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Abstract

In this paper we studynon-interactive correlation distillation (NICD), a
generalization of noise sensitivity previously considered in [5, 31, 39]. We
extend the model toNICD on trees. In this model there is a fixed undirected
tree with players at some of the nodes. One node is given a uniformly random
string and this string is distributed throughout the network, with the edges of
the tree acting as independent binary symmetric channels. The goal of the
players is to agree on a shared random bit without communicating.

Our new contributions include the following:

• In the case of ak-leaf star graph (the model considered in [31]), we
resolve the open question of whether the success probability must go
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to zero ask → ∞. We show that this is indeed the case and provide
matching upper and lower bounds on the asymptotically optimal rate
(a slowly-decaying polynomial).

• In the case of thek-vertex path graph, we show that it is always optimal
for all players to use the same 1-bit function.

• In the general case we show that all players should use monotone func-
tions. We also show, somewhat surprisingly, that for certain trees it is
better if not all players use the same function.

Our techniques include the use of thereverseBonami-Beckner inequality.
Although the usual Bonami-Beckner has been frequently usedbefore, its re-
verse counterpart seems not to be well known. To demonstrateits strength,
we use it to prove a new isoperimetric inequality for the discrete cube and a
new result on the mixing of short random walks on the cube. Another tool
that we need is a tight bound on the probability that a Markov chain stays
inside certain sets; we prove a new theorem generalizing andstrengthening
previous such bounds [2, 3, 6]. On the probabilistic side, weuse the “re-
flection principle” and the FKG and related inequalities in order to study the
problem on general trees.



1 Introduction

1.1 Non-interactive correlation — the problem and previouswork

Our main topic in this paper is the problem ofnon-interactive correlation distil-
lation (NICD), previously considered in [5, 31, 39]. In its most general form the
problem involvesk players who receive noisy copies of a uniformly random bit
string of lengthn. The players wish to agree on a single random bit but are not
allowed to communicate. The problem is to understand the extent to which the
players can successfully distil the correlations in their strings into a shared random
bit. This problem is relevant for cryptographic information reconciliation, random
beacons in cryptography and security, and coding theory; see [39].

In its most basic form, the problem involves only two players; the first gets
a uniformly random stringx and the second gets a copyy in which each bit ofx
is flipped independently with probabilityε. If the players try to agree on a shared
bit by applying the same Boolean functionf to their strings, they will fail with
probability P[f(x) 6= f(y)]. This quantity is known as thenoise sensitivity of
f at ε, and the study of noise sensitivity has played an important role in several
areas of mathematics and computer science (e.g., inapproximability [26], learning
theory [17, 30], hardness amplification [33], mixing of short random walks [27],
percolation [10]; see also [34]). In [5], Alon, Maurer, and Wigderson showed that
if the players want to use a balanced functionf , no improvement over the naive
strategy of lettingf(x) = x1 can be achieved.

The paper [31] generalized from the two-player problem NICDto ak-player
problem, in which a uniformly random stringx of lengthn is chosen,k players re-
ceive independentε-corrupted copies, and they apply (possibly different) balanced
Boolean functions to their strings, hoping that all output bits agree. This gen-
eralization is equivalent to studying high norms of the Bonami-Beckner operator
applied to Boolean functions (i.e.,‖Tρf‖k); see Section 3 for definitions. The re-
sults in [31] include: optimal protocols involve all players using the same function;
optimal functions are always monotone; fork = 3 the first-bit (‘dictator’) is best;
for fixed ε and fixedn andk → ∞, all players should use the majority function;
and, for fixedn andk andε → 0 or ε → 1/2 dictator is best.

Later, Yang [39] considered a different generalization of NICD, in which
there are only two players but the corruption model is different from the “binary
symmetric channel” noise considered previously. Yang showed that for certain
more general noise models, it is still the case that the dictator function is optimal;
he also showed an upper bound on the players’ success rate in the erasure model.
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1.2 NICD on trees; our results

In this paper we propose a natural generalization of the NICDmodels of [5, 31],
extending to a tree topology. In our generalization we have anetwork in the form
of a tree;k of the nodes have a ‘player’ located on them. One node broadcasts a
truly random string of lengthn. The string follows the edges of the trees and even-
tually reaches all the nodes. Each edge of the tree independently introduces some
noise, acting as a binary symmetric channel with some fixed crossover probability
ε. Upon receiving their strings, each player applies a balanced Boolean function,
producing one output bit. As usual, the goal of the players isto agree on a shared
random bit without any further communication; the protocolis successful if allk
parties output the same bit. (For formal definitions, see Section 2.) Note that the
problem considered in [31] is just NICD on the star graph ofk + 1 nodes with the
players at thek leaves.

We now describe our new results:

The k-leaf star graph: We first study the samek-player star problem considered
in [31]. Although this paper found maximizing protocols in certain asymptotic
scenarios for the parametersk, n, andε, the authors left open what is arguably the
most interesting setting:ε fixed, k growing arbitrarily large, andn unbounded in
terms ofε andk. Although it is natural to guess that the success rate of the players
must go to zero exponentially fast in terms ofk, this turns out not to be the case;
[31] notes that if all players apply the majority function (with n large enough)
then they succeed with probabilityΩ(k−C(ε)) for some finite constantC(ε) (the
estimate [31] provides is not sharp). [31] left as a major open problem to prove
that the success probability goes to0 ask → ∞.

In this paper we solve this problem. In Theorem 4.1 we show that the suc-
cess probability must indeed go to zero ask → ∞. Our upper bound is a slowly-
decaying polynomial. Moreover, we provide a matching lowerbound: this follows
from a tight analysis of the majority protocol. The proof of our upper bound de-
pends crucially on the reverse Bonami-Beckner inequality,an important tool that
will be described later.

The k-vertex path graph: In the case of NICD on the path graph, we prove
in Theorem 5.1 that in the optimal protocol all players should use the same 1-bit
function. In order to prove this, we prove in Theorem 5.4, a new tight bound on the
probability that a Markov chain stays inside certain sets. Our theorem generalizes
and strengthens previous work [2, 3, 6].
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Arbitrary trees: In this general case, we show in Theorem 6.3 that there always
exists an optimal protocol in which all players use monotonefunctions. Our anal-
ysis uses methods of discrete symmetrization together withthe FKG correlation
inequality.

In Proposition 6.2 we show that for certain trees it is betterif not all players
use the same function. This might be somewhat surprising: after all, if all players
wish to obtain the same result, won’t they be better off usingthe same function?
The intuitive reason the answer to this is negative can be explained by Figure 1:
players on the path and players on the star each ‘wish’ to use adifferent function.
Those on the star wish to use the majority function and those on the path wish to
use a dictator function. Indeed, we will show that this strategy yields better success
probability than any strategy in which all players use the same function.

Figure 1: The graphT with k1 = 5 andk2 = 3

1.3 The reverse Bonami-Beckner inequality

Let us start by describing the original inequality (see Theorem 3.1), which con-
siders an operator known as the Bonami-Beckner operator (see Section 3). It is
easy to prove that this operator is contractive with respectto any norm. How-
ever, the strength in the Bonami-Beckner inequality is thatit shows that this oper-
ator remains contractive fromLp to Lq for certain values ofp andq with q > p.
This is the reason it is often referred to as a hypercontractive inequality. The in-
equality was originally proved by Bonami in 1970 [12] and then independently by
Beckner in 1973 [8]. It was first used to analyze discrete problems in a remark-
able paper by Kahn, Kalai and Linial [27] where they considered the influence of
variables on Boolean functions. The inequality has proved to be of great impor-
tance in the study of combinatorics of{0, 1}n [15, 16, 22], percolation and random
graphs [38, 23, 10, 14] and many other applications [9, 4, 36,7, 35, 18, 19, 28, 33].

Far less well-known is the fact that the Bonami-Beckner inequality admits a
reversed form. This reversed form was first proved by Christer Borell [13] in 1982.
Unlike the original inequality, the reverse inequality says that some low norm of
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the Bonami-Beckner operator applied to a non-negative function can be bounded
belowby some higher norm of the original function. Moreover, the norms involved
in the reverse inequality are all at most1 while the norms in the original inequality
are all at least1. Technically these should not be called norms since they do not
satisfy the triangle inequality; nevertheless, we use thisterminology.

We are not aware of any previous uses of the reverse Bonami-Beckner in-
equality for the study of discrete problems. The inequalityseems very promising
and we hope it will prove useful in the future. To demonstrateits strength, we
provide two applications:

Isoperimetric inequality on the discrete cube: As a corollary of the reverse
Bonami-Beckner inequality, we obtain in Theorem 3.4 a type of isoperimetric in-
equality on the discrete cube. It differs from the usual isoperimetric inequality
in that the “neighborhood” structure is slightly different. Although it is a simple
corollary, we believe that the isoperimetric inequality isinteresting. It is also used
later to give a sort of hitting time upper-bound for short random walks. In order to
illustrate it, let us consider two subsetsS, T ⊆ {−1, 1}n each containing a constant
fractionσ of the2n elements of the discrete cube. We now perform the following
experiment: we choose a random element ofS and flip each of itsn coordinates
with probabilityε for some smallε. What is the probability that the resulting ele-
ment is inT? Our isoperimetric inequality implies that it is at least some constant
independent ofn. For example, given any two sets with fractional size1/3, the
probability that flipping each coordinate with probability.3 takes a random point
chosen from the first set into the second set is at least(1/3)1.4/.6 ≈ 7.7%. We also
show that our bound is close to tight. Namely, we analyze the above probability for
diametrically opposed Hamming balls and show that it is close to our lower bound.

