sort of hitting time upper-bound for shortdam walks. In order to
illustrate it, let us consider two subsétsl” C {—1, 1}" each containing a constant
fractiono of the2™ elements of the discrete cube. We now perform the following
experiment: we choose a random element'and flip each of its: coordinates
with probabilitye for some smalk. What is the probability that the resulting ele-
ment is inT"? Our isoperimetric inequality implies that it is at leastr®oconstant
independent of.. For example, given any two sets with fractional siz8, the
probability that flipping each coordinate with probabili/takes a random point
chosen from the first set into the second set is at igast)'4/¢ ~ 7.7%. We also
show that our bound is close to tight. Namely, we analyze lioe@ probability for
diametrically opposed Hamming balls and show that it isetasour lower bound.

Short random walks: Our second application, Proposition 3.6, is to short ran-
dom walks on the discrete cube. We point out however thatdbés not differ
substantially from what was done in the previous paragr&umsider the follow-
ing scenario. We have two seisT" C {—1,1}" of size at least2™ each. We start

a walk from arandom element of the $éand at each time step proceed with prob-
ability 1/2 to one of its neighbors which we pick randomly. et be the length
of the random walk. What is the probability that the randontkwtarminates in
T? If = C'logn for a large enough consta@tthen it is known that the random
walk mixes and therefore we are guaranteed to K€ wmith probability roughly

o. However, what happens if is, say,0.2? Notice thatrn is then less than the
diameter of the cube! For certain sétsthe random walk might have zero prob-



ability to reach certain vertices, butdfis at least, say, a constant then there will
be some nonzero probability of endingiih We bound from below the probability
that the walk ends ifi” by a function ofe andr only. For example, for = 0.2,

we obtain a bound of roughly'?. The proof crucially depends on the reverse
Bonami-Beckner inequality; to the best of our knowledgekn techniques, such
as spectral methods, cannot yield a similar bound.

2 Preliminaries

We now formally define the problem of “non-interactive cdation distillation
(NICD) on trees with the binary symmetric channel (BSC).gkeneral we have
four parameters. The first (&, an undirected tree giving the geometry of the
problem. Later the vertices @ will become labeled by binary strings, and the
edges ofT" will be thought of as independent binary symmetric channdlse
second parameter of the problenbis< p < 1 which gives thecorrelation of bits
on opposite sides of a channel. By this we mean that if a brtgstr € {—1,1}"
passes through the channel producing the bit styigg{ —1, 1}" thenE[z;y;] = p
independently for each We say thay is a p-correlated copy of. We will also
sometimes referte = 3 — 1p € (0, 1), which is the probability with which a bit
gets flipped —i.e., the crossover probability of the chanfike third parameter of
the problem i, the number of bits in the string at every vertexiaf The fourth
parameter of the problem is a subset of the vertex sé&t,afthich we denote by
S. We refer to theS as the set oplayers FrequentlyS is simply all of V(7T'), the
vertices ofT.

To summarize, an instance of the NICD on trees problem isnpetexized

by:
1. T, an undirected tree;
2. p € (0,1), the correlation parameter;
3. n > 1, the string length; and,
4. S C V(T), the set of players.

Given an instance, the following process happens. Somexverof T is
given a uniformly random string(® ¢ {=1,1}". Then this string is passed
through the BSC edges @f so that every vertex df’ becomes labeled by a ran-
dom string in{—1, 1}". It is easy to see that the choicewfoes not matter, in
the sense that the resulting joint probability distribatamn strings for all vertices
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is the same regardlessof Formally speaking, we haveindependent copies of a
“tree-indexed Markov chain;” or a “Markov chain on a tree2]2The index set is
V(T') and the probability measul ona € {—1,1}V() is defined by

Ala B(a
P(a) =3 (3+ 30" (5 - 40",

where A(«) is the number of pairs of neighbors whereagrees and3(«) is the
number of pairs of neighbors whesedisagrees.

Once the strings are distributed on the vertice§ pthe player at the ver-
texv € S looks at the string:(") and applies a (pre-selected) Boolean function
fv: {=1,1}" — {—1,1}. The goal of the players is to maximize the probability
that the bitsf, (z(*)) are identical forall v € S. In order to rule out the trivial
solutions of constant functions and to model the problemippithg a shared ran-
dom coin, we insist that all functiong, be balanced i.e., have equal probability
of being—1 or 1. As noted in [31], this does not necessarily ensure that when
all players agree on a bit it is conditionally equally liketybe —1 or 1; however,
if the functions are in addition antisymmetric, this pragetoes hold. We call a
collection of balanced functions,),cs a protocolfor the playersS, and we call
this protocolsimpleif all of the functions are the same.

To conclude our notation, we wri(7T’, p, n, S, (fv)ves) for the probabil-
ity that the protocol succeeds — i.e., that all players authbe same bit. When
the protocol is simple we write mere®y (7', p,n, S, f). Our goal is to study the
maximum this probability can be over all choices of protgcale denote by

M(Tap7n7s): sSup P(T7p7n757(fv)065)7
(fv)vES

and define
M(T, p, S) = sup M(T, p,n, S).

3 Reverse Bonami-Beckner and applications

In this section we recall the reverse Bonami-Beckner inktyuand obtain as a
corollary an isoperimetric inequality on the discrete culidnese results will be
useful in analyzing the NICD problem on the star graph and aleete they are
of independent interest. We also obtain a new result abeuniRing of relatively
short random walks on the discrete cube.



3.1 The reverse Bonami-Beckner inequality

We begin with a discussion of the Bonami-Beckner inequalRigcall the Bonami-
Beckner operatof,, a linear operator on the space of functignsl, 1}" — R
defined by

(Tpf)(x) = E[f(y)];

wherey is a p-correlated copy of. The usual Bonami-Beckner inequality, first
proved by Bonami [12] and later independently by BecknerigBihe following:

Theorem 3.1 Letf: {—1,1}" — Randg > p > 1. Then
ITpflla < IIfll, — forall o< p<(p—1)"2/(q—1)">
The reverse Bonami-Beckner inequality is the following:

Theorem 3.2 Let f: {—1,1}" — R=" be a nonnegative function and leto <
g<p<1.Then

ITpfllg = Ifll, — forall0<p<(1-p)/2/(1—q)"% (1)

Note that in this theorem we considenorms forr < 1. The case of = (
is a removable singularity: byf||o we mean the geometric mean jf Note also
that sincel), is a convolution operator, it is positivity-improving fonpp < 1;
i.e., whenf is nonnegative so too if, f, and if f is further not identically zero,
thenT), f is everywhere positive.

The reverse Bonami-Beckner theorem is proved in the sameheaysual
Bonami-Beckner theorem is proved; namely, one proves gnguality in the case
of n = 1 by elementary means, and then observes that the inequatispts.
Since Borell’s original proof may be too compact to be readdmye, we provide
an expanded version of it in Appendix A for completeness.

We will actually need the following “two-function” versioaf the reverse
Bonami-Beckner inequality which follows easily from theeese Bonami-Beckner
inequality using the (reverse)ittler inequality (see Appendix A):

Corollary 3.3 Let f,g: {—1,1}" — R=% be nonnegative, let € {—1,1}" be
chosen uniformly at random, and lgtbe a p-correlated copy ofr. Then for
—o0 < p,qg<l,

Elf(@)g)] = [fllals  forall0<p<(1-p)'2(1-q"% (2



3.2 A new isoperimetric inequality on the discrete cube

In this subsection we use the reverse Bonami-Beckner itiggitaprove an isoperi-
metric inequality on the discrete cube. LetandT be two subsets of—1,1}".
Suppose that € {—1,1}" is chosen uniformly at random ands a p-correlated
copy of z. We obtain the following theorem, which gives a lower boumdtioe
probability thatr € S andy € T as a function ofS|/2™ and|T|/2™ only.

