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Causal inference often relies on the counterfactual framework, which requires that treatment assignment is
independent of the outcome, known as strong ignorability. Approaches to enforcing strong ignorability in causal
analyses of observational data include weighting and matching methods. Effect estimates, such as the average
treatment effect (ATE), are then estimated as expectations under the re-weighted or matched distribution, P. The
choice of P is important and can impact the interpretation of the effect estimate and the variance of effect
estimates. In this work, instead of specifying P, we learn a distribution that simultaneously maximizes coverage
and minimizes variance of ATE estimates. In order to learn this distribution, this research proposes a generative
adversarial network (GAN)-based model called the Counterfactual y-GAN (cGAN), which also learns feature-
balancing weights and supports unbiased causal estimation in the absence of unobserved confounding. Our
model minimizes the Pearson y2-divergence, which we show simultaneously maximizes coverage and minimizes
the variance of importance sampling estimates. To our knowledge, this is the first such application of the Pearson
x?-divergence. We demonstrate the effectiveness of cGAN in achieving feature balance relative to established

weighting methods in simulation and with real-world medical data.

1. Introduction

Counterfactual Causal Inference. In biomedicine, causal assess-
ment often relies on the framework of counterfactual inference. This
framework requires that causal effects are estimated by contrasting the
distribution of outcomes under different treatments (T) [9]. Under the
counterfactual theory, each individual, i, has a potential outcome (Y%)
given that they received a treatment (T = 1) and a control (T = 0). For
example, the treatment effect of metformin on the outcome of change in
fasting blood glucose levels would be evaluated as the difference in
values for the same individual when taking and not taking metformin.
These potential outcomes are given by Y and Y{, respectively. This
framework seeks to contrast the outcome, Y for an individual under
these two states [38]. The causal effect of the treatment on the outcome
is then summarized by calculating population-level effect estimates,
such as the average treatment effect (ATE). This is defined as the ex-
pected difference in outcomes over all individuals (Eq. 1).

ATE = E[Y — Yo = E[Y] - E[Y)] @

However, the estimation of causal effects from these potential out-
comes requires access to the outcome for the state in which units were
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not assigned. These are known as counterfactuals, as they are contrary to
reality. In practice, counterfactuals are never observed as a single in-
dividual (or population) cannot simultaneously be both treated and
untreated. This is known as the ’fundamental problem of causal in-
ference.” As such, causal assessments may rely on approximations that
employ an additional population that serves as a proxy for the un-
observed states [16]. These approximations seek to construct popula-
tions such that the observed ATE, ATE, equals the true ATE that would
arise from a counterfactual population. In other words, we seek an ATE
that is unbiased.

A sufficient condition for unbiased ATE estimation is that
E[XIT = 1] = E[%IT = 0] and E[YIT = 0] = E[YIT = 1] [25]. Within
the counterfactual framework, this equality is central to the assumption
of strong ignorability (Eq. 2) [35].

YD), %011 T (2)

This assumption states a unit’s assignment to a treatment is in-
dependent of that unit’s potential outcomes, Y;, and that treatment as-
signment is, therefore, ignorable. Causal claims borne from data that
satisfy this requirement are regarded as unbiased as all confounding
factors that could induce a dependence between Y; and T; are equally
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represented in the treatment and comparator arms [38]. Consequently,
this means that the distribution of features is the same in both arms and
features are said to be balanced. Other assumptions, such as positivity
and the Stable Unit Treatment Value Assumption (SUTVA), are also
necessary and assumed to be true [39].

Counterfactual Inference from Biomedical Data. In biomedicine,
the current gold-standard for upholding strong ignorability in counter-
factual inference is randomized experimentation, wherein the random
allocation of study units to treatment or control arms eliminates con-
founding.[38]. However, randomized experiments, including rando-
mized controlled trials (RCTs), may be expensive, time-consuming, and
ethically fraught [6]. Furthermore, RCTs often enforce unrealistic as-
sumptions that impede the generalization of causal knowledge to the real
world [4]. Observational data is regarded as a more externally-valid
source from which to generate causal knowledge but, in the absence of
randomization to treatment, strong ignorability cannot be guaranteed. As
such, causal claims from observational data sources may be spurious or
misleading. When not randomized, observational data may be manipu-
lated such that the strong ignorability assumption is upheld and causal
claims are unbiased in the absence of unobserved confounders.