Short random walks: Our second application, Proposition 3.6, is to short ran-
dom walks on the discrete cube. We point out however that thisdoes not differ
substantially from what was done in the previous paragraph.Consider the follow-
ing scenario. We have two setsS, T ⊆ {−1, 1}n of size at leastσ2n each. We start
a walk from a random element of the setS and at each time step proceed with prob-
ability 1/2 to one of its neighbors which we pick randomly. Letτn be the length
of the random walk. What is the probability that the random walk terminates in
T? If τ = C log n for a large enough constantC then it is known that the random
walk mixes and therefore we are guaranteed to be inT with probability roughly
σ. However, what happens ifτ is, say,0.2? Notice thatτn is then less than the
diameter of the cube! For certain setsS, the random walk might have zero prob-
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ability to reach certain vertices, but ifσ is at least, say, a constant then there will
be some nonzero probability of ending inT . We bound from below the probability
that the walk ends inT by a function ofσ andτ only. For example, forτ = 0.2,
we obtain a bound of roughlyσ10. The proof crucially depends on the reverse
Bonami-Beckner inequality; to the best of our knowledge, known techniques, such
as spectral methods, cannot yield a similar bound.

2 Preliminaries

We now formally define the problem of “non-interactive correlation distillation
(NICD) on trees with the binary symmetric channel (BSC).” Ingeneral we have
four parameters. The first isT , an undirected tree giving the geometry of the
problem. Later the vertices ofT will become labeled by binary strings, and the
edges ofT will be thought of as independent binary symmetric channels. The
second parameter of the problem is0 < ρ < 1 which gives thecorrelationof bits
on opposite sides of a channel. By this we mean that if a bit string x ∈ {−1, 1}n

passes through the channel producing the bit stringy ∈ {−1, 1}n thenE[xiyi] = ρ
independently for eachi. We say thaty is aρ-correlated copy ofx. We will also
sometimes refer toε = 1

2 − 1
2ρ ∈ (0, 1

2), which is the probability with which a bit
gets flipped — i.e., the crossover probability of the channel. The third parameter of
the problem isn, the number of bits in the string at every vertex ofT . The fourth
parameter of the problem is a subset of the vertex set ofT , which we denote by
S. We refer to theS as the set ofplayers. FrequentlyS is simply all ofV (T ), the
vertices ofT .

To summarize, an instance of the NICD on trees problem is parameterized
by:

1. T , an undirected tree;

2. ρ ∈ (0, 1), the correlation parameter;

3. n ≥ 1, the string length; and,

4. S ⊆ V (T ), the set of players.

Given an instance, the following process happens. Some vertex u of T is
given a uniformly random stringx(u) ∈ {−1, 1}n. Then this string is passed
through the BSC edges ofT so that every vertex ofT becomes labeled by a ran-
dom string in{−1, 1}n. It is easy to see that the choice ofu does not matter, in
the sense that the resulting joint probability distribution on strings for all vertices

6



is the same regardless ofu. Formally speaking, we haven independent copies of a
“tree-indexed Markov chain;” or a “Markov chain on a tree” [24]. The index set is
V (T ) and the probability measureP onα ∈ {−1, 1}V (T ) is defined by

P(α) = 1
2

(

1
2 + 1

2ρ
)A(α) (1

2 − 1
2ρ
)B(α)

,

whereA(α) is the number of pairs of neighbors whereα agrees andB(α) is the
number of pairs of neighbors whereα disagrees.

Once the strings are distributed on the vertices ofT , the player at the ver-
tex v ∈ S looks at the stringx(v) and applies a (pre-selected) Boolean function
fv : {−1, 1}n → {−1, 1}. The goal of the players is to maximize the probability
that the bitsfv(x

(v)) are identical forall v ∈ S. In order to rule out the trivial
solutions of constant functions and to model the problem of flipping a shared ran-
dom coin, we insist that all functionsfv bebalanced; i.e., have equal probability
of being−1 or 1. As noted in [31], this does not necessarily ensure that when
all players agree on a bit it is conditionally equally likelyto be−1 or 1; however,
if the functions are in addition antisymmetric, this property does hold. We call a
collection of balanced functions(fv)v∈S a protocol for the playersS, and we call
this protocolsimpleif all of the functions are the same.

To conclude our notation, we writeP(T, ρ, n, S, (fv)v∈S) for the probabil-
ity that the protocol succeeds – i.e., that all players output the same bit. When
the protocol is simple we write merelyP(T, ρ, n, S, f). Our goal is to study the
maximum this probability can be over all choices of protocols. We denote by

M(T, ρ, n, S) = sup
(fv)v∈S

P(T, ρ, n, S, (fv)v∈S),

and define
M(T, ρ, S) = sup

n
M(T, ρ, n, S).

3 Reverse Bonami-Beckner and applications

In this section we recall the reverse Bonami-Beckner inequality and obtain as a
corollary an isoperimetric inequality on the discrete cube. These results will be
useful in analyzing the NICD problem on the star graph and we believe they are
of independent interest. We also obtain a new result about the mixing of relatively
short random walks on the discrete cube.
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3.1 The reverse Bonami-Beckner inequality

We begin with a discussion of the Bonami-Beckner inequality. Recall the Bonami-
Beckner operatorTρ, a linear operator on the space of functions{−1, 1}n → R

defined by
(Tρf)(x) = E[f(y)],

wherey is a ρ-correlated copy ofx. The usual Bonami-Beckner inequality, first
proved by Bonami [12] and later independently by Beckner [8], is the following:

Theorem 3.1 Letf : {−1, 1}n → R andq ≥ p ≥ 1. Then

‖Tρf‖q ≤ ‖f‖p for all 0 ≤ ρ ≤ (p − 1)1/2/(q − 1)1/2.

The reverse Bonami-Beckner inequality is the following:

Theorem 3.2 Let f : {−1, 1}n → R
≥0 be a nonnegative function and let−∞ <

q ≤ p ≤ 1. Then

‖Tρf‖q ≥ ‖f‖p for all 0 ≤ ρ ≤ (1 − p)1/2/(1 − q)1/2. (1)

Note that in this theorem we considerr-norms forr ≤ 1. The case ofr = 0
is a removable singularity: by‖f‖0 we mean the geometric mean off . Note also
that sinceTρ is a convolution operator, it is positivity-improving for any ρ < 1;
i.e., whenf is nonnegative so too isTρf , and if f is further not identically zero,
thenTρf is everywhere positive.

The reverse Bonami-Beckner theorem is proved in the same waythe usual
Bonami-Beckner theorem is proved; namely, one proves the inequality in the case
of n = 1 by elementary means, and then observes that the inequality tensors.
Since Borell’s original proof may be too compact to be read bysome, we provide
an expanded version of it in Appendix A for completeness.

We will actually need the following “two-function” versionof the reverse
Bonami-Beckner inequality which follows easily from the reverse Bonami-Beckner
inequality using the (reverse) Hölder inequality (see Appendix A):

Corollary 3.3 Let f, g : {−1, 1}n → R
≥0 be nonnegative, letx ∈ {−1, 1}n be

chosen uniformly at random, and lety be a ρ-correlated copy ofx. Then for
−∞ < p, q < 1,

E[f(x)g(y)] ≥ ‖f‖p‖g‖q for all 0 ≤ ρ ≤ (1 − p)1/2(1 − q)1/2. (2)
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3.2 A new isoperimetric inequality on the discrete cube

In this subsection we use the reverse Bonami-Beckner inequality to prove an isoperi-
metric inequality on the discrete cube. LetS andT be two subsets of{−1, 1}n.
Suppose thatx ∈ {−1, 1}n is chosen uniformly at random andy is aρ-correlated
copy of x. We obtain the following theorem, which gives a lower bound on the
probability thatx ∈ S andy ∈ T as a function of|S|/2n and|T |/2n only.

Theorem 3.4 LetS, T ⊆ {−1, 1}n with |S| = exp(−s2/2)2n and|T | = exp(−t2/2)2n.
Let x be chosen uniformly at random from{−1, 1}n and lety be aρ-correlated
copy ofx. Then

P[x ∈ S, y ∈ T ] ≥ exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

. (3)

Proof: Takef andg to be the0-1 characteristic functions ofS andT , respectively.
Then by Corollary 3.3, for any choice ofp, q < 1 with (1− p)(1− q) = ρ2, we get

P[x ∈ S, y ∈ T ] = E[f(x)g(y)] ≥ ‖f‖p‖g‖q = exp(−s2/2p) exp(−t2/2q).
(4)

Write p = 1− ρr, q = 1− ρ/r in (4), with r > 0. Maximizing the right-hand side
as a function ofr the best choice isr = ((t/s) + ρ)/(1 + ρ(t/s)) which yields in
turn

p = 1 − ρr = 1−ρ2

1+ρ(t/s) , q = 1 − ρ/r = t
s

1−ρ2

ρ+(t/s) .

(Note that this depends only on the ratio oft ands.) Substituting this choice ofr
(and hencep andq) into (4) yieldsexp(−1

2
s2+2ρst+t2

1−ρ2 ), as claimed.

We now obtain the following corollary of Theorem 3.4.

Corollary 3.5 Let S ⊆ {−1, 1}n have fractional sizeσ ∈ [0, 1], and letT ⊆
{−1, 1}n have fractional sizeσα, for α ≥ 0. If x is chosen uniformly at random
from S andy is a ρ-correlated copy ofx, then the probability thaty is in T is at
least

σ(
√

α+ρ)2/(1−ρ2).

In particular, if |S| = |T | then this probability is at leastσ(1+ρ)/(1−ρ).

Proof: Choosings and t so thatσ = exp(−s2/2) andσα = exp(−t2/2) we
obtain

−1

2
(s2 + 2ρst + t2) = log σ − ρ

√

−2 log σ
√

−2α log σ + α log σ

= log σ(1 + 2ρ
√

α + α),
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and therefore

exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

= σ(1+2ρ
√

α+α)/(1−ρ2).

Theorem 3.4 therefore tells us that conditioned on startingin S, the probability of
ending inT is at least

σ(1+2ρ
√

α+α)/(1−ρ2)−1 = σ(
√

α+ρ)2/(1−ρ2).