Theorem 3.4 LetS, T C {—1,1}"with|S| = exp(—s?/2)2" and|T| = exp(—t2/2)2".
Let = be chosen uniformly at random frofa-1,1}"™ and lety be ap-correlated
copy ofz. Then

152+ 2pst + t2
_+>, 3)

P[a:GS,yET]Zexp(—2 T2

Proof: Takef andg to be thed-1 characteristic functions & andT’, respectively.
Then by Corollary 3.3, for any choice pfq < 1 with (1 —p)(1 —q) = p?, we get

Plz € S,y € T| = E[f(2)9(y)] = [ flpll9llg = exp(—s5*/2p) exp(—1*/29).

(4)
Writep =1— pr,q =1— p/rin (4), withr > 0. Maximizing the right-hand side
as a function of- the best choice ig8 = ((t/s) + p)/(1 + p(t/s)) which yields in
turn

1—p? 1—p?
p=1=pr=rgm, ¢=1-p/r= 5y

(Note that this depends only on the ratiotainds.) Substituting this choice of
(and hence andg) into (4) yieldSeXp(—%%), as claimed. n

We now obtain the following corollary of Theorem 3.4.

Corollary 3.5 Let S C {—1,1}" have fractional sizer € [0, 1], and letT C
{—1,1}" have fractional size®, for & > 0. If z is chosen uniformly at random
from S andy is a p-correlated copy ofr, then the probability thay is in T is at

least
o (Vatp)?/(1=p%)

In particular, if |S| = |T'| then this probability is at leagt(1+7)/(1=r),

Proof: Choosings andt so thate = exp(—s2/2) ando® = exp(—t%/2) we
obtain

1
—5(32+2pst+t2) = logo — py/—2logoy/—2alogo + alogo
= logo(1+2pya+a),
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and therefore

exp 1824 2pst+1#2 — s+2pvata)/(1-p?)
2 1— p?

Theorem 3.4 therefore tells us that conditioned on staitirt§y the probability of
ending inT is at least

o(H2evata)/(1=p*)—=1 _  (Va+p)?/(1-p?)
(]

In Subsection 3.4 below we show that the isoperimetric iaétyuis almost
tight. First, we prove a similar bound for random walks on¢hbe.

3.3 Short random walks on the discrete cube

We can also prove a result of a similar flavor about short remda@lks on the
discrete cube:

Proposition 3.6 Letr > 0 be arbitrary and letS andT be two subsets ¢f-1, 1}".
Leto € [0, 1] be the fractional size of and leta be such that the fractional size
of T is ¢®. Consider a standard random walk on the discrete cube tratsst
from a uniformly random vertex if and walks forrn steps. Here by a standard
random walk we mean that at each time step we do nothing withatnility 1,/2
and we walk along théth edge with probabilityl /2n. Letp(™) (S, T) denote the
probability that the walk ends ifi. Then,

( (Va+exp(—1))> o(~1+a)/2
an)(S7 T) Z o l—exp(—27) — O(_)
™

1+exp(—71)

In particular, when|S| = |T| = 02" thenp(™™) (S, T) > oT-o»7) — O(X).

™

The Laurent series 0f-“— is2/7 + 7/6 — O(3) so for1/logn < 7 < 1 our
bound is roughly2/7.
For the proof we will first need a simple lemma:

Lemma 3.7 Fory > 0 and any0 < x < y,

0<e™—(1-z/y)’<0(1/y).
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Proof: The expression above can be written as

e _ pylog(l—z/y)
We havelog(1 — z/y) < —z/y and hence we obtain the first inequality. For the
second inequality, notice thatif > 0.1y then both expressions are of the form

e~¥W) which is certainlyO(1/y). On the other hand, i < = < 0.1y then there
is a constant such that

log(1 — x/y) > —a/y — ca®/y>.

The Mean Value Theorem implies that for< a < b, e™® —e* < e7%(b — a).
Hence,

—x log(1—x/y) —z cxle ™™
e " — el BT < e (—ylog(l —x/y) —x) <
Yy
The lemma now follows becausée =7 is uniformly bounded for: > 0. |

We now prove Proposition 3.6. The proof uses Fourier anglyfisi the
required definitions see, e.g., [27].

Proof: Letz be a uniformly random point if—1, 1}" andy a point generated by
taking a random walk of lengthn starting fromz. Let f andg be the0-1 indicator
functions ofS andT’, respectively, and sa§[f] = o, E[g] = o“. Then by writing
f andg in their Fourier decomposition we obtain that

o -p™(S,T) =Plz € S,y € T| = E[f(x)g(y)] = Y_ fF(U)§(V)Elzvyy]
uyv

whereU andV range over all subsets ¢f, ... ,n}. Note thatE[zyyy] is zero

11



unlesslU = V. Therefore we may write

™5, T)
S e = Y foao)(1- )
U U

Fa@)[(1 2"~ exp(—ri))

= (T + 2 F0)] (1~ )"~ exp( )]
U

> (f Do)~ maxe| (1= )"~ exp(— )| 3 f 0130
U

U] n

By Corollary 3.5,
-1 (atexp(-1)?
o <f7 Texp(,.,-)g> > g l-exp(=27) |

By Cauchy-Schwarz and Parseval’s identity,

Y F OO < NIfl2llgllz = 1 fll2lgllz = o TH72.
U

In addition, from Lemma 3.7 with = 7|U| andy = 7n we have that

M)m ~ exp(—r|U])| = o(i).

max ‘ (1 —
n ™

U]
Hence,

(Vatexp(-7))? (=1+a)/2
p™M(8,T) > o et _ O(J—)

™

3.4 Tightness of the isoperimetric inequality

We now show that Theorem 3.4 is almost tight. Suppose{—1,1}" is chosen
uniformly at random ang is ap-correlated copy of. Let us begin by understand-
ing more about how: andy are distributed. Define

E(ﬂ)z“ H

12



and recall that the density function of the bivariate normhiatribution ¢y, :
R? — R=0 with mean0 and covariance matriX(p), is given by

_1:1:2 — 2pxy + y?
2 1— p?

= (- D) () (””) .
(1-p?)2

Hereg denotes the standard normal density functioRon(z) = (27)~1/2e~7*/2,

bsn(@.y) = (21— ) Fexp (

Proposition 3.8 Letz € {—1,1}" be chosen uniformly at random, and {ebe a
p-correlated copy of. LetX = n~'/23""  x;andY = n~ /23" 4. Thenas
n — oo, the pair of random variable§X, Y’) approaches the distributiogy, ).
As an error bound, we have that for any convex regiba R2,

P[(X,Y) € R] —//Rcbz(p)(af,y) dydz| < O((1— p?) /2012,

Proof: This follows from the Central Limit Theorem (see, e.g., [R0@loting that
for each coordinate, E[z?] = E[y?] = 1, E[z;y;] = p. The Berry-Esgen-type
error bound is proved in Sazonov [37, p. 10, Item 6]. ]

Using this proposition we can obtain the following result fwo diametri-
cally opposed Hamming balls.

Proposition 3.9 Fix s,t > 0, and letS,T" C {—1,1}" be diametrically opposed
Hamming balls, withs' = {z: >, 2; < —sn'/2} andT = {z: 3, z; > tn'/?}.
Let = be chosen uniformly at random frofn-1,1}"™ and lety be ap-correlated
copy ofx. Then we have

V1= p? 15 + 2pst + 12
lim P[mGS,yGT]g—pexp _Ls st .
n=00 2ms(ps +t) 21— p?