Matching and weighting are popular pre-analysis manipulations to
approximate the unconditional form of strong ignorability in observa-
tional populations. These methods create pseudo-populations in which
the assumption is met without need for further manipulation [37]. This is
opposed to methods of statistical adjustment, which occur peri-analysis,
and approximate the conditional form of strong ignorability [27]. Ar-
guably, the most common strategy for weighting is the inverse probability
of treatment weighting (IPW) [43], though other methods include the di-
rect minimization of imbalance [10,19,20] or weighting by the odds of
treatment, kernel weighting, and overlap weighting [36,15,14,28,22].

Limitations to Counterfactual Inference from Observational Data.
A commonality among these methods for observational data is that they
implicitly or explicitly all specify a distribution function, P, that the ex-
pectation in Eq. 1 is taken with respect to. This distribution is often the
distribution associated with the treated (p, (x)), the controls (p,(x)), or a
combination thereof (e.g. %pl ) + %pz (x)). However, this choice of dis-
tribution can lead to high variance effect estimates in circumstances where
there are regions of poor overlapping support between the treated and
untreated populations. An effect of this is often observed in the context of
IPW analyses with propensity scores near zero or one [23]. This may result
in unstable downstream causal effect estimates and poor coverage of
feature space, which may impact the validity of the causal effect estimate.

Finding Comparable Cohorts in Observational Data. In this
work, we instead construct an implicit distribution, P, that focuses on
the regions of the sample space with significant overlap between the
treated and untreated populations. Such a construction involves an
inherent trade-off between coverage and variance. We propose the
Counterfactual y-GAN (cGAN) that uses an adversarial approach to
learn stable, feature-balancing weights without reliance on the pro-
pensity score. The cGAN utilizes a unique architecture which identifies
a target distribution that minimizes the importance sampling variance
for approximations of E[Y;IT = 1] and E[Y,IT = 0]. This objective si-
multaneously encourages coverage and identifies the importance sam-
pling weights that result in pseudo-populations that satisfy the un-
conditional form of strong ignorability.

This paper proceeds as follows: Section 2 defines the model and
learning procedures, Section 3 presents an evaluation of this model
through a simulation and an application to real-world clinical data, and
finally, Section 4 present the results, and Section 5 discusses open is-
sues, limitations of the model, and future work.

2. The model

We introduce the Counterfactual y-GAN (cGAN), an adversarial
approach to feature balance in causal inference that is based on
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importance sampling theory. Using an adversarial approach based on
variational minimization based on the f~GAN, we minimize the sum of
the Pearson y?-divergences between a deep generative model and the
sampling distributions from each arm of a study. We show that mini-
mizing the y2-divergence is equivalent, up to a constant factor, to
minimizing the variance of importance sampling estimates to be made
in approximating quantities such as ATEs. Similar to other weighting
approaches, this approach assumes SUTVA, positivity, and no un-
measured confounders. In the following, P is the constructed target
distribution and Q, is the sampling distribution for each study arm.

2.1. Importance sampling and the x*-divergence

Importance sampling is a strategy for estimating expectations under
an unknown target distribution given a known proposal distribution
[31]. Though the importance sampling has broader usage than our
application, we focused on the use of importance sampling for esti-
mation of the average treatment effect (ATE) because of its close re-
lationship with the y? divergence. The importance sampling weight is
defined as a likelihood ratio: the likelihood of an observation under the
target distribution, p(x) divided by the likelihood under the proposal
distribution, q(x). Weighted expectations based on the proposal dis-
tribution approximate unweighted expectations from the target dis-
tribution at shown in Eq. 3.

