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A B S T R A C T   

Causal inference often relies on the counterfactual framework, which requires that treatment assignment is 
independent of the outcome, known as strong ignorability. Approaches to enforcing strong ignorability in causal 
analyses of observational data include weighting and matching methods. Effect estimates, such as the average 
treatment effect (ATE), are then estimated as expectations under the re-weighted or matched distribution, P. The 
choice of P is important and can impact the interpretation of the effect estimate and the variance of effect 
estimates. In this work, instead of specifying P, we learn a distribution that simultaneously maximizes coverage 
and minimizes variance of ATE estimates. In order to learn this distribution, this research proposes a generative 
adversarial network (GAN)-based model called the Counterfactual -GAN (cGAN), which also learns feature- 
balancing weights and supports unbiased causal estimation in the absence of unobserved confounding. Our 
model minimizes the Pearson 2-divergence, which we show simultaneously maximizes coverage and minimizes 
the variance of importance sampling estimates. To our knowledge, this is the first such application of the Pearson 

2-divergence. We demonstrate the effectiveness of cGAN in achieving feature balance relative to established 
weighting methods in simulation and with real-world medical data.   

1. Introduction 

Counterfactual Causal Inference. In biomedicine, causal assess
ment often relies on the framework of counterfactual inference. This 
framework requires that causal effects are estimated by contrasting the 
distribution of outcomes under different treatments (T) [9]. Under the 
counterfactual theory, each individual, i, has a potential outcome (YT

i ) 
given that they received a treatment ( =T 1) and a control ( =T 0). For 
example, the treatment effect of metformin on the outcome of change in 
fasting blood glucose levels would be evaluated as the difference in 
values for the same individual when taking and not taking metformin. 
These potential outcomes are given by Y i

1 and Y i
0, respectively. This 

framework seeks to contrast the outcome, Y for an individual under 
these two states [38]. The causal effect of the treatment on the outcome 
is then summarized by calculating population-level effect estimates, 
such as the average treatment effect (ATE). This is defined as the ex
pected difference in outcomes over all individuals (Eq. 1). 

= =ATE Y Y Y Y[ ] [ ] [ ]1 0 1 0 (1)  

However, the estimation of causal effects from these potential out
comes requires access to the outcome for the state in which units were 

not assigned. These are known as counterfactuals, as they are contrary to 
reality. In practice, counterfactuals are never observed as a single in
dividual (or population) cannot simultaneously be both treated and 
untreated. This is known as the ’fundamental problem of causal in
ference.’ As such, causal assessments may rely on approximations that 
employ an additional population that serves as a proxy for the un
observed states [16]. These approximations seek to construct popula
tions such that the observed ATE, ATE, equals the true ATE that would 
arise from a counterfactual population. In other words, we seek an ATE
that is unbiased. 

A sufficient condition for unbiased ATE estimation is that 
= = =Y T E Y T[ | 1] [ | 0]1 1 and = = =Y T E Y T[ | 0] [ | 1]0 0 [25]. Within 

the counterfactual framework, this equality is central to the assumption 
of strong ignorability (Eq. 2) [35]. 

Y Y T(1), (0)i i i (2) 

This assumption states a unit’s assignment to a treatment is in
dependent of that unit’s potential outcomes, Yi , and that treatment as
signment is, therefore, ignorable. Causal claims borne from data that 
satisfy this requirement are regarded as unbiased as all confounding 
factors that could induce a dependence between Yi and Ti are equally 
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represented in the treatment and comparator arms [38]. Consequently, 
this means that the distribution of features is the same in both arms and 
features are said to be balanced. Other assumptions, such as positivity 
and the Stable Unit Treatment Value Assumption (SUTVA), are also 
necessary and assumed to be true [39]. 