13



Proof:
lim Plz e S,y €T

= /Oo/mgtz y(z,y) dydx ( By Lemma 3.8)

z(pr +y)

< / / o ¢2(_p)(w,y)dydw

<SinceM210nx23,y2t>

s(ps+1t)
z(pz +y) y+px

= o(x | dydzx

\/1— // s(ps +1) ()¢<\/1—p2> Y

Tz z

e G— — " @) | —— | dzda

\/1—/?2/8 /ps+t5(P5+7f) (@) (\/1—P2>

. . xrz
<Usmgz = pr + y and noting——— > 1onx > s,z > ps+t>
s(ps+1t)
! </°O¢><>d> [ o=

= rTO\T)ax z —— z

s(ps +1)\/1—p* \Us ps+t V1=p?
_ Mo (L2ED

sos+0 "\ T2
B 1—p? 1s* 4 2pst +#°
T oms(pst+t) P\ T2 1- '

The result follows. [ |

By the Central Limit Theorem, the sétin the above statement satisfies (see [1,
26.2.12)),

1 o
Jim |S|27" = \/—27/ ™72 dz ~ exp(—s?/2)/(V2rs).

For larges (i.e., small|S|) this is dominated byxp(—s%/2). A similar statement
holds forT'. This shows that Theorem 3.4 is nearly tight.

4 The best asymptotic success rate in the-star

In this section we consider the NICD problem on the star. 3tet;, denote the
star graph ot + 1 vertices and lef;, denote its: leaf vertices. We shall study the
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same problem considered in [31]; i.e., determinint{ Stary, p, Sx). Note that it
was shown in that paper that the best protocol in this cadevég/a simple (i.e., all
players should use the same function).

The following theorem determines rather accurately theqmgtics of M (Stary, p, Sk):

Theorem 4.1 Fix p € (0,1] and lety = v(p) = p% — 1. Then fork — oo,
M (Stary, p, Sk) = O (k)

where©(-) denotes asymptotics to within a subpolynomial ) factor. The lower
bound is achieved asymptotically by the majority functbhl,, with n sufficiently
large.

Note that if the corruption probability is very small (i.e.is close to 1), we
obtain that the success rate only drops off as a very mildtiomof k. We first
prove the upper bound.

Proof of upper bound: We know that all optimal protocols are simple, so as-
sume all players use the same balanced funcfion{—1,1}" — {—1,1}. Let
F_ 1= f1(-1)andF; = f~!(1) be the sets wherg obtains the values 1 and
1 respectively. The center of the star gets a uniformly randtsimgx, and then in-
dependenp-correlated copies are given to théeaf players. Ley denote a typical
such copy. The probability that all players outpdtis thusE, [P[f(y) = —1|z]"].
We will show that this probability i) (k). This complete the proof since we
can replacef by —f and get the same bound for the probability that all players
outputl.

SupposeE, [P[f(y) = —1|z]*] > 20 for somed; we will show s must be
small. Define

S ={z:P[f(y) = —1]a]" > 4}.

By Markov's inequality we must hav&| > §2™. Now on one hand, by the defini-
tion of S,
Plye Fi|ze S <1—6YF (5)

On the other hand, applying Corollary 3.5 with= F; anda < 1/logy(1/0) <
1/log(1/6) (since|Fy| = 32"), we get

Plyc Fy |z € §] > 600 /2(1/0)+p)/(1=p%) (6)
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Combining (5) and (6) yields the desired upper boundian terms ofk, § <
k—v*o(1) py the following calculations. We have

| gtk > gog 2 (/8)+)2/(1=p?).

We want to show that the above inequality cannot hold if

VAN
iz (——) ™

wherec = ¢(p) is some constant. We will show that dfsatisfies (7) ana is
sufficiently large then for all large

Uk o og™/2(1/6)+0)2/(1=0%) o 1.

Note first that

1\ 1 1
Sk > <E> = exp <—U ng) >1-Y (]){:gk' (8)

On the other hand,

sUog™/2(1/8)+p)?/(1-p%) _ 5—log™"6/(1—p%) . s2plog™'/2(1/8)/(1=p*) . 5p*/(1-p%)

9)
Note that R
/0= — gifv > €
and
2plog=1/2(1/8)/(1—p? 2p
s20los” 2D/ _ o0 <_1_p2 10g(1/5)>
> exp <— P 2\/V10gk> .
p
Finally,
—log=16/(1-p?) _ 1
5-log ™15/ p)_eXp(_l——p?>'
Thus ifc = c(p) is sufficiently large then the left hand side of (9) is at |€488*.
This implies the desired contradiction by (7) and (8). [ ]
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Proof of lower bound: We will analyze the protocol where all players idéJ,,,
similarly to the analysis of [31]. Our analysis here is moaeeful resulting in a
tighter bound.

We begin by showing that the probability with which all playagree if they
useMAJ,,, in the case of fixe& andn — oo, is:

1
lim P(Starg, p,n, S, MAJ,) = 21/1/2(27r)(”_1)/2/ tr@)r—tdat, (10)
" odd 0

wherel = ¢ o ®~! is the so-called Gaussian isoperimetric function, with) =
(2m) Y2 exp(—2?/2) and®(z) = [ ¢(t)dt the density and distribution func-
tions of a standard normal random variable respectively.

Apply Proposition 3.8, withX ~ N (0, 1) representing.~'/2 times the sum
of the bits in the string at the star’s center, and ~ N (pX, 1 — p?) representing
n~1/2 times the sum of the bits in a typical leaf player’s stringutasn — oo,
the probability that all players outpytl when usingViAJ,, is precisely

k
[e’e] px - [e’e] _1/2 k
/—m(b(il—pQ) ¢(w)dw-/_oo¢)<u x) o(x) dx.
SinceMAJ,, is antisymmetric, the probability that all players agreedenis the

same as the probability they all agree en. Making the change of variables
t = o1 2x), x = /20 1(t), de = vV/2I(t)~ ! dt, we get

1 4k 1/25—1
lim P(Starg, p,n, S, MAJ,) = 21/1/2/ tp(v /2R () dt
"o N 0

1
= w!/2(2r)v-1/2 / R 1(t) L at,
0

as claimed.

We now estimate the integral in (10). It is known (see, eld])[that/(s) >
J(s(1—s)), whereJ(s) = sy/In(1/s). We will forego the marginal improvements
given by taking the logarithmic term and simply use the eatev(t) > t(1 — ¢).
We then get

1 1
/tkI(t)”_ldt > /tk(t(l—t))”_ldt
0 0

F(w)I'k +v)
I'(k+ 2v)
F(w)(k+2v)™" (Stirling approximation).

(1, 6.2.1, 6.2.2])

v
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Substituting this estimate into (10) we get
lim P(Starg, p,n, Sk, MAJ,) > c(v)k™",
wherec(v) > 0 depends only op, as desired. ]

We remark that in the upper bound above we have in effect prtve fol-
lowing theorem regarding high norms of the Bonami-Beckregrator applied to
Boolean functions:

Theorem4.2 Let f: {—1,1}" — {0,1} and suppos&[f] < 1/2. Then for any
fixedp € (0,1], ask — oo, || T, f[|f < k~*°1), wherev = J, — 1.