In Subsection 3.4 below we show that the isoperimetric inequality is almost
tight. First, we prove a similar bound for random walks on thecube.

3.3 Short random walks on the discrete cube

We can also prove a result of a similar flavor about short random walks on the
discrete cube:

Proposition 3.6 Letτ > 0 be arbitrary and letS andT be two subsets of{−1, 1}n.
Let σ ∈ [0, 1] be the fractional size ofS and letα be such that the fractional size
of T is σα. Consider a standard random walk on the discrete cube that starts
from a uniformly random vertex inS and walks forτn steps. Here by a standard
random walk we mean that at each time step we do nothing with probability 1/2
and we walk along theith edge with probability1/2n. Letp(τn)(S, T ) denote the
probability that the walk ends inT . Then,

p(τn)(S, T ) ≥ σ
(
√

α+exp(−τ))2

1−exp(−2τ) − O
(σ(−1+α)/2

τn

)

.

In particular, when|S| = |T | = σ2n thenp(τn)(S, T ) ≥ σ
1+exp(−τ)
1−exp(−τ) − O( 1

τn).

The Laurent series of1+e−τ

1−e−τ is 2/τ + τ/6 − O(τ3) so for1/ log n � τ � 1 our

bound is roughlyσ2/τ .
For the proof we will first need a simple lemma:

Lemma 3.7 For y > 0 and any0 ≤ x ≤ y,

0 ≤ e−x − (1 − x/y)y ≤ O(1/y).
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Proof: The expression above can be written as

e−x − ey log(1−x/y).

We havelog(1 − x/y) ≤ −x/y and hence we obtain the first inequality. For the
second inequality, notice that ifx ≥ 0.1y then both expressions are of the form
e−Ω(y) which is certainlyO(1/y). On the other hand, if0 ≤ x < 0.1y then there
is a constantc such that

log(1 − x/y) ≥ −x/y − cx2/y2.

The Mean Value Theorem implies that for0 ≤ a ≤ b, e−a − e−b ≤ e−a(b − a).
Hence,

e−x − ey log(1−x/y) ≤ e−x(−y log(1 − x/y) − x) ≤ cx2e−x

y
.

The lemma now follows becausex2e−x is uniformly bounded forx ≥ 0.

We now prove Proposition 3.6. The proof uses Fourier analysis; for the
required definitions see, e.g., [27].

Proof: Let x be a uniformly random point in{−1, 1}n andy a point generated by
taking a random walk of lengthτn starting fromx. Letf andg be the0-1 indicator
functions ofS andT , respectively, and sayE[f ] = σ, E[g] = σα. Then by writing
f andg in their Fourier decomposition we obtain that

σ · p(τn)(S, T ) = P[x ∈ S, y ∈ T ] = E[f(x)g(y)] =
∑

U,V

f̂(U)ĝ(V )E[xUyV ]

whereU andV range over all subsets of{1, . . . , n}. Note thatE[xUyV ] is zero
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unlessU = V . Therefore we may write

σp(τn)(S, T )

=
∑

U

f̂(U)ĝ(U)E[(xy)U ] =
∑

U

f̂(U)ĝ(U)
(

1 − |U |
n

)τn

=
∑

U

f̂(U)ĝ(U) exp(−τ |U |)

+
∑

U

f̂(U)ĝ(U)
[(

1 − |U |
n

)τn
− exp(−τ |U |)

]

= 〈f, Texp(−τ)g〉 +
∑

U

f̂(U)ĝ(U)
[(

1 − |U |
n

)τn
− exp(−τ |U |)

]

≥ 〈f, Texp(−τ)g〉 − max
|U |

∣

∣

∣

(

1 − |U |
n

)τn
− exp(−τ |U |)

∣

∣

∣

∑

U

|f̂(U)ĝ(U)|.

By Corollary 3.5,

σ−1〈f, Texp(−τ)g〉 ≥ σ
(
√

α+exp(−τ))2

1−exp(−2τ) .

By Cauchy-Schwarz and Parseval’s identity,
∑

U

|f̂(U)ĝ(U)| ≤ ‖f̂‖2‖ĝ‖2 = ‖f‖2‖g‖2 = σ(1+α)/2.

In addition, from Lemma 3.7 withx = τ |U | andy = τn we have that

max
|U |

∣

∣

∣

(

1 − |U |
n

)τn
− exp(−τ |U |)

∣

∣

∣ = O
( 1

τn

)

.

Hence,

p(τn)(S, T ) ≥ σ
(
√

α+exp(−τ))2

1−exp(−2τ) − O
(σ(−1+α)/2

τn

)

.

3.4 Tightness of the isoperimetric inequality

We now show that Theorem 3.4 is almost tight. Supposex ∈ {−1, 1}n is chosen
uniformly at random andy is aρ-correlated copy ofx. Let us begin by understand-
ing more about howx andy are distributed. Define

Σ(ρ) =

[

1 ρ
ρ 1

]
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and recall that the density function of the bivariate normaldistribution φΣ(ρ) :
R

2 → R
≥0 with mean0 and covariance matrixΣ(ρ), is given by

φΣ(ρ)(x, y) = (2π)−1(1 − ρ2)−
1
2 exp

(

−1

2

x2 − 2ρxy + y2

1 − ρ2

)

= (1 − ρ2)−
1
2 φ(x)φ





y − ρx

(1 − ρ2)
1
2



 .

Hereφ denotes the standard normal density function onR, φ(x) = (2π)−1/2e−x2/2.

Proposition 3.8 Letx ∈ {−1, 1}n be chosen uniformly at random, and lety be a
ρ-correlated copy ofx. LetX = n−1/2

∑n
i=1 xi andY = n−1/2

∑n
i=1 yi. Then as

n → ∞, the pair of random variables(X, Y ) approaches the distributionφΣ(ρ).
As an error bound, we have that for any convex regionR ⊆ R

2,
∣

∣

∣

∣

P
[

(X, Y ) ∈ R
]

−
∫∫

R
φΣ(ρ)(x, y) dy dx

∣

∣

∣

∣

≤ O((1 − ρ2)−1/2n−1/2).

Proof: This follows from the Central Limit Theorem (see, e.g., [20]), noting that
for each coordinatei, E[x2

i ] = E[y2
i ] = 1, E[xiyi] = ρ. The Berry-Esśeen-type

error bound is proved in Sazonov [37, p. 10, Item 6].

Using this proposition we can obtain the following result for two diametri-
cally opposed Hamming balls.

Proposition 3.9 Fix s, t > 0, and letS, T ⊆ {−1, 1}n be diametrically opposed
Hamming balls, withS = {x :

∑

i xi ≤ −sn1/2} andT = {x :
∑

i xi ≥ tn1/2}.
Let x be chosen uniformly at random from{−1, 1}n and lety be aρ-correlated
copy ofx. Then we have

lim
n→∞

P[x ∈ S, y ∈ T ] ≤
√

1 − ρ2

2πs(ρs + t)
exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

.
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Proof:

lim
n→∞

P[x ∈ S, y ∈ T ]

=

∫ ∞

s

∫ ∞

t
φΣ(−ρ)(x, y) dy dx ( By Lemma 3.8)

≤
∫ ∞

s

∫ ∞

t

x(ρx + y)

s(ρs + t)
φΣ(−ρ)(x, y) dy dx

(

Since
x(ρx + y)

s(ρs + t)
≥ 1 onx ≥ s, y ≥ t

)

=
1

√

1 − ρ2

∫ ∞

s

∫ ∞

t

x(ρx + y)

s(ρs + t)
φ(x)φ

(

y + ρx
√

1 − ρ2

)

dy dx

≤ 1
√

1 − ρ2

∫ ∞

s

∫ ∞

ρs+t

xz

s(ρs + t)
φ(x)φ

(

z
√

1 − ρ2

)

dz dx

(

Usingz = ρx + y and noting
xz

s(ρs + t)
≥ 1 onx ≥ s, z ≥ ρs + t

)

=
1

s(ρs + t)
√

1 − ρ2

(∫ ∞

s
xφ(x)dx

)

(

∫ ∞

ρs+t
zφ

(

z
√

1 − ρ2

)

dz

)

=

√

1 − ρ2

s(ρs + t)
φ(s)φ

(

ρs + t
√

1 − ρ2

)

=

√

1 − ρ2

2πs(ρs + t)
exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

.

The result follows.

By the Central Limit Theorem, the setS in the above statement satisfies (see [1,
26.2.12]),

lim
n→∞

|S|2−n =
1√
2π

∫ ∞

s
e−x2/2 dx ∼ exp(−s2/2)/(

√
2πs).

For larges (i.e., small|S|) this is dominated byexp(−s2/2). A similar statement
holds forT . This shows that Theorem 3.4 is nearly tight.

4 The best asymptotic success rate in thek-star

In this section we consider the NICD problem on the star. LetStark denote the
star graph onk +1 vertices and letSk denote itsk leaf vertices. We shall study the

14



same problem considered in [31]; i.e., determiningM(Stark, ρ, Sk). Note that it
was shown in that paper that the best protocol in this case is always simple (i.e., all
players should use the same function).

The following theorem determines rather accurately the asymptotics ofM(Stark, ρ, Sk):

Theorem 4.1 Fix ρ ∈ (0, 1] and letν = ν(ρ) = 1
ρ2 − 1. Then fork → ∞,

M(Stark, ρ, Sk) = Θ̃
(

k−ν
)

,

whereΘ̃(·) denotes asymptotics to within a subpolynomial (ko(1)) factor. The lower
bound is achieved asymptotically by the majority functionMAJn with n sufficiently
large.

Note that if the corruption probability is very small (i.e.,ρ is close to 1), we
obtain that the success rate only drops off as a very mild function of k. We first
prove the upper bound.