[Eq[&;é(x)} = E,[$(0)]

q(x) 3)

Consider the units in an arm of an observational study as being samples
from such a proposal distribution. One strategy for obtaining unbiased
expectations of treatment effects is to identify importance sampling
weights for each arm that approximate expectations from a shared
target distribution. However, this problem is underspecified given that
we could choose any target distribution with the correct support. In this
work, we choose the target distribution that yields importance sampling
approximations with smallest variance. Eq. 4 shows the form for the
variance of importance sampling estimates where ¢(x) is the constant
function. This choice is to make the formulation of the cGAN as out-
come agnostic as possible. This form highlights its connection with the
x?*-divergence, which has a function form as shown in Eq. 5. This
connection was previously noted in [5]. Therefore, the solution which
minimizes the y2-divergence would also minimize the variance of ex-
pectations for unknown outcomes. Of note, importance sampling is
known to be a method that can produce high variance estimates, but
since we will be minimizing the variance directly, this is less of a
concern here.

2 2
ot = aco] 57 - o

q(x) (©)]
2pllg = PO _ l]dx
x°plig fq(x)[q(x)2 )

2.2. Likelihood ratios, overlap, & the ATE

Importance sampling weights can be leveraged to estimate an ATE
in that region of q(x) where there is significant overlap of probability
mass/density between treatment arms. This is the region that satisfies
the idea of a natural experiment and in which ATE estimations are
reliable. Informally, we seek to get the most coverage of the over-
lapping region of gq(x), as it results in importance sampling estimates
with low variance.

Typically, the expectation in the ATE is taken with respect to the
original feature distribution, g(x). Under cGAN-weighted data, ex-
pectations are taken with respect to the target distribution p(x). As
such, calculations of the ATE from the cGAN are not equivalent to what
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many would classically consider the ATE, but rather, is an ATE with
respect to the new, learned feature distribution. We call this new esti-
mate the ATE,. This inequality is demonstrated in Eq. 6. This set of
equations shows that the typical ATE, ATE,, is not equivalent to the
expectation that we estimate, the ATE,.

ATE; = [Eq(vl)[yl] - [Eq(vo)[yo]
=EqwEqoy 001 X] = EqmEqu0 5 1X]
= IEq(x)IEq(ylx,t=1)[V|x’ t= 1] - [Eq(x)[Eq(ylx,t=0) [V|X, t= 0]

= Eq(x\t:l)%ﬂ{q(y\x,tzl)[ylx: t=1]
- Eq(x\t:O)W%(ifimEq(y\x,t:O)[ylx) t=0]
* Eq(x\t:l)%[q(y\x,ml)[ylx’ t=1]
- Eq(x\t:o)%[Eq(ylx,mo)[ylx’ t=0] ©)

Consider two distributions Q; and Q, that represent two arms of a
study. It is possible to make unbiased ATE, estimates based on a single
distribution, P, leveraging likelihood ratios/importance sampling
weights as shown in Eq. 7.

e o R e B

We will leverage an approach based on adversarial learning to si-
multaneously maximizes coverage, minimizes the variance defined in
Eq. 4, and directly estimates likelihood ratios, 2% and 2%,

ql(X) qz(x)

2.3. f-GAN

The f-GAN framework provides a strategy for estimation and mini-
mization of arbitrary f-divergences based on a variational divergence
minimization approach [32].

DiPIQ= f q() sup {r% —f*(t)}dx

icdomg- ®
> sup (f, peOTCdx ~ ) (" (T () ©
= sup (Ex_p[T )] = Ex_olf* (T )] 10)
o E]' O
OO

Population 1

AN
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where T is a class of function such that T: 2" — R, f is the function that
characterizes the y2-divergence, f(u) = (u — 1), f* is the Fenchel
conjugate of f, f*(t) = %tz +t, and P and Q are probability distribu-
tions with continuous densities, p(x) and q(x). T is typically a multi-
layer neural network. This formulation lower bounds the y2-divergence
based on functions T, P, and Q in such a way that unbiased noisy
gradients of the lower bound can be easily obtained based on samples
from P and Q. In addition, the variational function, T, has a tight bound

for T* = f' (%) which is equivalent to 2(% - 1) in the case of the

x?-divergence. To respect the bounds of T that result in valid likelihood
ratios, we represent T as a nonlinear transformation of an unbounded
function V:T(x) =g (V(x)) = =2 + log(1 + ¢"®). The likelihood
ratio, g, is easily derived from here and provides the importance sam-

pling weights necessary for approximating expectations under p(x) as
shown in Eq. 3.