Since we are trying to bound a high normioff knowing the norms of, it would
seem as though the usual Bonami-Beckner inequality wouffbetive. However
this seems not to be the case: a straightforward applicgi#bts

2(f—
ITpfle < Fll,2(h-1)41 = E[f]Y/ @ E=DFD
= IT,flE < (1/2)M/ (P (k=141  (1/2)1/7°

only a constant upper bound.

5 The optimal protocol on the path

In this section we prove the following theorem which givesoanplete solution
to the NICD problem on a path. In this case, simple dictatotqmols are the
unique optimal protocols, and any other simple protocok@oaentially worse as
a function of the number of players.

Theorem 5.1 e LetPathy = {vg,v1,...,v;} be the path graph of length,
and letS be any subset dPath;, of size at least two. Then simple dictator
protocols are the unique optimal protocols f&(Pathg, p,n, S, (fy)). In

particular, if S = {vj,, ..., v;, } whereig < iy < --- < iy, then we have
S/
M (Pathg, p, S) = S ophiTh ).
(Pathy, p, S) ]Hl<2 + 50 >

e Moreover, for every andn there exists: = ¢(p,n) < 1 such that ifS =
Path;, then for any simple protocgl which is not a dictator,

P(Pathy, p,n, S, f) < P(Pathy, p,n, S, D)c!*I™!

whereD denotes the dictator function.
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5.1 A bound on inhomogeneous Markov chains

A crucial component of the proof of Theorem 5.1 is a bound erpttobability that
a reversible Markov chain stays inside certain sets. Inghissection, we derive
such a bound in a fairly general setting. Moreover, we eyatlracterize the
cases in which the bound is tight. This is a generalizatiohhaforem 9.2.7 in [6]
and of results in [2, 3].

Let us first recall some basic facts concerning reversiblekMachains.
Consider an irreducible Markov chain on a finite $&t We denote byM =
(m(, y))wes the matrix of transition probabilities of this chain, wheréz, y)
is the probability to move in one step framto y. We will always assume that/
is ergodic (i.e., irreducible and aperiodic).

The rule of the chain can be expressed by the simple equatiea uoM,
where i is a starting distribution o’ and ., is the distribution obtained after
one step of the Markov chain (we think of both as row vectoRy. definition,
Zy m(x,y) = 1. Therefore, the largest eigenvalueMdfis 1 and a corresponding
right eigenvector has all its coordinates equal toSince M is ergodic, it has a
unique (left and right) eigenvector corresponding to aremvglue with absolute
valuel. We denote the unique right eigenvector. .., 1)" by 1. We denote by
7 the unique left eigenvector corresponding to the eigemvalrhose coordinate
sum isl. 7 is the stationary distribution of the Markov chain. Sinceawe dealing
with a Markov chain whose distribution is not necessarily uniform it will be
convenient to work inZ.?(S, 7). In other words, for any two functiong and g
on S we define the inner productf,g) = > g7 (z)f(z)g(z). The norm off

equals|fllz = \/{f. f) = V/2ses (@) f2(2).

Definition 5.2 A transition matrixM = (m(z,y)), g for a Markov chain is

reversible with respect to a probability distribution on S if w(x)m(x,y) =
7(y)m(y,x) holds for allz, y in S.

It is known that if M is reversible with respect to, thenr is the stationary
distribution of M. Moreover, the corresponding operator takiixy S, ) to itself
defined byM f(z) = >_, m(z,y) f(y) is self-adjoint, i.e.{M f, g) = (f, M g) for
all f,g. Thus, it follows thatM has a complete set of orthonormal (with respect to
the inner product defined above) eigenvectors with reahegjaes.

Definition 5.3 If M isreversible with respecttoand); < ... < A1 <\ =1
are the eigenvalues @i/, then thespectral gapf M is defined to bé = min {y —
IV NI S
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For transition matrices/;, Mo, . .. on the same spacg we can consider the
time-inhomogeneous Markov chain which at tifetarts in some state (perhaps
randomly) and then jumps using the matridés, M, . . . in this order. In this way,
M; will govern the jump from time — 1 to time:. We write I4 for the indicator
function of the setd andr 4 for the function defined byt4(z) = I4(x)n(x) for
all z. Similarly, we definer(A) = > ., 7(). The following theorem provides a
tight estimate on the probability that the inhomogeneousdlachain stays inside
certain specified sets.

Theorem 5.4 Let My, Mo, ..., M, be ergodic transition matrices on the state
spaces, all of which are reversible with respect to the same proligbimea-
sure 7 with full support. Let§; > 0 be the spectral gap of matri#/; and let
Ag, A1, ..., A be nonempty subsets 8f

e If {X;}¥_, denotes the time-inhomogeneous Markov chain using thé-matr
cesMy, Mo, ..., My and starting according to distribution, thenP[X; €
A; Yi=0...k]is at most

VATV [1 -4 (1 - VA DVAe) | an

e Suppose we further assume that foralb; < 1 and that\} > —1 + §;
(\¢ here is the smallest eigenvalue for thie chain). Then equality in (11)
holds if and only if all the setd; are the same set and for alli the function
I4—m(A)1isan eigenfunction af/; corresponding to the eigenvalue- ;.

¢ Finally, suppose even further that all the chaihg are the same chaiM/.
Then there exists a constant= ¢(M) < 1 such that for all sets! for which
strict inequality holds in (11) when each; is taken to beA, we have the
stronger inequality

k
PX;eAVi=0.. .k <Fr(A)J]1-0601-n(4)]
=1
for everyk.

Remark: Notice that if all the setsl; haver-measure at most < 1 and all the
M;’s have spectral gap at leastthen the upper bound in (11) is bounded above by

olo+(1-0)(1-a)"

Hence, the above theorem generalizes Theorem 9.2.7 in fbktangthens the
estimate from [3].
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5.2 Proof of Theorem 5.1

If we look at the NICD process restricted to positiangs, ;,, . . . , x;,, we obtain
a time-inhomogeneous Markov chaﬁﬁ(j}gzo where X is uniform on{—1, 1}"
and the/ transition operators are powers of the Bonami-Beckneraiper

i1 —10 12 —11 te—ig—1
T Ti=h L T .

Equivalently, these operators &fg, —io, Tz i1, ...,Tpiﬂe_l. It is easy to see
that the eigenvalues df, arel > p > p? > --- > p" and therefore its spectral
gap isl — p. Now a protocol for the + 1 players consists simply df+ 1 subsets
Ay, ..., Agof {—1,1}", whereA; is a set of strings if—1, 1}" on which thejth
player outputs the bit. Thus, each4; has size2"~!, and the success probability
of this protocol is simply

P[X;€A; Vi=0.. (] +P[X;€A4; Vi=0...4.

But by Theorem 5.4 each summand is bounded by

l P
1 1 phiTh-t
211 (5+55)

yielding our desired upper bound. It is easy to check tha itiprecisely the
success probability of a simple dictator protocol.

To complete the proof of the first part it remains to show thatrg other
protocol does strictly worse. By the second statement obiidra 5.4 (and the
fact that the simple dictator protocol achieves the uppemddn Theorem 5.4),
we can first conclude that any optimal protocol is a simpleqaral, i.e., all the
setsA; are identical. Letd be the set corresponding to any potentially optimal
simple protocol. By Theorem 5.4 again the function— (JA[27")1 = I4 — 11
must be an eigenfunction af,- for somer corresponding to its second largest
eigenvaluep”. This implies thatf = 274 — 1 must be a balancelihear func-
tion, f(x) = Z|S|:1 f(S)xS. It is well known (see, e.g., [32]) that the only such
Boolean functions are dictators. This completes the préahe first part. The
second part of the theorem follows immediately from thedtpiart of Theorem 5.4
[ ]

5.3 Inhomogeneous Markov chains

In order to prove Theorem 5.4 we need a lemma that providesiaddior one step
of the Markov chain.
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Lemma 5.5 Let M be an ergodic transition matrix for a Markov chain on the set
S that is reversible with respect to the probability measu@nd has spectral gap

0 > 0. Let A; and A, be two subsets &f and let P, and P, be the corresponding
projection operators oi.%(S, «) (i.e., P f(x) = f(x)I4,(x) for every functionf

onS). Then
IPLMPy|| <16 (1 _ \/W(Al)\/w(AQ)) ,

where the norm on the left is the operator norm for operatassnfZ?(S, ) into
itself.