Proof of upper bound: We know that all optimal protocols are simple, so as-
sume all players use the same balanced functionf : {−1, 1}n → {−1, 1}. Let
F−1 = f−1(−1) andF1 = f−1(1) be the sets wheref obtains the values−1 and
1 respectively. The center of the star gets a uniformly randomstringx, and then in-
dependentρ-correlated copies are given to thek leaf players. Lety denote a typical
such copy. The probability that all players output−1 is thusEx[P[f(y) = −1|x]k].
We will show that this probability is̃O(k−ν). This complete the proof since we
can replacef by −f and get the same bound for the probability that all players
output1.

SupposeEx[P[f(y) = −1|x]k] ≥ 2δ for someδ; we will showδ must be
small. Define

S = {x : P[f(y) = −1 | x]k ≥ δ}.
By Markov’s inequality we must have|S| ≥ δ2n. Now on one hand, by the defini-
tion of S,

P[y ∈ F1 | x ∈ S] ≤ 1 − δ1/k. (5)

On the other hand, applying Corollary 3.5 withT = F1 andα ≤ 1/ log2(1/δ) <
1/ log(1/δ) (since|F1| = 1

22n), we get

P[y ∈ F1 | x ∈ S] ≥ δ(log−1/2(1/δ)+ρ)2/(1−ρ2). (6)

15



Combining (5) and (6) yields the desired upper bound onδ in terms ofk, δ ≤
k−ν+o(1) by the following calculations. We have

1 − δ1/k ≥ δ(log−1/2(1/δ)+ρ)2/(1−ρ2).

We want to show that the above inequality cannot hold if

δ ≥
(

ec
√

log k

k

)ν

, (7)

wherec = c(ρ) is some constant. We will show that ifδ satisfies (7) andc is
sufficiently large then for all largek

δ1/k + δ(log−1/2(1/δ)+ρ)2/(1−ρ2) > 1.

Note first that

δ1/k >

(

1

k

) ν
k

= exp

(

−ν log k

k

)

> 1 − ν log k

k
. (8)

On the other hand,

δ(log−1/2(1/δ)+ρ)2/(1−ρ2) = δ− log−1 δ/(1−ρ2) · δ2ρ log−1/2(1/δ)/(1−ρ2) · δρ2/(1−ρ2).
(9)

Note that

δρ2/(1−ρ2) = δ1/ν ≥ ec
√

log k

k

and

δ2ρ log−1/2(1/δ)/(1−ρ2) = exp

(

− 2ρ

1 − ρ2

√

log(1/δ)

)

≥ exp

(

− 2ρ

1 − ρ2

√

ν log k

)

.

Finally,

δ− log−1 δ/(1−ρ2) = exp

(

− 1

1 − ρ2

)

.

Thus if c = c(ρ) is sufficiently large then the left hand side of (9) is at leastν log k
k .

This implies the desired contradiction by (7) and (8).
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Proof of lower bound: We will analyze the protocol where all players useMAJn,
similarly to the analysis of [31]. Our analysis here is more careful resulting in a
tighter bound.

We begin by showing that the probability with which all players agree if they
useMAJn, in the case of fixedk andn → ∞, is:

lim
n→∞
n odd

P(Stark, ρ, n, Sk, MAJn) = 2ν1/2(2π)(ν−1)/2

∫ 1

0
tkI(t)ν−1 dt, (10)

whereI = φ ◦ Φ−1 is the so-called Gaussian isoperimetric function, withφ(x) =
(2π)−1/2 exp(−x2/2) andΦ(x) =

∫ x
−∞ φ(t)dt the density and distribution func-

tions of a standard normal random variable respectively.
Apply Proposition 3.8, withX ∼ N(0, 1) representingn−1/2 times the sum

of the bits in the string at the star’s center, andY |X ∼ N(ρX, 1−ρ2) representing
n−1/2 times the sum of the bits in a typical leaf player’s string. Thus asn → ∞,
the probability that all players output+1 when usingMAJn is precisely

∫ ∞

−∞
Φ

(

ρ x
√

1 − ρ2

)k

φ(x) dx =

∫ ∞

−∞
Φ
(

ν−1/2x
)k

φ(x) dx.

SinceMAJn is antisymmetric, the probability that all players agree on+1 is the
same as the probability they all agree on−1. Making the change of variables
t = Φ(ν−1/2x), x = ν1/2Φ−1(t), dx = ν1/2I(t)−1 dt, we get

lim
n→∞
n odd

P(Stark, ρ, n, Sk, MAJn) = 2ν1/2

∫ 1

0

tkφ(ν1/2Φ−1(t))

I(t)
dt

= 2ν1/2(2π)(ν−1)/2

∫ 1

0
tkI(t)ν−1 dt,

as claimed.
We now estimate the integral in (10). It is known (see, e.g., [11]) thatI(s) ≥

J(s(1−s)), whereJ(s) = s
√

ln(1/s). We will forego the marginal improvements
given by taking the logarithmic term and simply use the estimateI(t) ≥ t(1 − t).
We then get

∫ 1

0
tkI(t)ν−1 dt ≥

∫ 1

0
tk(t(1 − t))ν−1 dt

=
Γ(ν)Γ(k + ν)

Γ(k + 2ν)
([1, 6.2.1, 6.2.2])

≥ Γ(ν)(k + 2ν)−ν (Stirling approximation).
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Substituting this estimate into (10) we get

lim
n→∞

P(Stark, ρ, n, Sk, MAJn) ≥ c(ν)k−ν,

wherec(ν) > 0 depends only onρ, as desired.

We remark that in the upper bound above we have in effect proved the fol-
lowing theorem regarding high norms of the Bonami-Beckner operator applied to
Boolean functions:

Theorem 4.2 Let f : {−1, 1}n → {0, 1} and supposeE[f ] ≤ 1/2. Then for any
fixedρ ∈ (0, 1], ask → ∞, ‖Tρf‖k

k ≤ k−ν+o(1), whereν = 1
ρ2 − 1.

Since we are trying to bound a high norm ofTρf knowing the norms off , it would
seem as though the usual Bonami-Beckner inequality would beeffective. However
this seems not to be the case: a straightforward applicationyields

‖Tρf‖k ≤ ‖f‖ρ2(k−1)+1 = E[f ]1/(ρ2(k−1)+1)

⇒ ‖Tρf‖k
k ≤ (1/2)k/(ρ2(k−1)+1) ≈ (1/2)1/ρ2

,

only a constant upper bound.

5 The optimal protocol on the path

In this section we prove the following theorem which gives a complete solution
to the NICD problem on a path. In this case, simple dictator protocols are the
unique optimal protocols, and any other simple protocol is exponentially worse as
a function of the number of players.

Theorem 5.1 • Let Pathk = {v0, v1, . . . , vk} be the path graph of lengthk,
and letS be any subset ofPathk of size at least two. Then simple dictator
protocols are the unique optimal protocols forP(Pathk, ρ, n, S, (fv)). In
particular, if S = {vi0 , . . . , vi`} wherei0 < i1 < · · · < i`, then we have

M(Pathk, ρ, S) =
∏̀

j=1

(

1

2
+

1

2
ρij−ij−1

)

.

• Moreover, for everyρ andn there existsc = c(ρ, n) < 1 such that ifS =
Pathk then for any simple protocolf which is not a dictator,

P(Pathk, ρ, n, S, f) ≤ P(Pathk, ρ, n, S,D)c|S|−1

whereD denotes the dictator function.
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5.1 A bound on inhomogeneous Markov chains

A crucial component of the proof of Theorem 5.1 is a bound on the probability that
a reversible Markov chain stays inside certain sets. In thissubsection, we derive
such a bound in a fairly general setting. Moreover, we exactly characterize the
cases in which the bound is tight. This is a generalization ofTheorem 9.2.7 in [6]
and of results in [2, 3].

Let us first recall some basic facts concerning reversible Markov chains.
Consider an irreducible Markov chain on a finite setS. We denote byM =
(

m(x, y)
)

x,y∈S
the matrix of transition probabilities of this chain, wherem(x, y)

is the probability to move in one step fromx to y. We will always assume thatM
is ergodic (i.e., irreducible and aperiodic).

The rule of the chain can be expressed by the simple equationµ1 = µ0M ,
whereµ0 is a starting distribution onS andµ1 is the distribution obtained after
one step of the Markov chain (we think of both as row vectors).By definition,
∑

y m(x, y) = 1. Therefore, the largest eigenvalue ofM is 1 and a corresponding
right eigenvector has all its coordinates equal to1. SinceM is ergodic, it has a
unique (left and right) eigenvector corresponding to an eigenvalue with absolute
value1. We denote the unique right eigenvector(1, . . . , 1)t by 1. We denote by
π the unique left eigenvector corresponding to the eigenvalue 1 whose coordinate
sum is1. π is the stationary distribution of the Markov chain. Since weare dealing
with a Markov chain whose distributionπ is not necessarily uniform it will be
convenient to work inL2(S, π). In other words, for any two functionsf andg
on S we define the inner product〈f, g〉 =

∑

x∈S π(x)f(x)g(x). The norm off
equals‖f‖2 =

√

〈f, f〉 =
√
∑

x∈S π(x)f2(x).

Definition 5.2 A transition matrixM =
(

m(x, y)
)

x,y∈S
for a Markov chain is

reversible with respect to a probability distributionπ on S if π(x)m(x, y) =
π(y)m(y, x) holds for allx, y in S.

It is known that ifM is reversible with respect toπ, thenπ is the stationary
distribution ofM . Moreover, the corresponding operator takingL2(S, π) to itself
defined byMf(x) =

∑

y m(x, y)f(y) is self-adjoint, i.e.,〈Mf, g〉 = 〈f, Mg〉 for
all f, g. Thus, it follows thatM has a complete set of orthonormal (with respect to
the inner product defined above) eigenvectors with real eigenvalues.