Counterfactual Inference from Biomedical Data. In biomedicine, 
the current gold-standard for upholding strong ignorability in counter
factual inference is randomized experimentation, wherein the random 
allocation of study units to treatment or control arms eliminates con
founding.[38]. However, randomized experiments, including rando
mized controlled trials (RCTs), may be expensive, time-consuming, and 
ethically fraught [6]. Furthermore, RCTs often enforce unrealistic as
sumptions that impede the generalization of causal knowledge to the real 
world [4]. Observational data is regarded as a more externally-valid 
source from which to generate causal knowledge but, in the absence of 
randomization to treatment, strong ignorability cannot be guaranteed. As 
such, causal claims from observational data sources may be spurious or 
misleading. When not randomized, observational data may be manipu
lated such that the strong ignorability assumption is upheld and causal 
claims are unbiased in the absence of unobserved confounders. 

Matching and weighting are popular pre-analysis manipulations to 
approximate the unconditional form of strong ignorability in observa
tional populations. These methods create pseudo-populations in which 
the assumption is met without need for further manipulation [37]. This is 
opposed to methods of statistical adjustment, which occur peri-analysis, 
and approximate the conditional form of strong ignorability [27]. Ar
guably, the most common strategy for weighting is the inverse probability 
of treatment weighting (IPW) [43], though other methods include the di
rect minimization of imbalance [10,19,20] or weighting by the odds of 
treatment, kernel weighting, and overlap weighting [36,15,14,28,22]. 

Limitations to Counterfactual Inference from Observational Data. 
A commonality among these methods for observational data is that they 
implicitly or explicitly all specify a distribution function, P, that the ex
pectation in Eq. 1 is taken with respect to. This distribution is often the 
distribution associated with the treated (p x( )1 ), the controls (p x( )2 ), or a 
combination thereof (e.g. +p x p x( ) ( )1

2 1
1
2 2 ). However, this choice of dis

tribution can lead to high variance effect estimates in circumstances where 
there are regions of poor overlapping support between the treated and 
untreated populations. An effect of this is often observed in the context of 
IPW analyses with propensity scores near zero or one [23]. This may result 
in unstable downstream causal effect estimates and poor coverage of 
feature space, which may impact the validity of the causal effect estimate. 

Finding Comparable Cohorts in Observational Data. In this 
work, we instead construct an implicit distribution, P, that focuses on 
the regions of the sample space with significant overlap between the 
treated and untreated populations. Such a construction involves an 
inherent trade-off between coverage and variance. We propose the 
Counterfactual -GAN (cGAN) that uses an adversarial approach to 
learn stable, feature-balancing weights without reliance on the pro
pensity score. The cGAN utilizes a unique architecture which identifies 
a target distribution that minimizes the importance sampling variance 
for approximations of =Y T[ | 1]1 and =Y T[ | 0]0 . This objective si
multaneously encourages coverage and identifies the importance sam
pling weights that result in pseudo-populations that satisfy the un
conditional form of strong ignorability. 

This paper proceeds as follows: Section 2 defines the model and 
learning procedures, Section 3 presents an evaluation of this model 
through a simulation and an application to real-world clinical data, and 
finally, Section 4 present the results, and Section 5 discusses open is
sues, limitations of the model, and future work. 

2. The model 

We introduce the Counterfactual -GAN (cGAN), an adversarial 
approach to feature balance in causal inference that is based on 

importance sampling theory. Using an adversarial approach based on 
variational minimization based on the f-GAN, we minimize the sum of 
the Pearson 2-divergences between a deep generative model and the 
sampling distributions from each arm of a study. We show that mini
mizing the 2-divergence is equivalent, up to a constant factor, to 
minimizing the variance of importance sampling estimates to be made 
in approximating quantities such as ATEs. Similar to other weighting 
approaches, this approach assumes SUTVA, positivity, and no un
measured confounders. In the following, P is the constructed target 
distribution and Qa is the sampling distribution for each study arm. 