Further, suppose we assume that< 1 and thatA\; > —1 + §. Then
equality holds above if and only #; = A5 and the function/4, — m(A4;)1 is an
eigenfunction of\f corresponding td — o.

Proof: Letes,...,e._1,e. = 1 be an orthonormal basis of right eigenvectors of
M with corresponding eigenvalues < ... < A\._1 < A, = 1. For a functionf

on S, denote byupp(f) = {z € S| f(z) # 0}. Itis easy to see thitP, M P|| is
given by

sup {|(f1, M f2)| : | fillz = 1, || f2ll2 = 1,supp(f1) € A1, supp(fz) C As}.

Given suchf and fo, expand them as

T T
fr =Y wei, fa=) vie
i=1 i=1

and observe that for = 1, 2,

[(F3 D1 = [{F5, Lap) | < W fillallLagll2 = /7 (Aj)- (12)

But now by the orthonormality of the;’'s we have

[ Mf2) = D Nwivi| Y [Aaugui| (13)
=1 =1
< [ (fa )+ (1=06) D Juui| (14)
i<r—1
< (D D]+ (1= 0)(1 = [(f1,1){f2, 1)) (15)
< VA(A)Va(Az) + (1= 0) (1- V(A Vr(47)) (26)

15 (1= VR VACA)
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For the third inequality, we used that, |u;v;| < 1 which follows from f; and f>
having norm 1.

As for the second part of the lemma, if equality holds therttadl derived
inequalities must be equalities. In particular, if (12)dséas an equality, it follows
that forj = 1,2, f; = £(1/\/7(A4;))14,. Sinced < 1 is assumed, it follows
from the third inequality in (13) that we must also have that|uv;| = 1 from
which we can conclude thai;| = |v;| for all i. Since—1 + ¢ is not an eigenvalue,
for the second inequality in (13) to hold we must have thatdily nonzerou;'s
(or v;'s) correspond to the eigenvalugsand1 — §. Next, for the first inequality
in (13) to hold, we must have that= (u,...,u,) = £v = (v1,...,v,) SiINCE\;
can only bel or1 — § and|u;| = |v;| for eachi. This gives us thaf; = +f, and
therefored; = A,.

Finally, we also get thaf; — (f1, 1)1 is an eigenfunction ol correspond-
ing to the eigenvalué — §. To conclude the proof, note that f; = A, and
I4, — (A1)l is an eigenfunction of\/ corresponding td — §, then it is easy
to see that when we takg = fo = I4, — 7(A4;1)1, all inequalities in our proof
become equalities. ]

Proof of Theorem 5.4: Let P, denote the projection ontd;, as in Lemma 5.5. It
is easy to see that

PX;e A Yi=0...k| =ma,PoMi P My - P._1MPy14,.
Rewriting in terms of the inner product, this is equal to
({ag, (PoMiPi My - -- Py MpPy)Ia,).
By Cauchy-Schwarz it is at most
[ L4 |21 L (12l PoMy Py Ma - - - Py My Py,

where the third factor is the norm d® M, Py Ms - - - P,_1 My P, as an operator
from L?(S, 7) to itself. SinceP? = P; (being a projection), this in turn is equal to

vV (Ao) vV (Ap) | (PoM1PL) (PLM2 Py) - - - (Po—y My Py ) |-

By Lemma 5.5 we have thatforal=1,....k

P MyPyl| <1 — 51-(1 _ wT(Ai,l)wr(Ai)).
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Hence

nes

and the first part of the theorem is complete.

For the second statement note that if we have equality, tremust also
have equality for each of the nori®;_, M; F;||. This implies by Lemma 5.5 that
all the sets4; are the same and that, — 7(A;)1 is in thel — §; eigenspace of
M; for all <. For the converse, suppose on the other hand4hat A for all i and
I, —7m(A)lisinthel — §; eigenspace al/;. Note that

< : [1 — 6 (1 _ w(Ai_l)wr(Ai))} .oan
=1

PiiM;PIy = Pi_iMIs=Pi_1M;(n(A)1+ (In — m(A)1))
= Pq(m(A)1+(1—68)Ia—m(A)1))
= (A A+ (1—6)a—(1—-8)m(A)ls
= (1-6(1—m(A))la.

SincePf = P;, we can use induction to show that

k
TagPoMiPAM - Py M Pl = mal [ J (P MiP)]

completing the proof of the second statement.

In order to prove the third statement, first note that if $inequality holds
in (11) when eachi; is taken to bed, then, by the second part of this result, the
functionl4 — w(A)1 is not an eigenfunction aff corresponding to the eigenvalue
1 — 4. Itthen follows from Lemma 5.5 th&tPM P|| < 1 — (1 — 7(A)) whereP
is the corresponding projection onth The result now immediately follows from
7). ]

6 NICD on general trees

In this section we give some results for the NICD problem amegal trees. Theo-
rem 1.3 in [31] stated that for the star graph whgris the set of leaves, the simple
dictator protocols constitute all optimal protocols whéh = 2 or [S| = 3. The
proof of that result immediately leads to the following.
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Theorem 6.1 For any NICD instancéT’, p, n, S) in which|S| = 2 or | S| = 3 the
simple dictator protocols constitute all optimal protosol

6.1 Example with no simple optimal protocols

It appears that the problem of NICD in general is quite diffickn particular, using
Theorem 5.1 we show that there are instances for which teere $imple optimal
protocol. Note the contrast with the case of stars, wherg proven in [31] that
there is always a simple optimal protocol.

Proposition 6.2 There exists an instanc&’, p, n, S) for which there is no simple
optimal protocol. In fact, given anyand anyn > 4, there are integerg; and k.,
such that ifT" is a k1 -leaf star together with a path of leng#fs coming out of the
center of the star (see Figure 1) adis the full vertex set df’, then this instance
has no simple optimal protocol.

Proof: Fix p andn > 4. Recall that we write = £ — p and letBin(3,¢) be a

binomially distributed random variable with parametgi@ndes. As was observed
in [31],

1
P(Starg, p, n, S, MAJ3) > gP[Bin(g,e) <1k

To see this, note that with probability/8 the center of the star gets the string
(1,1,1). Since

PBin(3,e) <1]=(1—¢)?(1+2) >1—¢
for all e < 1/2, we can pickk; large enough so that
P(Starg,, p,n, Sk, , MAJ3) > 8(1 — )kt

Next, by the last statement in Theorem 5.4, there exists ca(p,n) > 1
such that for all balanced non-dictator functighen n bits

P(Pathy, p, n, Pathy, D) > P(Pathy, p, n, Pathy, f)c5.
Choosek;, large enough so that
(1- 5)1“0152 > 1.