Definition 5.3 If M is reversible with respect toπ andλ1 ≤ . . . ≤ λr−1 ≤ λr = 1
are the eigenvalues ofM , then thespectral gapof M is defined to beδ = min

{

| −
1 − λ1|, |1 − λr−1|

}

.
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For transition matricesM1, M2, . . . on the same spaceS, we can consider the
time-inhomogeneous Markov chain which at time0 starts in some state (perhaps
randomly) and then jumps using the matricesM1, M2, . . . in this order. In this way,
Mi will govern the jump from timei − 1 to time i. We writeIA for the indicator
function of the setA andπA for the function defined byπA(x) = IA(x)π(x) for
all x. Similarly, we defineπ(A) =

∑

x∈A π(x). The following theorem provides a
tight estimate on the probability that the inhomogeneous Markov chain stays inside
certain specified sets.

Theorem 5.4 Let M1, M2, . . . , Mk be ergodic transition matrices on the state
spaceS, all of which are reversible with respect to the same probability mea-
sureπ with full support. Letδi > 0 be the spectral gap of matrixMi and let
A0, A1, . . . , Ak be nonempty subsets ofS.

• If {Xi}k
i=0 denotes the time-inhomogeneous Markov chain using the matri-

cesM1, M2, . . . , Mk and starting according to distributionπ, thenP[Xi ∈
Ai ∀i = 0 . . . k] is at most

√

π(A0)
√

π(Ak)
k
∏

i=1

[

1 − δi

(

1 −
√

π(Ai−1)
√

π(Ai)
) ]

. (11)

• Suppose we further assume that for alli, δi < 1 and thatλi
1 > −1 + δi

(λi
1 here is the smallest eigenvalue for theith chain). Then equality in (11)

holds if and only if all the setsAi are the same setA and for alli the function
IA−π(A)1 is an eigenfunction ofMi corresponding to the eigenvalue1−δi.

• Finally, suppose even further that all the chainsMi are the same chainM .
Then there exists a constantc = c(M) < 1 such that for all setsA for which
strict inequality holds in (11) when eachAi is taken to beA, we have the
stronger inequality

P[Xi ∈ A ∀i = 0 . . . k] ≤ ckπ(A)

k
∏

i=1

[

1 − δ(1 − π(A))
]

for everyk.

Remark: Notice that if all the setsAi haveπ-measure at mostσ < 1 and all the
Mi’s have spectral gap at leastδ, then the upper bound in (11) is bounded above by

σ[σ + (1 − δ)(1 − σ)]k.

Hence, the above theorem generalizes Theorem 9.2.7 in [6] and strengthens the
estimate from [3].
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5.2 Proof of Theorem 5.1

If we look at the NICD process restricted to positionsxi0 , xi1 , . . . , xi` , we obtain
a time-inhomogeneous Markov chain{Xj}`

j=0 whereX0 is uniform on{−1, 1}n

and thè transition operators are powers of the Bonami-Beckner operator,

T i1−i0
ρ , T i2−i1

ρ , · · · , T
i`−i`−1
ρ .

Equivalently, these operators areTρi1−i0 , Tρi2−i1 , . . . , Tρi`−i`−1 . It is easy to see

that the eigenvalues ofTρ are1 > ρ > ρ2 > · · · > ρn and therefore its spectral
gap is1 − ρ. Now a protocol for thè + 1 players consists simply of̀+ 1 subsets
A0, . . . , A` of {−1, 1}n, whereAj is a set of strings in{−1, 1}n on which thejth
player outputs the bit1. Thus, eachAj has size2n−1, and the success probability
of this protocol is simply

P[Xi ∈ Ai ∀i = 0 . . . `] + P[Xi ∈ Āi ∀i = 0 . . . `].

But by Theorem 5.4 each summand is bounded by

1

2

∏̀

j=1

(

1

2
+

ρij−ij−1

2

)

,

yielding our desired upper bound. It is easy to check that this is precisely the
success probability of a simple dictator protocol.

To complete the proof of the first part it remains to show that every other
protocol does strictly worse. By the second statement of Theorem 5.4 (and the
fact that the simple dictator protocol achieves the upper bound in Theorem 5.4),
we can first conclude that any optimal protocol is a simple protocol, i.e., all the
setsAj are identical. LetA be the set corresponding to any potentially optimal
simple protocol. By Theorem 5.4 again the functionIA − (|A|2−n)1 = IA − 1

21

must be an eigenfunction ofTρr for somer corresponding to its second largest
eigenvalueρr. This implies thatf = 2IA − 1 must be a balancedlinear func-
tion, f(x) =

∑

|S|=1 f̂(S)xS . It is well known (see, e.g., [32]) that the only such
Boolean functions are dictators. This completes the proof of the first part. The
second part of the theorem follows immediately from the third part of Theorem 5.4

5.3 Inhomogeneous Markov chains

In order to prove Theorem 5.4 we need a lemma that provides a bound for one step
of the Markov chain.
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Lemma 5.5 Let M be an ergodic transition matrix for a Markov chain on the set
S that is reversible with respect to the probability measureπ and has spectral gap
δ > 0. LetA1 andA2 be two subsets ofS and letP1 andP2 be the corresponding
projection operators onL2(S, π) (i.e.,Pif(x) = f(x)IAi(x) for every functionf
onS). Then

‖P1MP2‖ ≤ 1 − δ
(

1 −
√

π(A1)
√

π(A2)
)

,

where the norm on the left is the operator norm for operators from L2(S, π) into
itself.

Further, suppose we assume thatδ < 1 and thatλ1 > −1 + δ. Then
equality holds above if and only ifA1 = A2 and the functionIA1 − π(A1)1 is an
eigenfunction ofM corresponding to1 − δ.

Proof: Let e1, . . . , er−1, er = 1 be an orthonormal basis of right eigenvectors of
M with corresponding eigenvaluesλ1 ≤ . . . ≤ λr−1 ≤ λr = 1. For a functionf
onS, denote bysupp(f) = {x ∈ S | f(x) 6= 0}. It is easy to see that‖P1MP2‖ is
given by

sup
{

|〈f1, Mf2〉| : ‖f1‖2 = 1, ‖f2‖2 = 1, supp(f1) ⊆ A1, supp(f2) ⊆ A2

}

.

Given suchf1 andf2, expand them as

f1 =
r
∑

i=1

uiei, f2 =
r
∑

i=1

viei

and observe that forj = 1, 2,

|〈fj,1〉| = |〈fj, IAj 〉| ≤ ‖fj‖2‖IAj‖2 =
√

π(Aj). (12)

But now by the orthonormality of theei’s we have

|〈f1, Mf2〉| =

∣

∣

∣

∣

∣

r
∑

i=1

λiuivi

∣

∣

∣

∣

∣

r
∑

i=1

|λiuivi| (13)

≤ |〈f1,1〉〈f2,1〉| + (1 − δ)
∑

i≤r−1

|uivi| (14)

≤ |〈f1,1〉〈f2,1〉| + (1 − δ)(1 − |〈f1,1〉〈f2,1〉|) (15)

≤
√

π(A1)
√

π(A2) + (1 − δ)
(

1 −
√

π(A1)
√

π(A2)
)

(16)

= 1 − δ
(

1 −
√

π(A1)
√

π(A2)
)

.
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For the third inequality, we used that
∑

i |uivi| ≤ 1 which follows fromf1 andf2

having norm 1.
As for the second part of the lemma, if equality holds then allthe derived

inequalities must be equalities. In particular, if (12) holds as an equality, it follows
that for j = 1, 2, fj = ±

(

1/
√

π(Aj)
)

IAj . Sinceδ < 1 is assumed, it follows
from the third inequality in (13) that we must also have that

∑

i |uivi| = 1 from
which we can conclude that|ui| = |vi| for all i. Since−1 + δ is not an eigenvalue,
for the second inequality in (13) to hold we must have that theonly nonzeroui’s
(or vi’s) correspond to the eigenvalues1 and1 − δ. Next, for the first inequality
in (13) to hold, we must have thatu = (u1, . . . , un) = ±v = (v1, . . . , vn) sinceλi

can only be1 or 1 − δ and|ui| = |vi| for eachi. This gives us thatf1 = ±f2 and
thereforeA1 = A2.

Finally, we also get thatf1 −〈f1,1〉1 is an eigenfunction ofM correspond-
ing to the eigenvalue1 − δ. To conclude the proof, note that ifA1 = A2 and
IA1 − π(A1)1 is an eigenfunction ofM corresponding to1 − δ, then it is easy
to see that when we takef1 = f2 = IA1 − π(A1)1, all inequalities in our proof
become equalities.

Proof of Theorem 5.4: Let Pi denote the projection ontoAi, as in Lemma 5.5. It
is easy to see that

P[Xi ∈ Ai ∀i = 0 . . . k] = πA0P0M1P1M2 · · ·Pk−1MkPkIAk
.

Rewriting in terms of the inner product, this is equal to

〈IA0 , (P0M1P1M2 · · ·Pk−1MkPk)IAk
〉.

By Cauchy-Schwarz it is at most

‖IA0‖2‖IAk
‖2‖P0M1P1M2 · · ·Pk−1MkPk‖,

where the third factor is the norm ofP0M1P1M2 · · ·Pk−1MkPk as an operator
from L2(S, π) to itself. SinceP 2

i = Pi (being a projection), this in turn is equal to

√

π(A0)
√

π(Ak)‖(P0M1P1)(P1M2P2) · · · (Pk−1MkPk)‖.