2.1. Importance sampling and the 2-divergence 

Importance sampling is a strategy for estimating expectations under 
an unknown target distribution given a known proposal distribution  
[31]. Though the importance sampling has broader usage than our 
application, we focused on the use of importance sampling for esti
mation of the average treatment effect (ATE) because of its close re
lationship with the 2 divergence. The importance sampling weight is 
defined as a likelihood ratio: the likelihood of an observation under the 
target distribution, p x( ) divided by the likelihood under the proposal 
distribution, q x( ). Weighted expectations based on the proposal dis
tribution approximate unweighted expectations from the target dis
tribution at shown in Eq. 3. 

=p x
q x

x x( )
( )

( ) [ ( )]q p
(3) 

Consider the units in an arm of an observational study as being samples 
from such a proposal distribution. One strategy for obtaining unbiased 
expectations of treatment effects is to identify importance sampling 
weights for each arm that approximate expectations from a shared 
target distribution. However, this problem is underspecified given that 
we could choose any target distribution with the correct support. In this 
work, we choose the target distribution that yields importance sampling 
approximations with smallest variance. Eq. 4 shows the form for the 
variance of importance sampling estimates where x( ) is the constant 
function. This choice is to make the formulation of the cGAN as out
come agnostic as possible. This form highlights its connection with the 

2-divergence, which has a function form as shown in Eq. 5. This 
connection was previously noted in [5]. Therefore, the solution which 
minimizes the 2-divergence would also minimize the variance of ex
pectations for unknown outcomes. Of note, importance sampling is 
known to be a method that can produce high variance estimates, but 
since we will be minimizing the variance directly, this is less of a 
concern here. 

= µ
n

q x p x
q x

dx( ) ( )
( )

1q
2

2 2

2 (4)  

=p q q x p x
q x

dx( ) ( )
( )

12
2

2 (5)  

2.2. Likelihood ratios, overlap, & the ATE 

Importance sampling weights can be leveraged to estimate an ATE 
in that region of q x( ) where there is significant overlap of probability 
mass/density between treatment arms. This is the region that satisfies 
the idea of a natural experiment and in which ATE estimations are 
reliable. Informally, we seek to get the most coverage of the over
lapping region of q x( ), as it results in importance sampling estimates 
with low variance. 

Typically, the expectation in the ATE is taken with respect to the 
original feature distribution, q x( ). Under cGAN-weighted data, ex
pectations are taken with respect to the target distribution p x( ). As 
such, calculations of the ATE from the cGAN are not equivalent to what 
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many would classically consider the ATE, but rather, is an ATE with 
respect to the new, learned feature distribution. We call this new esti
mate the ATEp. This inequality is demonstrated in Eq. 6. This set of 
equations shows that the typical ATE, ATEq, is not equivalent to the 
expectation that we estimate, the ATEp. 

=
=
= = =

= =

=

=

=

= =

= = =

= = =

= = =

= = =

ATE y y
y x y x

y x t y x t

y x t

y x t

y x t

y x t

[ ] [ ]
[ | ] [ | ]

[ | , 1] [ | , 0]

[ | , 1]

[ | , 0]

[ | , 1]

[ | , 0]

q q y q y

q x q y x q x q y x

q x q y x t q x q y x t

q x t
q x

q x t q y x t

q x t
q x

q x t q y x t

q x t
x

q x t q y x t

q x t
x

q x t q y x t

p

p

( ) 1 ( ) 0

( ) ( | ) 1 ( ) ( | ) 0

( ) ( | , 1) ( ) ( | , 0)

( | 1)
( )

( | 1) ( | , 1)

( | 0)
( )

( | 0) ( | , 0)

( | 1)
( )

( | 1) ( | , 1)

( | 0)
( )

( | 0) ( | , 0)

1 0

1 0

(6)  

Consider two distributions Q1 and Q2 that represent two arms of a 
study. It is possible to make unbiased ATEp estimates based on a single 
distribution, P, leveraging likelihood ratios/importance sampling 
weights as shown in Eq. 7. 