Now letT" be the graph consisting of a star with leaves and a path of
length k5 coming out of its center (see Figure 1), and$et= V(7'). We claim
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that the NICD instancéT’, p, n,.S) has no simple optimal protocol. We first ob-
serve that if it did, this protocol would have to 18 i.e., P(T,p,n,S, ) <
P(T, p,n,S,D) for all simple protocolsf which are not equivalent to dictator.
This is because the quantity on the rightis- £)*17*2 and the quantity on the left
is at mostP (Pathy,, p, n, Pathy,, f) which in turn by definition of, is at most
(1 —e)k2/ck2. This is strictly less thafil — €)*1%2 by the choice of:s.

To complete the proof it remains to show tiais not an optimal protocol.
Consider the protocol whefe vertices on the path (including the star’s center) use
the dictatorD on the first bit and thé&; leaves of the star use the prototdhJ3 on
the last three out af bits. Sincen > 4, these vertices use completely independent
bits from those that vertices on the path are using. We will\sthat this protocol,
which we callf, does better thap.

Let A be the event that all vertices on the path have their firstdiitdp 1.

Let B be the event that each of the leaf vertices of the star have 1 as the majority
of their last 3 bits. Note thaP(A) = 3(1 — )" and that, by definition of,
P(B) > 4(1 — )*1. Now the protocolf succeeds if bottd and B occur. Since

A andB are independent (as distinct bits are usgdjucceeds with probability at
least2(1 — £)*2(1 — )1 which is twice the probability that the dictator protocol
succeeds. ]

Remark: It was not necessary to use the last 3 bits forkheertices; we could
have used the first 3 (and had= 3). ThenA and B would not be independent but
itis easy to show (using the FKG inequality) tbhind B would then be positively
correlated which is all that is needed.

6.2 Optimal monotone protocols always exist

Next, we present some general statements about what ogtintacols must look
like. Using discrete symmetrization together with the FK@&duality we prove the
following theorem, which extends one of the results in [3bpf the case of the
star to the case of general trees.

Theorem 6.3 For all NICD instances on trees, there is an optimal protogol
which all players use a monotone function.

One of the tools that we need to prove Theorem 6.3 is the etioalin-
equality obtained by Fortuin et al. [21] which is usuallyledithe FKG inequality.
We first recall some basic definitions.
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Let D be afinite linearly ordered set. Given two stringg in D™ we write
x < yiff x; < y; for all indices1 < ¢ < m. We denote byr vV y andz A y
two strings whoséth coordinates aremax(z;, y;) andmin(z;, y;) respectively. A
probability measurg : D™ — R2? is calledlog-supermodulaif

p(mu(8) < p(n VvV o)u(n Ad) (18)

for all n,d € D™. If u satisfies (18) we will also say that satisfies the FKG
lattice condition. A subseft C D™ is increasingif wheneverx € A andz < y
then alsay € A. Similarly, A is decreasingdf z € A andy < = imply thaty € A.
Finally, the measure ofl is 1(A) = > 4 u(z). The following well known fact
is a special case of the FKG inequality.

Proposition 6.4 Let u : {—1,1}™ — R0 be a log-supermodular probability
measure on the discrete cube Afand B are two increasing subsets ¢f1, 1}™
andC is a decreasing subset then

w(ANB) = p(A) - w(B) and p(ANC) < p(A) - p(C).

Itis known that in order to prove thatsatisfies the FKG lattice condition, it
suffices to check this for “smallest boxes” in the lattice,,iforn andd that agree
at all but two locations. Since we don’'t know a reference,dompleteness we
prove this here.

Lemma 6.5 Lety, be a measure with full support. Tharsatisfies the FKG lattice
condition (18) if and only if it satisfies (18) for ajland that agree at all but two
locations.

Proof: We will prove the non-trivial direction by induction ah = d(n,d), the
Hamming distance betweenandé. The cases wheré(n, §) < 2 follow from the
assumption. The proof will proceed by induction @énLetd = d(n,) > 3 and
assume the claim holds for all smallér We can patrtition the set of coordinates
into 3 subsetd—, Iy, 5y and/ly, .5, wheren andé agree, wherg > 4 and where

n < ¢ respectively. Without loss of generality,~.5;| > 2. Leti € Iy, -5 and let

n' be obtained from by settingn, = ¢; and Iettingr;} = n; otherwise. Then since
n"AS=nAJ,

pn A d)pn Vo) (u(n’ A0)u(n' v 5)) " (u(n’)u(n v 5)>
() p(6) () p(9) p(mpn’ Vo))

The first factor is> 1 by the induction hypothesis sindéj, ") = d(6,n)—1. Note
thatn’ =n A (n'Vo),nVd=nV(y Vo), andd(n',nVd) =1+ |Is5l <d
Therefore by induction, the second term is alsa. [ ]
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The above tools together with symmetrization now allow ugrtave Theo-
rem 6.3.

Proof of Theorem 6.3: The general strategy of the proof is a shifting technique
together with using FKG to prove that this shifting improteisgs.

Recall that we have a trék with m vertices,0 < p < 1, and a probability
measuré? ona € {—1,1}V() which is defined by

P(a) = 3} + 104 - 107,

where A(«) is the number of pairs of neighbors whereagrees and3(«) is the
number of pairs of neighbors whesedisagrees. To use Proposition 6.4 we need
to show thafP is a log-supermodular probability measure.

Lemma 6.5 tells us that we need only check the FKG lattice itiomdfor
configurations that differ in only two sites. Note that (18)ds trivially if « <
or 3 < «. Thus it suffices to consider the case where there are twestt, v
of T on whicha and 3 disagree and that, = 5, = 1 anda, = 8, = —1. If
these vertices are not neighbors then by definitioR efe have thaP (a)P(5) =
P(aV B)P(a A B). Similarly, if u is a neighbor ofv in T', then one can easily

check that )
P()P(3) <1 - p) -
Pla Vv p)P(aApB) 1+p) =
Hence we conclude that measwés log-supermodular.
Let f1,..., fi be the functions used by the parties at nasles {vy, ..., vy }.
We will shift the functions in the sense of Kleitman’s monmd'down-shifting” [29].
Namely, define functiong, ..., g; as follows: If
fi(—17x27 cee 73377,) = fl(]-a T2y ... ,CCn)
then we set
gi(—1,22,...,2n) = ¢i(1,2,...,2p) = fi(=1,22,...,2p)
= fi(l,lL'Q, N ,ﬂj‘n).
Otherwise, we sej;(—1, z2,...,z,) = —1 andg;(1, zo, ..., x,) = 1. We claim

that the agreement probability for tlygs is at least the agreement probability for
the f;'s. Repeating this argument for all bit locations will prabat there exists an
optimal protocol for which all functions are monotone.

To prove the claim we condition on the valuexf, .. ., z,, at all the nodes
v; and letw; be the remaining bit at;. For simplicity we will denote the functions
of this bit by f; andg;.
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Let
S1= {7’ : fl(_l) = fl(l) = 1}, Sy = {Z : fz(_l) = fz(l) = —1}7

Sy={i: fi(-1)=—1 fi(1) =1}, Si={i: fi(-1) =1, fi(1) = -1}

If S and.S; are both nonempty, then the agreement probability for foth
andg is 0. Now without loss of generality, assume ttfatis empty. Assume first
that .S; is nonempty. Then the agreement probability jois P[o; = 1 Vi €
S3 U Sy) while the agreement probability fof is Plo, = 1 Vi € S3,c =
—1 Vi € S4]. By FKG, the first probability is at lea®[o; = 1 Vi € S3]P[a; =
1 Vi € Sy while the second probability is at moBa; = 1 Vi € S3]Poy; =
—1 Vi € S4]. By symmetry, the two second factors are the same, comgléim
proof whenS; is nonempty. An easy modification, left to the reader, talkeae of
the case whef; is also empty. ]

Remark: The last step in the proof above may be replaced by a moret diatc
culation showing that in fact we have strict inequality wsléhe seté/’, U” are

empty. This is similar to the monotonicity proof in [31]. Bhimplies that ev-
ery optimal protocol must consist of monotone functionsgémeral, it may be
monotone increasing in some coordinates and monotoneafdogein the other
coordinates).