2.4. The counterfactual y-GAN

The cGAN builds on importance sampling theory and extends the f-
GAN framework to learn feature balancing weights through an adver-
sarial training process. Previously, [42] have explored importance
weights from critics of divergence-based GAN models. However, unlike
this method and other f-GANs where there is a generator, G and a single
variational function, the cGAN employs dual training from at least two
variational functions (Fig. 1).

Consider a set of A treatments, each associated with one of A po-
pulations, or arms of a study. Each population contains N, units and are
drawn from an unknown and population-specific distribution Q,. Based
on the connection between the y?-divergence and the variance of im-
portance sampling estimates outlined above, our objective is to identify
a target distribution that minimizes the y?-divergence to all populations
being compared: argmin, Zle x?(px)lig, (x)). This is the sum of the
divergences between the generator and the unweighted treatment arms.
It is minimized when p(x) equals g,(x) for all a and is directly pro-
portional to the sum of the variances of importance sampling estimates
under the target distribution, P, with proposals, Q,. Because of the
constant in Eq. 4, minimizing the y2-divergence is equivalent to mini-
mizing a normalized variance which weighs each population equally
regardless of the number of units and the magnitude of the treatment
effect, ¢.

Fig. 1. Architecture of Counterfactual y-GAN.

Population 2

¢ MM/MMN

Vi

Va2

' '

evaluation of
variational function, T

importance sampling
weights for population 1

evaluation of
variational function, 7 5
importance sampling
weights for population 2
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Algorithm 1. Minibatch stochastic gradient cGAN optimization
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Input : (21 1,...21,N, s TAN,)
Output : 0, wy.4

Initialize €, w1.4 and minibatch size, M.
while F'(0,w;.4) not converged do

fora € (1,..., A) treatment groups do

Sample minibatch of data, x, 1.0s ~ qq

Compute gradient w.r.t. variational function parameters

Ascend the w, gradient according to a gradient-based optimizer

end

Compute gradient w.r.t. generator parameters

Descend the 6 gradient according to a gradient-based optimizer

Update V,,, and G learning rates according to schedule

end

Vo, F = Z%:1 Ve (97 (Vi (Go(zm))) — igf(vwa (Ia,m))2 -

Sample a batch of noise samples, z1.); ~ pgy, Where p, is a prior distribution such as an isotropic Gaussian

9r Vi, (Za,m)))

VoF =Yy 3oy Vo 95 (Vs (Go(2m)))]

As a byproduct of minimizing this divergence, we will also identify a
set of importance weights, w, ,, for each unit in each population that
allows estimation of expectations from the same target distribution, P,
thus satisfying the unconditional form of strong ignorability. Using
these importance weights, expectations can be approximated as
E,lf]~ Zfil w, ¢ (X,,) where w, , = %%, where ¢ = Zi:’il % is
an normalizing constant, p is the density of the shared target distribu-
tion, g, is the density of the proposal distribution, and x,,~Q,. Note
that our strategy eliminates the need to explicitly evaluate p(x,,) and
q,(Xq,n) as the likelihood ratio is estimated directly by the f-GAN. If
desired, expectations can also be approximated using the sample-im-
portance-resampling (SIR) algorithm where samples approximately
distributed according to p can be simulated by drawing samples from
the weighted empirical distribution g, (x) = Nia ZnNil Wyn0 (X — Xg) [7].