= =ATE Y Y p x
q x

Y p x
q x

Y[ ] [ ] ( )
( )

( )
( )p p p q q1 0

1
1

2
01 2 (7)  

We will leverage an approach based on adversarial learning to si
multaneously maximizes coverage, minimizes the variance defined in 
Eq. 4, and directly estimates likelihood ratios, p x

q x
( )
( )1

and p x
q x

( )
( )2

. 

2.3. f-GAN 

The f-GAN framework provides a strategy for estimation and mini
mization of arbitrary f-divergences based on a variational divergence 
minimization approach [32]. 

=D P Q q x t p x
q x

f t dx( ) sup ( )
( )

( )f
t dom f

X (8)  

( )p x T x dx q x f T x dxsup ( ) ( ) ( ) ( ( ))
T T X X (9)  

= T x f T xsup ( ~ [ ( )] ~ [ ( ( ))])
T

x P x Q
T (10) 

where T is a class of function such that T f: ,X is the function that 
characterizes the 2-divergence, =f u u f( ) ( 1) ,2 is the Fenchel 
conjugate of = +f f t t t, ( ) 1

4
2 , and P and Q are probability distribu

tions with continuous densities, p x( ) and q x( ). T is typically a multi- 
layer neural network. This formulation lower bounds the 2-divergence 
based on functions T P, , and Q in such a way that unbiased noisy 
gradients of the lower bound can be easily obtained based on samples 
from P and Q. In addition, the variational function, T, has a tight bound 
for = ( )T f p x

q x
( )
( ) which is equivalent to ( )2 1p x

q x
( )
( ) in the case of the 

2-divergence. To respect the bounds of T that result in valid likelihood 
ratios, we represent T as a nonlinear transformation of an unbounded 
function = = + +V T x g V x log e: ( ) ( ( )) 2 (1 )f

V x( ) . The likelihood 
ratio, p

q
, is easily derived from here and provides the importance sam

pling weights necessary for approximating expectations under p x( ) as 
shown in Eq. 3. 

2.4. The counterfactual -GAN 

The cGAN builds on importance sampling theory and extends the f- 
GAN framework to learn feature balancing weights through an adver
sarial training process. Previously, [42] have explored importance 
weights from critics of divergence-based GAN models. However, unlike 
this method and other f-GANs where there is a generator, G and a single 
variational function, the cGAN employs dual training from at least two 
variational functions (Fig. 1). 

Consider a set of A treatments, each associated with one of A po
pulations, or arms of a study. Each population contains Na units and are 
drawn from an unknown and population-specific distribution Qa. Based 
on the connection between the 2-divergence and the variance of im
portance sampling estimates outlined above, our objective is to identify 
a target distribution that minimizes the 2-divergence to all populations 
being compared: = p x q xargmin ( ( ) ( ))p a

A
a1

2 . This is the sum of the 
divergences between the generator and the unweighted treatment arms. 
It is minimized when p x( ) equals q x( )a for all a and is directly pro
portional to the sum of the variances of importance sampling estimates 
under the target distribution, P, with proposals, Qa. Because of the 
constant in Eq. 4, minimizing the 2-divergence is equivalent to mini
mizing a normalized variance which weighs each population equally 
regardless of the number of units and the magnitude of the treatment 
effect, . 

Fig. 1. Architecture of Counterfactual -GAN. 
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Algorithm 1. Minibatch stochastic gradient cGAN optimization  

As a byproduct of minimizing this divergence, we will also identify a 
set of importance weights, wa n, , for each unit in each population that 
allows estimation of expectations from the same target distribution, P, 
thus satisfying the unconditional form of strong ignorability. Using 
these importance weights, expectations can be approximated as 

=f w x[ ] ( )p n
N

a a n1 ,
a where =wa n c

p x
q x,

1 ( )
( )

a n

a a n
,
,

, where = =c n
N p x

q x1
( )
( )

a n
a n

is 
an normalizing constant, p is the density of the shared target distribu
tion, qa is the density of the proposal distribution, and x Q~a n a, . Note 
that our strategy eliminates the need to explicitly evaluate p x( )a n, and 
q x( )a a n, as the likelihood ratio is estimated directly by the f-GAN. If 
desired, expectations can also be approximated using the sample-im
portance-resampling (SIR) algorithm where samples approximately 
distributed according to p can be simulated by drawing samples from 
the weighted empirical distribution = =q x w x x( ) ( )a N n