Remark: The above proof works in a much more general setup than judtees:

indexed Markov chain case. One can take any measure-anl}" satisfying

the FKG lattice condition with all marginals having me@ntaken independent
copies of this and define everything analogously in this ngemneeral framework.
The proof of Theorem 6.3 extends to this context.

6.3 Monotonicity in the number of parties

Our last theorem yields a certain monotonicity when conmugttie simple dictator
protocolD and the simple protoc®llAJ,., which is majority on the first bits. The
result is not very strong — it is interesting mainly becausallows to compare
protocols behavior for different number of parties. It skoiwat if MAJ, is a
better protocol than dictatorship fég parties on the star, then it is also better than
dictatorship forksy parties ifky > k1.

Theorem 6.6 Fix p andn and supposé; andr are such that

P(Starg, , p, n, Starg, , MAJ,) > (>) P(Stary,, p, n, Starg,, D).
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Then for allky > k1,
P(Star,, p, n, Starg,, MAJ,) > (>) P(Stary,, p, n, Starg,, D).

Note that it suffices to prove the theorem assumirgn. In order to prove
the theorem, we first introduce or recall some necessaryiti@fis including the
notion of stochastic domination.

Definitions and set-up: We define an ordering of0, 1,...,n}!, writingn < §
if n; < 6; foralli € I. If v andy are two probability measures g0, 1,...,n},
we sayy stochastically dominates, writtenv < p, if there exists a probability
measuren on {0,1,...,n} x {0,1,...,n}! whose first and second marginals
are respectively andu and such thatn is supported o (n,0) : n < d}. Fix
p, n > 3, and any tred’. Let our tree-indexed Markov chain Be, },c7, where
z, € {—1,1}" for eachv € T. Let A C {—1,1}" be the strings which have a
majority of 1's. LetX, denote the number of 1's in,. GivenS C T, let ug be the
conditional distribution of X, },er givenNyes{z, € A} (= Nyes{ Xy > n/2}).
The following lemma is key and might be of interest in itsélican be used
to prove (perhaps less natural) results analogous to The6r& for general trees.
Its proof will be given later.

Lemma 6.7 In the above setup, 8; C S, C T, we have

HS; = fSy-

Before proving the lemma or showing how it implies Theore®, & few
remarks are in order.

e Note that if{x;} is a Markov chain o{ —1, 1}" with transition matrixl,,
then if we letX;, be the number of 1's in;, then{X}} is also a Markov
chain on the state spad®, 1,...,n} (although it is certainly not true in
general that a function of a Markov chain is a Markov chaimhis way,
with a slight abuse of notation, we can think@f as a transition matrix for
{X} as well as fo{z; }. In particular, given a probability distributignon
{0,1,...,n} we will write 1T, for the probability measure of0, 1, ...,n}
given by one step of the Markov chain.

e We next recall the easy fact that the Markov ch@jnon {—1,1}" is at-
tractive meaning that if- and . are probability measures dn-1, 1}™ with
v =< pu, then it follows that/7), < nT),. (This is easily verified for one co-
ordinate and the one coordinate case easily impliesttlienensional case.)
The same is true for the Markov ch&ajX; } on{0,1,...,n}.
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Along with these observations, Lemma 6.7 is enough to priveoiiem 6.6:
Proof: Letwg,vq,...,v; be the vertices oftar, wherev is the center. Clearly,

P(Stary, p, Starg, D) = (1 + 2p)*. On the other hand, a little thought reveals that

P(Stark,p,n, Stary, MAJn) = H(,u{vo ..... ve} |vo Tp)(A)a

where byu |, we mean ther, marginal of a distributiorn (recall thatA C
{-=1,1}" is the strings which have a majority of 1's). By Lemma 6.7 ahd t
attractivity of the process, the term@y,, .., v 7p)(A4) (which do not depend
onk as long ag < k) are nondecreasing i Therefore if

P(Stary, p, n, Starg, MAL,) > (>)(3 + 30",

then (v, vp 13 lvo Tp)(A) = (>)3 2p which implies in turn that for every
K>k, (gvo, gy} loo Tp)(A) > (> )3 + +p and thus for alk’ > &

P(Stary, p, n, Starg, MAJ,) > (>)(% + %p)k/.

Before proving Lemma 6.7, we recall the definitiorpaisitive associativity

If 1 is a probability measure of0), 1, ...,n}!, u is said to bepositively associated
if any two monotone functions of0, 1, ...,n}! are positively correlated. This is
equivalent to the fact that i8 C {0,1,...,n}! is an upset, thep conditioned on

B is stochastically larger thagm. (It is immediate to check that this last condition
is equivalent to monotoneventsbeing positively correlated. However, it is well
known that monotone events being positively correlatedlisapthat monotone
functions are positively correlated; this is done by wgtout a monotone function
as a positive linear combination of indicator functions.)

Proof of Lemma 6.7: It suffices to prove this whef, is S plus an extra vertex
z. We claim that for any se$, 1.5 is positively associated. Given this claim, we
form ug, by first conditioning omyegs, {z, € A}, giving us the measures, , and
then further conditioning or, € A. By the claim,ug, is positively associated
and hence the last further conditioning &h € A stochastically increases the
measure, givinges, = (s,.
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To prove the claim thatg is positively associated, we first claim that the
distribution of { X, },e7, Which is just a probability measure d,1,...,n}7,
satisfies the FKG lattice condition (18).

Assuming the FKG lattice condition holds f0X, } <7, itis easy to see that
the same inequality holds when we condition on the subéattic s{ X, > n/2}

(it is crucial here that the set,cs{X, > n/2} is a sublattice meaning that ¢
being in this set implies that v § andn A ¢ are also in this set).

The FKG theorem, which says that the FKG lattice conditiam ény dis-
tributive lattice) implies positive association, can now dpplied to this condi-
tioned measure to conclude that the conditioned measurnedsis/e association,
as desired.

Finally, by Lemma 6.5, in order to prove that the distribatiaf { X, },cr
satisfies the FKG lattice condition, it is enough to check tbr “smallest boxes” in
the lattice, i.e., for) andé that agree at all but two locations. If these two locations
are not neighbors, it is easy to check that we have equalitiiey are neighbors,
it easily comes down to checking thakif> b andc > d, then

P[Xl = C’X(] = a]P[X1 = d|X0 = b]
is greater or equal to
P[Xl = d’X() = CL]P[Xl = C|X0 = b]

where{ Xy, X } is the distribution of our Markov chain of0, 1, ..., n} restricted
to two consecutive times. It is straightforward to checkt tioa p € (0, 1), the
above Markov chain can be embedded into a continuous timé&dvarhain on

{0,1,...,n} which only takes steps of size The last claim now follows from
Lemma 6.8 stated and proved below. ]
Lemma 6.8 If {X;} is a continuous time Markov chain df®,1,...,n} which

only takes steps of size 1, them if> b andc > d, it follows that
P[X| = | Xy = a]P[X| = d| X, = V]

is greater or equal to
P[X, = d|Xo = a]P[X| = ¢| X = ]

(Of course, by time scalindy; can be replaced by any timkg;.)
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Proof: Let R, . be the set of all possible realizations of our Markov chainray
0,1] starting froma and ending inc. Define R, 4, Ry . and Ry, 4 analogously.
Letting P, denote the measure on paths starting frarwe need to show that

Pa(Ra,c)Pb(Rb,d) 2 Pa(Ra,d)Pb(Rb,c)
or equivalently that
Pa X Pb[Ra,c X Rb,d] > Pa X Pb[Ra,d X Rb,c]

We do this by giving a measure preserving injection flBpy; x Ry, . 10 Ry o X Rp 4.