The objective function for the cGAN is shown in Eq. 11 and is clo-
sely related to the objective defined in [32]. 6 parameterizes the gen-
erative model and w, parameterizes the variational model for each
treatment arm, a. In our experiments, V,,, for all a are neural networks
that mirror discriminators in the traditional GAN framework and P; is a
neural networks that mirrors the generator. Note that the generator in
the original f-GAN framework is usually Q,. In our case, to achieve the
desired directionality of the y2-divergence, the empirical distribution
must be Q, and the generator must be P.

F (6, wi.4)

A
-3 ([Exje[gf(vm,(x))] +Eo| -1y (L)) - gf(ku(x))])

an
Importance weights can be computed based on the fact that the bound

in Eq. 10 is tight for T*(x) = f’ (25—3) where f(u) = (u — 1)%. We can

therefore, approximate the desired importance weights as described in
(Vwa( a,n))

Eq. 3 as wy, = ea%er) 4 1 for all a € 1, ..,A) and n € (1, ..,N,).

Ultimately, the ATE can be estimated between any two treatment arms

according to Eq. 7. For example, the ATE between arms 1 and 2 could

be estimated as ATE = Zanl (Wi, Yi0] — ZVIZI [Wa,n Ys. 0]
2.5. Practical considerations

In the original GAN and f-GAN formulations the gradients for the

generator is replaced with a related gradient that significantly speeds
convergence of the model. Because our objective is minimization of the
true y2-divergence rather than perfect distributional matching, we do
not employ this loss function trick but instead apply the gradient as
derived from the loss function in Eq. 11.

Although it is the case that the domain of the Fenchel conjugate for
the y2-divergence is R, we constrained it to t > —2 which produces
valid likelihood ratios.

Gradient descent-based optimization of GANs is a notedly difficult
task [30,1,11]. Though many methods are proposed to stabilize
training, we have found it sufficient to employ a set of algorithmic
heuristics: (i) standardization of our data by the joint mean and var-
iance over all A populations prior to training; (ii) periodically re-cen-
tering the distribution of each discriminator to a noisy estimate of the
mean of the generator distribution. This re-centering is accomplished
by setting the value of a vector that is added to the input of the dis-
criminators.

The approach for minibatch stochastic gradient descent for the
cGAN is shown in Algorithm 1. The objective function F (Eq. 11) is
optimized by minimizing with respect to the parameters 6 of the gen-
erator and maximizing with respect to the parameters w;.4 of the dis-
criminators.

2.6. Related work

Causal inference with observational data has a rich literature that
cuts across many disciplines [44,37,38,33] including machine learning
[18,21,41,34,40]. More specifically there have been several approaches
to applying adversarial networks for counterfactual inference [21,45].
However, most existing methods for counterfactual inference are not
directly comparable to the cGAN, as we aim to identify the most ap-
propriate counterfactual distribution given the available data and
maximize feature balance whereas most methods evaluate ATE esti-
mation or individual treatment effect (ITE) estimation directly.

In contrast to representational learning approaches and some GAN
approaches, our approach does not rely on a predefined outcome to
identify matched cohorts. The approach outlined in [21] is the most
similar in spirit to our approach but differs in that our objective directly
minimizes the variance of expectations that might be used in ATE es-
timation, whereas [21] minimizes a bound on the variance of the
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average treatment effect on the treated. As a result of this difference,
unlike comparator methods, the cGAN requires neither regularization
nor constrained optimization over weights.

3. Experiments

To evaluate the cGAN, including its utility in practice, we present
results of a simulation and applications to real-world medical data.

3.1. Simulation

To evaluate the cGAN when the ground truth is known, we applied
the model on simulated data of two populations/treatment arms, A = 2.
Each population was comprised of two subpopulations. Each sub-
population contained 10 features, drawn from a randomly generated
multivariate normal distribution with a normal-Wishart prior distribu-
tion. Population 1 was composed of an equal number of samples
(N = 1000) from subpopulation A and subpopulation B; and Population
2 was composed of an equal number of samples from subpopulation A
and subpopulation C (N = 2000). By construction, subpopulation A is a
latent population associated with a natural experiment, since it is part
of both Population 1 and 2.