N
a n a n

1
1 , ,a

a [7]. 
The objective function for the cGAN is shown in Eq. 11 and is clo

sely related to the objective defined in [32]. parameterizes the gen
erative model and a parameterizes the variational model for each 
treatment arm, a. In our experiments, V a for all a are neural networks 
that mirror discriminators in the traditional GAN framework and P is a 
neural networks that mirrors the generator. Note that the generator in 
the original f-GAN framework is usually Qa. In our case, to achieve the 
desired directionality of the 2-divergence, the empirical distribution 
must be Qa and the generator must be P. 

= +
=

( ( ))
F

g V x g V x g V x

( , )

~ [ ( ( ))] ~
1
4

( ( ))

A

t

A

x P f x Q f f

1:

1

2
t a a a

(11) 

Importance weights can be computed based on the fact that the bound 
in Eq. 10 is tight for = ( )T x f( ) p x

q x
( )
( ) where =f u u( ) ( 1)2. We can 

therefore, approximate the desired importance weights as described in 
Eq. 3 as = +w 1a n

g V x
,

( ( ))
2

f a a n, for all …a A(1, , ) and …n N(1, , )a . 
Ultimately, the ATE can be estimated between any two treatment arms 
according to Eq. 7. For example, the ATE between arms 1 and 2 could 
be estimated as = = =ATE w Y w Y[ ] [ ]n

N
n n n

N
n n1 1, 1, 1 2, 2,

1 2 . 

2.5. Practical considerations 

In the original GAN and f-GAN formulations the gradients for the 

generator is replaced with a related gradient that significantly speeds 
convergence of the model. Because our objective is minimization of the 
true 2-divergence rather than perfect distributional matching, we do 
not employ this loss function trick but instead apply the gradient as 
derived from the loss function in Eq. 11. 

Although it is the case that the domain of the Fenchel conjugate for 
the 2-divergence is , we constrained it to t 2 which produces 
valid likelihood ratios. 

Gradient descent-based optimization of GANs is a notedly difficult 
task [30,1,11]. Though many methods are proposed to stabilize 
training, we have found it sufficient to employ a set of algorithmic 
heuristics: (i) standardization of our data by the joint mean and var
iance over all A populations prior to training; (ii) periodically re-cen
tering the distribution of each discriminator to a noisy estimate of the 
mean of the generator distribution. This re-centering is accomplished 
by setting the value of a vector that is added to the input of the dis
criminators. 

The approach for minibatch stochastic gradient descent for the 
cGAN is shown in Algorithm 1. The objective function F (Eq. 11) is 
optimized by minimizing with respect to the parameters of the gen
erator and maximizing with respect to the parameters A1: of the dis
criminators. 

2.6. Related work 

Causal inference with observational data has a rich literature that 
cuts across many disciplines [44,37,38,33] including machine learning  
[18,21,41,34,40]. More specifically there have been several approaches 
to applying adversarial networks for counterfactual inference [21,45]. 
However, most existing methods for counterfactual inference are not 
directly comparable to the cGAN, as we aim to identify the most ap
propriate counterfactual distribution given the available data and 
maximize feature balance whereas most methods evaluate ATE esti
mation or individual treatment effect (ITE) estimation directly. 

In contrast to representational learning approaches and some GAN 
approaches, our approach does not rely on a predefined outcome to 
identify matched cohorts. The approach outlined in [21] is the most 
similar in spirit to our approach but differs in that our objective directly 
minimizes the variance of expectations that might be used in ATE es
timation, whereas [21] minimizes a bound on the variance of the 
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average treatment effect on the treated. As a result of this difference, 
unlike comparator methods, the cGAN requires neither regularization 
nor constrained optimization over weights. 