By Lemma 5.5 we have that for alli = 1, . . . , k

‖Pi−1M`Pi‖ ≤ 1 − δi

(

1 −
√

π(Ai−1)
√

π(Ai)
)

.
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Hence

∥

∥

∥

k
∏

i=1

(Pi−1MPi)
∥

∥

∥ ≤
k
∏

i=1

[

1 − δi

(

1 −
√

π(Ai−1)
√

π(Ai)
)]

, (17)

and the first part of the theorem is complete.
For the second statement note that if we have equality, then we must also

have equality for each of the norms‖Pi−1MiPi‖. This implies by Lemma 5.5 that
all the setsAi are the same and thatIAi − π(Ai)1 is in the1 − δi eigenspace of
Mi for all i. For the converse, suppose on the other hand thatAi = A for all i and
IA − π(A)1 is in the1 − δi eigenspace ofMi. Note that

Pi−1MiPiIA = Pi−1MiIA = Pi−1Mi

(

π(A)1 + (IA − π(A)1)
)

= Pi−1

(

π(A)1 + (1 − δi)(IA − π(A)1)
)

= π(A)IA + (1 − δi)IA − (1 − δi)π(A)IA

=
(

1 − δi(1 − π(A)
)

IA.

SinceP 2
i = Pi, we can use induction to show that

πA0P0M1P1M2 · · ·Pk−1MkPkIAk
= πA

[

k
∏

i=1

(Pi−1MiPi)
]

IA

= π(A)
k
∏

i=1

(

1 − δi(1 − π(A)
)

,

completing the proof of the second statement.
In order to prove the third statement, first note that if strict inequality holds

in (11) when eachAi is taken to beA, then, by the second part of this result, the
functionIA−π(A)1 is not an eigenfunction ofM corresponding to the eigenvalue
1− δ. It then follows from Lemma 5.5 that‖PMP‖ < 1− δ(1− π(A)) whereP
is the corresponding projection ontoA. The result now immediately follows from
(17).

6 NICD on general trees

In this section we give some results for the NICD problem on general trees. Theo-
rem 1.3 in [31] stated that for the star graph whereS is the set of leaves, the simple
dictator protocols constitute all optimal protocols when|S| = 2 or |S| = 3. The
proof of that result immediately leads to the following.
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Theorem 6.1 For any NICD instance(T, ρ, n, S) in which|S| = 2 or |S| = 3 the
simple dictator protocols constitute all optimal protocols.

6.1 Example with no simple optimal protocols

It appears that the problem of NICD in general is quite difficult. In particular, using
Theorem 5.1 we show that there are instances for which there is no simple optimal
protocol. Note the contrast with the case of stars, where it is proven in [31] that
there is always a simple optimal protocol.

Proposition 6.2 There exists an instance(T, ρ, n, S) for which there is no simple
optimal protocol. In fact, given anyρ and anyn ≥ 4, there are integersk1 andk2,
such that ifT is a k1-leaf star together with a path of lengthk2 coming out of the
center of the star (see Figure 1) andS is the full vertex set ofT , then this instance
has no simple optimal protocol.

Proof: Fix ρ andn ≥ 4. Recall that we writeε = 1
2 − 1

2ρ and letBin(3, ε) be a
binomially distributed random variable with parameters3 andε. As was observed
in [31],

P(Stark, ρ, n, Sk, MAJ3) ≥
1

8
P[Bin(3, ε) ≤ 1]k.

To see this, note that with probability1/8 the center of the star gets the string
(1, 1, 1). Since

P[Bin(3, ε) ≤ 1] = (1 − ε)2(1 + 2ε) > 1 − ε

for all ε < 1/2, we can pickk1 large enough so that

P(Stark1 , ρ, n, Sk1 , MAJ3) ≥ 8(1 − ε)k1 .

Next, by the last statement in Theorem 5.4, there existsc2 = c2(ρ, n) > 1
such that for all balanced non-dictator functionsf onn bits

P(Pathk, ρ, n, Pathk,D) ≥ P(Pathk, ρ, n, Pathk, f)ck
2.

Choosek2 large enough so that

(1 − ε)k1ck2
2 > 1.

Now let T be the graph consisting of a star withk1 leaves and a path of
lengthk2 coming out of its center (see Figure 1), and letS = V (T ). We claim
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that the NICD instance(T, ρ, n, S) has no simple optimal protocol. We first ob-
serve that if it did, this protocol would have to beD, i.e., P(T, ρ, n, S, f) <
P(T, ρ, n, S,D) for all simple protocolsf which are not equivalent to dictator.
This is because the quantity on the right is(1− ε)k1+k2 and the quantity on the left
is at mostP(Pathk2 , ρ, n, Pathk2 , f) which in turn by definition ofc2 is at most
(1 − ε)k2/ck2

2 . This is strictly less than(1 − ε)k1+k2 by the choice ofk2.
To complete the proof it remains to show thatD is not an optimal protocol.

Consider the protocol wherek2 vertices on the path (including the star’s center) use
the dictatorD on the first bit and thek1 leaves of the star use the protocolMAJ3 on
the last three out ofn bits. Sincen ≥ 4, these vertices use completely independent
bits from those that vertices on the path are using. We will show that this protocol,
which we callf , does better thanD.

Let A be the event that all vertices on the path have their first bit being 1.
Let B be the event that each of thek1 leaf vertices of the star have 1 as the majority
of their last 3 bits. Note thatP (A) = 1

2(1 − ε)k2 and that, by definition ofk1,
P (B) ≥ 4(1 − ε)k1 . Now the protocolf succeeds if bothA andB occur. Since
A andB are independent (as distinct bits are used),f succeeds with probability at
least2(1 − ε)k2(1 − ε)k1 which is twice the probability that the dictator protocol
succeeds.

Remark: It was not necessary to use the last 3 bits for thek1 vertices; we could
have used the first 3 (and hadn = 3). ThenA andB would not be independent but
it is easy to show (using the FKG inequality) thatA andB would then be positively
correlated which is all that is needed.

6.2 Optimal monotone protocols always exist

Next, we present some general statements about what optimalprotocols must look
like. Using discrete symmetrization together with the FKG inequality we prove the
following theorem, which extends one of the results in [31] from the case of the
star to the case of general trees.

Theorem 6.3 For all NICD instances on trees, there is an optimal protocolin
which all players use a monotone function.

One of the tools that we need to prove Theorem 6.3 is the correlation in-
equality obtained by Fortuin et al. [21] which is usually called the FKG inequality.
We first recall some basic definitions.
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Let D be a finite linearly ordered set. Given two stringsx, y in Dm we write
x ≤ y iff xi ≤ yi for all indices1 ≤ i ≤ m. We denote byx ∨ y andx ∧ y
two strings whoseith coordinates aremax(xi, yi) andmin(xi, yi) respectively. A
probability measureµ : Dm → R

≥0 is calledlog-supermodularif

µ(η)µ(δ) ≤ µ(η ∨ δ)µ(η ∧ δ) (18)

for all η, δ ∈ Dm. If µ satisfies (18) we will also say thatµ satisfies the FKG
lattice condition. A subsetA ⊆ Dm is increasingif wheneverx ∈ A andx ≤ y
then alsoy ∈ A. Similarly,A is decreasingif x ∈ A andy ≤ x imply thaty ∈ A.
Finally, the measure ofA is µ(A) =

∑

x∈A µ(x). The following well known fact
is a special case of the FKG inequality.

Proposition 6.4 Let µ : {−1, 1}m → R
≥0 be a log-supermodular probability

measure on the discrete cube. IfA andB are two increasing subsets of{−1, 1}m

andC is a decreasing subset then

µ(A ∩ B) ≥ µ(A) · µ(B) and µ(A ∩ C) ≤ µ(A) · µ(C).

It is known that in order to prove thatµ satisfies the FKG lattice condition, it
suffices to check this for “smallest boxes” in the lattice, i.e., forη andδ that agree
at all but two locations. Since we don’t know a reference, forcompleteness we
prove this here.

Lemma 6.5 Letµ be a measure with full support. Thenµ satisfies the FKG lattice
condition (18) if and only if it satisfies (18) for allη andδ that agree at all but two
locations.

Proof: We will prove the non-trivial direction by induction ond = d(η, δ), the
Hamming distance betweenη andδ. The cases whered(η, δ) ≤ 2 follow from the
assumption. The proof will proceed by induction ond. Let d = d(η, δ) ≥ 3 and
assume the claim holds for all smallerd. We can partition the set of coordinates
into 3 subsetsI=, I{η>δ} andI{η<δ}, whereη andδ agree, whereη > δ and where
η < δ respectively. Without loss of generality|I{η>δ}| ≥ 2. Let i ∈ I{η>δ} and let
η′ be obtained fromη by settingη′i = δi and lettingη′j = ηj otherwise. Then since
η′ ∧ δ = η ∧ δ,

µ(η ∧ δ)µ(η ∨ δ)

µ(η)µ(δ)
=

(

µ(η′ ∧ δ)µ(η′ ∨ δ)

µ(η′)µ(δ)

)

×
(

µ(η′)µ(η ∨ δ)

µ(η)µ(η′ ∨ δ)

)

.

The first factor is≥ 1 by the induction hypothesis sinced(δ, η′) = d(δ, η)−1. Note
thatη′ = η ∧ (η′ ∨ δ), η ∨ δ = η ∨ (η′ ∨ δ), andd(η′, η ∨ δ) = 1 + |I{η<δ}| < d.
Therefore by induction, the second term is also≥ 1.
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The above tools together with symmetrization now allow us toprove Theo-
rem 6.3.

Proof of Theorem 6.3: The general strategy of the proof is a shifting technique
together with using FKG to prove that this shifting improvesthings.

Recall that we have a treeT with m vertices,0 < ρ < 1, and a probability
measureP onα ∈ {−1, 1}V (T ) which is defined by

P(α) = 1
2(1

2 + 1
2ρ)A(α)(1

2 − 1
2ρ)B(α),

whereA(α) is the number of pairs of neighbors whereα agrees andB(α) is the
number of pairs of neighbors whereα disagrees. To use Proposition 6.4 we need
to show thatP is a log-supermodular probability measure.