Because our simulation deliberately constructs populations from a
shared subpopulation distribution (A), we would expect points gener-
ated from this subpopulation to have higher weights. Intuitively, the
variance of importance sampling estimates should be small for both
treatment groups (a = 1 and a = 2) if the learned target distribution, P,
is one that overlaps both populations maximally while excluding den-
sity unique to one group.

To better demonstrate how the cGAN supports counterfactual rea-
soning, we have additionally conducted an analysis of the average
treatment effect (ATE) for our experiment with simulated data. We si-
mulated a continuous outcome according to the subpopulation of origin
— Pop 1A ~ Gaussian (60, 1); Pop 1B ~ Gaussian (40, 1); Pop 2A ~
Gaussian (-10, 1); Pop 2C ~ Gaussian (10, 1). Under this outcome
function, the estimate of average treatment effect (ATE) under the
mixture distribution (of Pop 1 and Pop 2) is 50. When estimating the
ATE under the overlapping subpopulation distribution — those from Pop
1A and Pop 2A - the ATE is 70.

In this scenario, the ‘treatment’ of interest is the population (Pop 1
or Pop 2). According to counterfactual theory, unbiased ATEs arise in
the presence of strong ignorability that is exemplified by distributional
equality in the features. Given the structure of our simulation, strong
ignorability between Pop 1 and Pop 2 is only upheld among those units
from subpopulation A. Without this consideration, the ATE over the
mixture distribution (Pop 1 vs Pop 2) will be confounded by units from
subpopulation B and subpopulation C that differ on both the population
and their features.

We applied weights from the cGAN and comparators to the simu-
lated outcomes to assess the ability of the weighting methods to esti-
mate one of the two ATEs. In addition, we also calculated the effective
sample size (ESS), nys, using the Kish Method [26]. The ESS may be
used to determine the quality of a Monte Carlo approximations of im-
portance sampling. The calculation of n.; can be found in the equation
below, wherein w are the weights.

n ( Z?ﬂ Wi)z
ff = N5 2
¢ Z?:] Vl)i2

To investigate (i) feature-balancing weights, (ii) the biasedness of
ATE, and (iii) the ESS, a variety of comparator methods and the cGAN
were implemented and compared to the unweighted cohort. They in-
clude IPW, clipped-IPW in which propensity scores greater than 90th
percentile and less than 10th percentile are assigned to the values of the
percentiles at 90th and 10th, respectively [3]; binary regression pro-
pensity score; generalized boosted modeling of propensity scores [29];
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covariate-balancing propensity scores [17]; non-parametric covariate-
balancing propensity scores [8]; entropy balancing weights [12]; em-
pirical balancing calibration weights [2]; and optimization-based
weights [24].

To better understand how simulation parameters affect cGAN and
comparator performance on ATE and ESS, we have additionally im-
plemented a sensitivity analysis. This sensitivity analysis explores how
combinations of (i) the per-arm sample size (N); (ii) the unbiased
average treatment effect that exists in the truly counterfactual popu-
lations (’true’ ATE); and (iii) the size of the truly counterfactual popu-
lations as a proportion of the total population (overlap) effect the
outcome measures. In addition to the simulation parameters outlines
above — which outlines a per-arm population size of 2000 in which the
size of the truly counterfactual populations is 0.5 (50%) of the popu-
lation, and an unbiased, ‘true’ ATE of 50 — simulations were replicated
for all combinations of N = [2000, 4000, 8000], overlap = [0.1, 0.5,
0.9] and a ‘true’ ATE = [400, 70, 0.2]. This range for the sensitivity
analysis represents the breadth of values that may be present in these
parameters. To conduct this simulation and sensitivity analysis, para-
meters that the distribution of each subpopulations’ features were
randomly drawn according to all combinations of N and overlap, to
create nine, unique populations for the sensitivity analysis. The cGAN
and comparator methods were trained on each of these populations to
learn feature-balancing weights. From each population, treatment ef-
fects for units from subpopulation A were generated according to each
of the ‘true’ ATEs. Units that were not from subpopulation A had dif-
ferent treatment effects from subpopulation A, highlighting the possi-
bility of heterogeneity of treatment effect in real-world scenarios. ATEs
was calculated for all combinations of N, overlap, and ‘true’ ATE. ESS
was calculated for all combinations of N and overlap, as this metric is
independent of ’true’ ATE.