We can ignore pairs of paths where there is a jump in both ttiee same time
since these havP, x P, measure 0. Given a pair of paths &, ; x Ry ., we
can switch the paths after their first meeting time. It is clémat this gives an
injection fromR, 4 x Ry . t0 R, . X Ry, 4 and the Markov property guarantees that
this injection is measure preserving, completing the proof [ ]

7 Conclusions and open questions

In this paper we have exactly analyzed the NICD problem ormp#ik and asymp-
totically analyzed the NICD problem on the star. However, vewe seen that
results on more complicated trees may be hard to come by. Meobhlems are
still open. We list a few:

e Is it true that for every tree NICD instance, there is an optiprotocol in
which each player uses some majority rule? This questioralraady raised
in [31] for the special case of the star.

e Our analysis for the star is quite tight. However, one canfasknore. In
particular, what is the best bound that can be obtained on

_ M(Starknpa Sk?)
N limnzgg P(Stark, P, 1, Sk, MAJn)

Tk

for fixed value ofp. Our results show that, = k°(). Is it true that
limy_, oo 1 = 17

e Finally, we would like to find more applications of the rewerBonami-
Beckner inequality in computer science and combinatorics.
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A Proof of the reverse Bonami-Beckner inequality

Borell's proof of the reverse Bonami-Beckner inequalit@]follows the same
lines as the traditional proofs of the usual Bonami-Beckneguality [12, 8].
Namely, he proves the result in the case= 1 (i.e., the “two-point inequality”)
and then shows that this can be tensored to produce the &dt¢m. The usual
proof of the tensoring is easily modified by replacing Minlghiis inequality with
the reverse Minkowski inequality [25, Theorem 24]. Hentés ienough to con-
sider functionsf : {—1,1} — R=? (i.e.,n = 1). By monotonicity of norms, it
suffices to prove the inequality in the case that (1 — p)'/2/(1 — ¢)'/?; i.e.,
p? = (1—p)/(1—q). Finally, it turns out that it suffices to consider the casexeh
0 <qg<p<1(seelLemmaA.3).

LemmaA.l Letf: {—1,1} — R=% be a nonnegative function,< ¢ < p < 1,
andp® = (1 —p)/(1 —q). Then||T, fllg > || fll,-

Proof (Borell): If f is identically zero the lemma is trivial. Otherwise, using h
mogeneity we may assume thétr) = 1 + ax for somea € [—1,1]. We shall
consider only the casec (—1,1); the result at the endpoints follows by continu-
ity. Note thatT), f(z) = 1 + pazx.

Using the Taylor series expansion fdr+ a)? around 1, we get

IT, 7l = 5 (14 ap) + (1~ ap)?) (19)
1 [e.e] [e.e]
_ §<1+n§< ) (1+;<Z>(—a)”p”)>
_ 1+i 2qn> 20 p2n, (20)

(Absolute convergence fgu| < 1 lets us rearrange the series.) Sipce g, it
holds for allz > —1 that(14z)P/¢ > 1+ pz/q. In particular, from (20) we obtain
that

”Tf”p_<1+z< )2" 2">p/ >1+Z ( )2" o (21)

Similarly to (20) we can write
P _— - p 2n
I =1+3 (2n) a (22)
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From (21) and (22) we see that in order to prove the theorenifices to show

that for alln > 1
p(q 2n p
cl > . 23
q <2n>p - <2n> (@)

Simplifying (23) we see the inequality
(=1 (g—2n+1)p" >(p—1)---(p—2n+1),
which is equivalent in turn to
(1= @2n—1-g)p*" <(1-p)---(2n—1-p). (24)

Note that we havél — p) = (1 — ¢)p?. Inequality (23) would follow if we could
show that for alln > 2 it holds thatp(m — ¢) < (m — p). Taking the square and
recalling thatp? = (1 — p)/(1 — ¢) we obtain the inequality

(1=p)(m—q)* < (m —p)*(1 - q),
which is equivalent to
m? —2m +p+q —pgq > 0.

The last inequality holds for ath > 2 thus completing the proof. |

We also prove the two-function version promised in Sectidn Recall first
the reverse Hider inequality [25, Theorem 13] for discrete measure epac

Lemma A.2 Let f and g be nonnegative functions and suppage + 1/p’ = 1,
wherep < 1 (p' = 0if p=0). Then

E(fgl = falli = I fllpllglly
where equality holds i§ = f7/7'.
Proof of Corollary 3.3: By definition, the left-hand side of (2) IB[fT,g]. We
claim it suffices to prove (2) fop = (1 — p)'/2(1 — ¢)/2. Indeed, otherwise, let

satisfyp = (1 —p)'/2(1 —r)'/? and note that > ¢. Then, assuming (2) holds for
p,r andp we obtain:

E[fTo9] = [[fllpllglle = 1 £1Ipllglla:
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as needed.

We now assume = (1 — p)/2(1 — ¢)'/2. Letyp/ satisfyl/p +1/p’ = 1.
Applying the reverse Blder inequality we get thd&[fT),g] > || f»/|T,9]l,7- Note
that, sincel /(1 — p/) = 1 — p, the fact thap = (1 — p)/2(1 — ¢)'/? impliesp =
(1 —¢)'/2(1 — p')~1/2. Therefore, using the reverse Bonami-Beckner inequality
with p’ < ¢ < 1, we conclude that

E[f(@)g()] = [l Tpglly = [ Flpllglla-

Lemma A.3 It suffices to prove (1) fadb < g < p < 1.

Proof: Note first that the casg = 1 follows from the case < 1 by continuity.
Recall thatl — p = p?(1 — ¢). Thus,p > q. Suppose (1) holds fdr < ¢ < p < 1.
Then by continuity we obtain (1) fdr < ¢ < p < 1. From1 — p = p?(1 — q), it
follows thatl — ¢’ = 1/(1 — q) = p?/(1 — p) = p*(1 — p). Therefore ifp < 0,
thenp’ =1—-1/(1—p) > 0andq =1—p?/(1—p) > p’ > 0. We now conclude
that if f is non-negative, then

1Tofllg = nf{llgTpfll1: llglly = 1.9 >0} (by reverse Kider)
= inf{||fTogll1: |lglly = 1,9 >0} (by reversibility)
mf{|| £, Zpglly : llglly = 1,9 > 0} (by reverse Kider)

1fllpinf{llglly = lglly =1,9 =0} = [ f[l,
(by (1) foro < p' < ¢ < 1).

(A\VARAYS

We have thus obtained that (1) holds foK 0. The remaining case js> 0 > gq.
Letr = 0 and choose, p2 such tha{l —p) = p2(1—r) and(1—r) = p?(1—q).
Note that0 < p1,p2 < 1 and thatp = p1p2. The latter equality implies that
T, =T,,T,, (this is known as the “semi-group property”). Now

1o fllg = 1T Tos fllg = ITpa £l = [1.fllps

where the first inequality follows sinee< r < 0 and the second singe> r > 0.
We have thus completed the proof. [ ]
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