Lemma 6.5 tells us that we need only check the FKG lattice condition for
configurations that differ in only two sites. Note that (18) holds trivially if α ≤ β
or β ≤ α. Thus it suffices to consider the case where there are two verticesu, v
of T on whichα andβ disagree and thatαv = βu = 1 andαu = βv = −1. If
these vertices are not neighbors then by definition ofP we have thatP(α)P(β) =
P(α ∨ β)P(α ∧ β). Similarly, if u is a neighbor ofv in T , then one can easily
check that

P(α)P(β)

P(α ∨ β)P(α ∧ β)
=

(

1 − ρ

1 + ρ

)2

≤ 1.

Hence we conclude that measureP is log-supermodular.
Letf1, . . . , fk be the functions used by the parties at nodesS = {v1, . . . , vk}.

We will shift the functions in the sense of Kleitman’s monotone “down-shifting” [29].
Namely, define functionsg1, . . . , gk as follows: If

fi(−1, x2, . . . , xn) = fi(1, x2, . . . , xn)

then we set

gi(−1, x2, . . . , xn) = gi(1, x2, . . . , xn) = fi(−1, x2, . . . , xn)

= fi(1, x2, . . . , xn).

Otherwise, we setgi(−1, x2, . . . , xn) = −1 andgi(1, x2, . . . , xn) = 1. We claim
that the agreement probability for thegi’s is at least the agreement probability for
thefi’s. Repeating this argument for all bit locations will provethat there exists an
optimal protocol for which all functions are monotone.

To prove the claim we condition on the value ofx2, . . . , xn at all the nodes
vi and letαi be the remaining bit atvi. For simplicity we will denote the functions
of this bit byfi andgi.
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Let

S1 = {i : fi(−1) = fi(1) = 1}, S2 = {i : fi(−1) = fi(1) = −1},

S3 = {i : fi(−1) = −1, fi(1) = 1}, S4 = {i : fi(−1) = 1, fi(1) = −1}.
If S1 andS2 are both nonempty, then the agreement probability for bothf

andg is 0. Now without loss of generality, assume thatS2 is empty. Assume first
that S1 is nonempty. Then the agreement probability forg is P[αi = 1 ∀i ∈
S3 ∪ S4) while the agreement probability forf is P[αi = 1 ∀i ∈ S3, αi =
−1 ∀i ∈ S4]. By FKG, the first probability is at leastP[αi = 1 ∀i ∈ S3]P[αi =
1 ∀i ∈ S4] while the second probability is at mostP[αi = 1 ∀i ∈ S3]P[αi =
−1 ∀i ∈ S4]. By symmetry, the two second factors are the same, completing the
proof whenS1 is nonempty. An easy modification, left to the reader, takes care of
the case whenS1 is also empty.

Remark: The last step in the proof above may be replaced by a more direct cal-
culation showing that in fact we have strict inequality unless the setsU ′, U ′′ are
empty. This is similar to the monotonicity proof in [31]. This implies that ev-
ery optimal protocol must consist of monotone functions (ingeneral, it may be
monotone increasing in some coordinates and monotone decreasing in the other
coordinates).

Remark: The above proof works in a much more general setup than just our tree-
indexed Markov chain case. One can take any measure on{−1, 1}m satisfying
the FKG lattice condition with all marginals having mean0, taken independent
copies of this and define everything analogously in this moregeneral framework.
The proof of Theorem 6.3 extends to this context.

6.3 Monotonicity in the number of parties

Our last theorem yields a certain monotonicity when comparing the simple dictator
protocolD and the simple protocolMAJr, which is majority on the firstr bits. The
result is not very strong – it is interesting mainly because it allows to compare
protocols behavior for different number of parties. It shows that if MAJr is a
better protocol than dictatorship fork1 parties on the star, then it is also better than
dictatorship fork2 parties ifk2 > k1.

Theorem 6.6 Fix ρ andn and supposek1 andr are such that

P(Stark1 , ρ, n, Stark1 , MAJr) ≥ (>) P(Stark1 , ρ, n, Stark1 ,D).
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Then for allk2 > k1,

P(Stark2 , ρ, n, Stark2 , MAJr) ≥ (>) P(Stark2 , ρ, n, Stark2 ,D).

Note that it suffices to prove the theorem assumingr = n. In order to prove
the theorem, we first introduce or recall some necessary definitions including the
notion of stochastic domination.

Definitions and set-up: We define an ordering on{0, 1, . . . , n}I , writing η � δ
if ηi ≤ δi for all i ∈ I. If ν andµ are two probability measures on{0, 1, . . . , n}I ,
we sayµ stochastically dominatesν, written ν � µ, if there exists a probability
measurem on {0, 1, . . . , n}I × {0, 1, . . . , n}I whose first and second marginals
are respectivelyν andµ and such thatm is supported on{(η, δ) : η � δ}. Fix
ρ, n ≥ 3, and any treeT . Let our tree-indexed Markov chain be{xv}v∈T , where
xv ∈ {−1, 1}n for eachv ∈ T . Let A ⊆ {−1, 1}n be the strings which have a
majority of 1’s. LetXv denote the number of 1’s inxv. GivenS ⊆ T , letµS be the
conditional distribution of{Xv}v∈T given∩v∈S{xv ∈ A} (= ∩v∈S{Xv ≥ n/2}).

The following lemma is key and might be of interest in itself.It can be used
to prove (perhaps less natural) results analogous to Theorem 6.6 for general trees.
Its proof will be given later.

Lemma 6.7 In the above setup, ifS1 ⊆ S2 ⊆ T , we have

µS1 � µS2 .

Before proving the lemma or showing how it implies Theorem 6.6, a few
remarks are in order.

• Note that if{xk} is a Markov chain on{−1, 1}n with transition matrixTρ,
then if we letXk be the number of 1’s inxk, then{Xk} is also a Markov
chain on the state space{0, 1, . . . , n} (although it is certainly not true in
general that a function of a Markov chain is a Markov chain.) In this way,
with a slight abuse of notation, we can think ofTρ as a transition matrix for
{Xk} as well as for{xk}. In particular, given a probability distributionµ on
{0, 1, . . . , n} we will write µTρ for the probability measure on{0, 1, . . . , n}
given by one step of the Markov chain.

• We next recall the easy fact that the Markov chainTρ on {−1, 1}n is at-
tractivemeaning that ifν andµ are probability measures on{−1, 1}n with
ν � µ, then it follows thatνTρ � µTρ. (This is easily verified for one co-
ordinate and the one coordinate case easily implies then-dimensional case.)
The same is true for the Markov chain{Xk} on{0, 1, . . . , n}.
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Along with these observations, Lemma 6.7 is enough to prove Theorem 6.6:

Proof: Let v0, v1, . . . , vk be the vertices ofStark, wherev0 is the center. Clearly,
P(Stark, ρ, Stark,D) = (1

2 + 1
2ρ)k. On the other hand, a little thought reveals that

P(Stark, ρ, n, Stark, MAJn) =
k−1
∏

`=0

(µ{v0,...,v`} |v0 Tρ)(A),

where byµ |v we mean thexv marginal of a distributionµ (recall thatA ⊆
{−1, 1}n is the strings which have a majority of 1’s). By Lemma 6.7 and the
attractivity of the process, the terms(µ{v0,...,v`} |v0 Tρ)(A) (which do not depend
onk as long as̀ ≤ k) are nondecreasing iǹ. Therefore if

P(Stark, ρ, n, Stark, MAJn) ≥ (>)(1
2 + 1

2ρ)k,

then(µ{v0,...,vk−1} |v0 Tρ)(A) ≥ (>)1
2 + 1

2ρ which implies in turn that for every
k′ ≥ k, (µ{v0,...,vk′−1} |v0 Tρ)(A) ≥ (>)1

2 + 1
2ρ and thus for allk′ > k

P(Stark′ , ρ, n, Stark′ , MAJn) ≥ (>)(1
2 + 1

2ρ)k′
.

Before proving Lemma 6.7, we recall the definition ofpositive associativity.
If µ is a probability measure on{0, 1, . . . , n}I , µ is said to bepositively associated
if any two monotone functions on{0, 1, . . . , n}I are positively correlated. This is
equivalent to the fact that ifB ⊆ {0, 1, . . . , n}I is an upset, thenµ conditioned on
B is stochastically larger thanµ. (It is immediate to check that this last condition
is equivalent to monotoneeventsbeing positively correlated. However, it is well
known that monotone events being positively correlated implies that monotone
functions are positively correlated; this is done by writing out a monotone function
as a positive linear combination of indicator functions.)

Proof of Lemma 6.7: It suffices to prove this whenS2 is S1 plus an extra vertex
z. We claim that for any setS, µS is positively associated. Given this claim, we
form µS2 by first conditioning on∩v∈S1{xv ∈ A}, giving us the measureµS1 , and
then further conditioning onxz ∈ A. By the claim,µS1 is positively associated
and hence the last further conditioning onXz ∈ A stochastically increases the
measure, givingµS1 � µS2 .
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To prove the claim thatµS is positively associated, we first claim that the
distribution of{Xv}v∈T , which is just a probability measure on{0, 1, . . . , n}T ,
satisfies the FKG lattice condition (18).

Assuming the FKG lattice condition holds for{Xv}v∈T , it is easy to see that
the same inequality holds when we condition on the sublattice∩v∈S{Xv ≥ n/2}
(it is crucial here that the set∩v∈S{Xv ≥ n/2} is a sublattice meaning thatη, δ
being in this set implies thatη ∨ δ andη ∧ δ are also in this set).

The FKG theorem, which says that the FKG lattice condition (for any dis-
tributive lattice) implies positive association, can now be applied to this condi-
tioned measure to conclude that the conditioned measure haspositive association,
as desired.