To train the cGAN for the simulation and sensitivity analyses, the

model was run for 200,000 training iterations at a learning rate of le=>.

3.2. Application to clinical data

We additionally applied the cGAN to an experiments using real-
world clinical data from a large, academic medical center. For this
experiment, we constructed the treatment and comparator cohorts ac-
cording to the protocol and indication of a published randomized
clinical trial. The experiment compares sitagliptin and glimepiride in
elderly patients with Type II Diabetes Mellitus (N = 144 per arm) [13].
We present the 37 most frequent clinical measurements from the
electronic health record.

We evaluate the ability of the cGAN to improve feature balance by
comparing the Absolute Standardized Difference of Means (ASDM)
between the treatment and comparator cohorts under different
weighting methods. the ASDM is a popular method of assessing cohort
similarity, with a lower metric corresponding to improved feature
balance. The ASDM is presented for the cGAN and the comparator
weighting methods mentioned in the Simulation Section (3.1). To train
the cGAN for the Application to Clinical Data, the model was run for
2,000,000 training iterations at a learning rate of 1e~°. This learning
rate is slightly smaller than that used in the simulation. It is a con-
servative method to prevent against mode-collapse in this higher-di-
mensional setting.

4. Results
4.1. Simulation

The results of our simulation is summarized in Figs. 2. In the left
hand-side of the Figure, the columns show the marginals of three pairs
of continuous features. Row (i) shows the raw data, colored by which
population units were drawn from. Row (ii) shows the same data as
above, but coloring by subpopulation to highlight the overlapping
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Fig. 2. Simulation Results. Left: Select features (i) by population of origin; (ii) with subpopulation A highlighted; (iii) samples from the generator; (iv) opacity

adjusted by weight. Right: Weights by subpopulation.

Table 1

Results of Simulation. The average treatment effect and effective sample size
(ESS) after application of weighting methods from the Counterfactual y-GAN
and comparators.

Weighting Method ATE ESS
unweighted 50.03 8000
PW 92.00 6551
clipped IPW 87.24 6997
binary regression PS 92.00 6551
generalized boosted modeling PS 84.51 7207
covariate balancing PS 91.83 6686
non-parametric covariate balancing PS 37.65 11

entropy balancing 104.13 65

empirical balancing calibration weights 52.06 65

optimization-based weights 52.07 114
cGAN 70.01 3870

distribution. Row (iii) shows a set of samples from the generator after
training colored in blue. Row (iv) depicts the original data from Row (i)
with the opacity of data points reflecting the importance weights. The
right-hand side of the Figure shows the distribution of weights by
subpopulation. Note that, in both Populations 1 and 2, the mean
weights of units from subpopulation A have weights near 5x10~, which
is the uniform weight when 2000 units are in each population. Units
from other subpopulations have near negligible weights, and would not
meaningfully contribute to expectations in Eq. 7.

In the left-most figure, as you move down any column of feature
pairs, it is apparent that points from the overlapping subpopulation A
are both captured by the generator and assigned higher weights. This is
confirmed by plotting the weights of data points by subpopulation
(right-hand side of 2). Weights from subpopulations 1A and 2A are
substantially higher than those from subpopulations 1B and 2C.

The results of this simulation further demonstrate that the ATE es-
timate from cGAN-weighted data is less biased than estimates from
other weighting methods, given their respective targets (Table 1). By
construction, the causal effect of the comparable subpopulations is 70.

cGAN-weighted data produced an ATE of 70.01. We see similarly good
performance when inspecting the ESS. The cGAN has an ESS of 3870.
Given that there are 4000 units that are comparable across the two arms
(each subpopulation contains 2000 units), this is an appropriate esti-
mate.