Finally, by Lemma 6.5, in order to prove that the distribution of {Xv}v∈T

satisfies the FKG lattice condition, it is enough to check this for “smallest boxes” in
the lattice, i.e., forη andδ that agree at all but two locations. If these two locations
are not neighbors, it is easy to check that we have equality. If they are neighbors,
it easily comes down to checking that ifa > b andc > d, then

P[X1 = c|X0 = a]P[X1 = d|X0 = b]

is greater or equal to

P[X1 = d|X0 = a]P[X1 = c|X0 = b]

where{X0, X1} is the distribution of our Markov chain on{0, 1, . . . , n} restricted
to two consecutive times. It is straightforward to check that for ρ ∈ (0, 1), the
above Markov chain can be embedded into a continuous time Markov chain on
{0, 1, . . . , n} which only takes steps of size1. The last claim now follows from
Lemma 6.8 stated and proved below.

Lemma 6.8 If {Xt} is a continuous time Markov chain on{0, 1, . . . , n} which
only takes steps of size 1, then ifa > b andc > d, it follows that

P[X1 = c|X0 = a]P[X1 = d|X0 = b]

is greater or equal to

P[X1 = d|X0 = a]P[X1 = c|X0 = b]

(Of course, by time scaling,X1 can be replaced by any timeXt.)
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Proof: Let Ra,c be the set of all possible realizations of our Markov chain during
[0, 1] starting froma and ending inc. DefineRa,d, Rb,c andRb,d analogously.
LettingPx denote the measure on paths starting fromx, we need to show that

Pa(Ra,c)Pb(Rb,d) ≥ Pa(Ra,d)Pb(Rb,c)

or equivalently that

Pa × Pb[Ra,c × Rb,d] ≥ Pa × Pb[Ra,d × Rb,c]

We do this by giving a measure preserving injection fromRa,d×Rb,c toRa,c×Rb,d.
We can ignore pairs of paths where there is a jump in both pathsat the same time
since these havePa × Pb measure 0. Given a pair of paths inRa,d × Rb,c, we
can switch the paths after their first meeting time. It is clear that this gives an
injection fromRa,d ×Rb,c to Ra,c ×Rb,d and the Markov property guarantees that
this injection is measure preserving, completing the proof.

7 Conclusions and open questions

In this paper we have exactly analyzed the NICD problem on thepath and asymp-
totically analyzed the NICD problem on the star. However, wehave seen that
results on more complicated trees may be hard to come by. Manyproblems are
still open. We list a few:

• Is it true that for every tree NICD instance, there is an optimal protocol in
which each player uses some majority rule? This question wasalready raised
in [31] for the special case of the star.

• Our analysis for the star is quite tight. However, one can askfor more. In
particular, what is the best bound that can be obtained on

rk =
M(Stark, ρ, Sk)

limn→∞
n odd

P(Stark, ρ, n, Sk, MAJn)

for fixed value ofρ. Our results show thatrk = ko(1). Is it true that
limk→∞ rk = 1?

• Finally, we would like to find more applications of the reverse Bonami-
Beckner inequality in computer science and combinatorics.

33



8 Acknowledgments

We thank David Aldous, Christer Borell, Svante Janson, Yuval Peres, and Oded
Schramm for helpful discussions. We also thank the referee for a careful reading
and a number of suggestions.

References

[1] M. Abramowitz and I. Stegun.Handbook of mathematical functions. Dover,
1972.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic simulation in
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A Proof of the reverse Bonami-Beckner inequality

Borell’s proof of the reverse Bonami-Beckner inequality [13] follows the same
lines as the traditional proofs of the usual Bonami-Becknerinequality [12, 8].
Namely, he proves the result in the casen = 1 (i.e., the “two-point inequality”)
and then shows that this can be tensored to produce the full theorem. The usual
proof of the tensoring is easily modified by replacing Minkowski’s inequality with
the reverse Minkowski inequality [25, Theorem 24]. Hence, it is enough to con-
sider functionsf : {−1, 1} → R

≥0 (i.e., n = 1). By monotonicity of norms, it
suffices to prove the inequality in the case thatρ = (1 − p)1/2/(1 − q)1/2; i.e.,
ρ2 = (1−p)/(1−q). Finally, it turns out that it suffices to consider the case where
0 < q < p < 1 (see Lemma A.3).

Lemma A.1 Let f : {−1, 1} → R
≥0 be a nonnegative function,0 < q < p < 1,

andρ2 = (1 − p)/(1 − q). Then‖Tρf‖q ≥ ‖f‖p.

Proof (Borell): If f is identically zero the lemma is trivial. Otherwise, using ho-
mogeneity we may assume thatf(x) = 1 + ax for somea ∈ [−1, 1]. We shall
consider only the casea ∈ (−1, 1); the result at the endpoints follows by continu-
ity. Note thatTρf(x) = 1 + ρax.

Using the Taylor series expansion for(1 + a)q around 1, we get

‖Tρf‖q
q =

1

2
((1 + aρ)q + (1 − aρ)q) (19)

=
1

2

(

(1 +

∞
∑

n=1

(

q

n

)

anρn) + (1 +

∞
∑

n=1

(

q

n

)

(−a)nρn)

)

= 1 +
∞
∑

n=1

(

q

2n

)

a2nρ2n. (20)

(Absolute convergence for|a| < 1 lets us rearrange the series.) Sincep > q, it
holds for allx > −1 that(1+x)p/q ≥ 1+px/q. In particular, from (20) we obtain
that

‖Tρf‖p
q =

(

1 +
∞
∑

n=1

(

q

2n

)

a2nρ2n

)p/q

≥ 1 +
∞
∑

n=1

p

q

(

q

2n

)

a2nρ2n. (21)

Similarly to (20) we can write

‖f‖p
p = 1 +

∞
∑

n=1

(

p

2n

)

a2n. (22)
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From (21) and (22) we see that in order to prove the theorem it suffices to show
that for alln ≥ 1

p

q

(

q

2n

)

ρ2n ≥
(

p

2n

)

. (23)

Simplifying (23) we see the inequality

(q − 1) · · · (q − 2n + 1)ρ2n ≥ (p − 1) · · · (p − 2n + 1),

which is equivalent in turn to

(1 − q) · · · (2n − 1 − q)ρ2n ≤ (1 − p) · · · (2n − 1 − p). (24)

Note that we have(1 − p) = (1 − q)ρ2. Inequality (23) would follow if we could
show that for allm ≥ 2 it holds thatρ(m − q) ≤ (m − p). Taking the square and
recalling thatρ2 = (1 − p)/(1 − q) we obtain the inequality

(1 − p)(m − q)2 ≤ (m − p)2(1 − q),

which is equivalent to

m2 − 2m + p + q − pq ≥ 0.

The last inequality holds for allm ≥ 2 thus completing the proof.

We also prove the two-function version promised in Section 3.1. Recall first
the reverse Ḧolder inequality [25, Theorem 13] for discrete measure spaces:

Lemma A.2 Let f andg be nonnegative functions and suppose1/p + 1/p′ = 1,
wherep < 1 (p′ = 0 if p = 0). Then

E[fg] = ‖fg‖1 ≥ ‖f‖p‖g‖p′ ,

where equality holds ifg = fp/p′ .

Proof of Corollary 3.3: By definition, the left-hand side of (2) isE[fTρg]. We
claim it suffices to prove (2) forρ = (1− p)1/2(1− q)1/2. Indeed, otherwise, letr
satisfyρ = (1− p)1/2(1− r)1/2 and note thatr ≥ q. Then, assuming (2) holds for
p, r andρ we obtain:

E[fTρg] ≥ ‖f‖p‖g‖r ≥ ‖f‖p‖g‖q,
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as needed.
We now assumeρ = (1 − p)1/2(1 − q)1/2. Let p′ satisfy1/p + 1/p′ = 1.

Applying the reverse Ḧolder inequality we get thatE[fTρg] ≥ ‖f‖p‖Tρg‖p′ . Note
that, since1/(1 − p′) = 1 − p, the fact thatρ = (1 − p)1/2(1 − q)1/2 impliesρ =
(1 − q)1/2(1 − p′)−1/2. Therefore, using the reverse Bonami-Beckner inequality
with p′ ≤ q ≤ 1, we conclude that

E[f(x)g(y)] ≥ ‖f‖p‖Tρg‖p′ ≥ ‖f‖p‖g‖q.

Lemma A.3 It suffices to prove (1) for0 < q < p < 1.

Proof: Note first that the casep = 1 follows from the casep < 1 by continuity.
Recall that1− p = ρ2(1− q). Thus,p > q. Suppose (1) holds for0 < q < p < 1.
Then by continuity we obtain (1) for0 ≤ q < p < 1. From1 − p = ρ2(1 − q), it
follows that1 − q′ = 1/(1 − q) = ρ2/(1 − p) = ρ2(1 − p′). Therefore ifp ≤ 0,
thenp′ = 1− 1/(1− p) ≥ 0 andq′ = 1− ρ2/(1− p) > p′ ≥ 0. We now conclude
that if f is non-negative, then

‖Tρf‖q = inf{‖gTρf‖1 : ‖g‖q′ = 1, g ≥ 0} (by reverse Ḧolder)

= inf{‖fTρg‖1 : ‖g‖q′ = 1, g ≥ 0} (by reversibility)

≥ inf{‖f‖p‖Tρg‖p′ : ‖g‖q′ = 1, g ≥ 0} (by reverse Ḧolder)

≥ ‖f‖p inf{‖g‖q′ : ‖g‖q′ = 1, g ≥ 0} = ‖f‖p

(by (1) for0 ≤ p′ < q′ < 1).

We have thus obtained that (1) holds forp ≤ 0. The remaining case isp > 0 > q.
Let r = 0 and chooseρ1, ρ2 such that(1−p) = ρ2

2(1−r) and(1−r) = ρ2
1(1−q).

Note that0 < ρ1, ρ2 < 1 and thatρ = ρ1ρ2. The latter equality implies that
Tρ = Tρ1Tρ2 (this is known as the “semi-group property”). Now

‖Tρf‖q = ‖Tρ1Tρ2f‖q ≥ ‖Tρ2f‖r ≥ ‖f‖p,

where the first inequality follows sinceq < r ≤ 0 and the second sincep > r ≥ 0.
We have thus completed the proof.
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