The results of the sensitivity analyses can only be found in the
Supplementary Materials. The results of this analysis show that super-
iority of cGAN performance over comparator methods persists across all
settings of the simulations parameters. Across all combinations of per-
arm sample size, overlap, and ’true ATE, the cGAN consistently pro-
duced the least biased estimate of ATE and yielded the maximally ap-
propriate ESS given the parameters.

4.2. Application to clinical data

The ASDM for the clinical cohorts is presented in Fig. 3. These
findings are summarized by the mean ASDM over all features, under the
varying weighting methods in Table 2. ¢cGAN improved mean ASDM
from the unweighted cohort and improved feature balance the most
among all evaluated methods. Under cGAN-weighting, some features
show worsening ASDM after weighting is applied. We hypothesize that
this may be due to incomplete training, and may be alleviated with
more iterations. Note that this task is particularly challenging due to the
high dimensionality of the data and small study size.

The results of this experiment can be found in Fig. 3 and Table 2.
They demonstrate that cGAN-weighting achieves better feature balance
than comparator methods.

5. Discussion

In this paper, we introduce the Counterfactual y-GAN. It is a deep
generative model for feature balance that minimizes the variance of
importance sampling estimates of treatment effects. We leverage the f-
GAN framework for estimating the y2-divergence and likelihood ratios
necessary for achieving this.

The experiments presented here suggest that cGAN is an effective
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Fig. 3. Absolute standardized difference of the means (ASDM) of real-world clinical features after application weighting methods from the Counterfactual y-GAN and

comparators.

Table 2

Results of Application to Clinical Data. Absolute standardized difference
of the means (ASDM) of real-world clinical features after application
weighting methods from the Counterfactual y-GAN and comparators.

Weighting Method ASDM
unweighted 0.1103
IPW 0.0876
clipped IPW 0.0631
binary regression PS 0.0625
generalized boosted modeling PS 0.0749
covariate balancing PS 0.0681
non-parametric covariate balancing PS 0.0596
entropy balancing 0.0524
empirical balancing calibration weights 0.0524
optimization-based weights 0.0536
cGAN 0.0364

method of learning feature balancing weights to support counterfactual
inference. If we assume that all potentially confounding variables are
observed, the superiority of cGAN in learning balancing weights, sug-
gests that ATE estimates borne from cGAN-weighted cohorts would be
less biased than those estimates generated from traditional weighting
methods. As such, the cGAN may provide a reliable means to better
understand the safety and effectiveness of interventions, when a ran-
domized trial is not feasible. This may get high-quality interventions to
patients faster, thereby improving patient health.

The application of the model to real-world EHR data, demonstrates
that this method could provide an alternative means to causal estima-
tion from observational data when the assumptions of no unobserved
confounding, positivity, and SUTVA are met. This finding could have
been empirically verified through a comparison of the cGAN-weighted
ATE with the gold standard, which is randomized trial in which strong
ignorability should be upheld. The effect of randomization in the RCT

and cGAN-weighting only addresses the differences that exist between
the treatment and comparator cohorts within a single experimental
setting. However, we found that the experimental setting from the RCT
were markedly different from the observational data, notably in the
distribution of gender and race. If the variables with differing dis-
tributions elicit a heterogeneity of treatment effect, then the effect es-
timates between these two data sources would never be comparable.
Our experiments suggest that the flexibility of our framework pro-
duces improved feature balance relevant for valid causal estimates. This
method does, however, come with limitations. GANs are well known for
their instability and lack of objective measures for convergence. This
work shares those limitations. In future work, we will explore an ex-
tension of the cGAN that overcome the many current limitations of
GANs. To make the model of use to the informatics community, we may
extend upon our model and develop a new method that still minimizes
the y-divergence but does so in a way that is (i) rapid, (ii) allows
monitoring of convergence, (iii) that is more robust to hyperparameter
settings, and (iv) handles heterogeneous and missing data seamlessly.
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