3. Experiments 

To evaluate the cGAN, including its utility in practice, we present 
results of a simulation and applications to real-world medical data. 

3.1. Simulation 

To evaluate the cGAN when the ground truth is known, we applied 
the model on simulated data of two populations/treatment arms, =A 2. 
Each population was comprised of two subpopulations. Each sub
population contained 10 features, drawn from a randomly generated 
multivariate normal distribution with a normal-Wishart prior distribu
tion. Population 1 was composed of an equal number of samples 
(N = 1000) from subpopulation A and subpopulation B; and Population 
2 was composed of an equal number of samples from subpopulation A 
and subpopulation C (N = 2000). By construction, subpopulation A is a 
latent population associated with a natural experiment, since it is part 
of both Population 1 and 2. 

Because our simulation deliberately constructs populations from a 
shared subpopulation distribution (A), we would expect points gener
ated from this subpopulation to have higher weights. Intuitively, the 
variance of importance sampling estimates should be small for both 
treatment groups ( =a 1 and =a 2) if the learned target distribution, P
is one that overlaps both populations maximally while excluding den
sity unique to one group. 

To better demonstrate how the cGAN supports counterfactual rea
soning, we have additionally conducted an analysis of the average 
treatment effect (ATE) for our experiment with simulated data. We si
mulated a continuous outcome according to the subpopulation of origin 
– Pop 1A ~ Gaussian (60, 1); Pop 1B ~ Gaussian (40, 1); Pop 2A ~
Gaussian (-10, 1); Pop 2C ~ Gaussian (10, 1). Under this outcome 
function, the estimate of average treatment effect (ATE) under the 
mixture distribution (of Pop 1 and Pop 2) is 50. When estimating the 
ATE under the overlapping subpopulation distribution – those from Pop 
1A and Pop 2A – the ATE is 70. 

In this scenario, the ‘treatment’ of interest is the population (Pop 1 
or Pop 2). According to counterfactual theory, unbiased ATEs arise in 
the presence of strong ignorability that is exemplified by distributional 
equality in the features. Given the structure of our simulation, strong 
ignorability between Pop 1 and Pop 2 is only upheld among those units 
from subpopulation A. Without this consideration, the ATE over the 
mixture distribution (Pop 1 vs Pop 2) will be confounded by units from 
subpopulation B and subpopulation C that differ on both the population 
and their features. 

We applied weights from the cGAN and comparators to the simu
lated outcomes to assess the ability of the weighting methods to esti
mate one of the two ATEs. In addition, we also calculated the effective 
sample size (ESS), neff , using the Kish Method [26]. The ESS may be 
used to determine the quality of a Monte Carlo approximations of im
portance sampling. The calculation of neff can be found in the equation 
below, wherein w are the weights. 

= =

=
n

w
w

( )
eff

i
n

i

i
n

i

1
2

1
2

To investigate (i) feature-balancing weights, (ii) the biasedness of 
ATE, and (iii) the ESS, a variety of comparator methods and the cGAN 
were implemented and compared to the unweighted cohort. They in
clude IPW, clipped-IPW in which propensity scores greater than 90th 
percentile and less than 10th percentile are assigned to the values of the 
percentiles at 90th and 10th, respectively [3]; binary regression pro
pensity score; generalized boosted modeling of propensity scores [29]; 

covariate-balancing propensity scores [17]; non-parametric covariate- 
balancing propensity scores [8]; entropy balancing weights [12]; em
pirical balancing calibration weights [2]; and optimization-based 
weights [24]. 

To better understand how simulation parameters affect cGAN and 
comparator performance on ATE and ESS, we have additionally im
plemented a sensitivity analysis. This sensitivity analysis explores how 
combinations of (i) the per-arm sample size (N); (ii) the unbiased 
average treatment effect that exists in the truly counterfactual popu
lations (’true’ ATE); and (iii) the size of the truly counterfactual popu
lations as a proportion of the total population (overlap) effect the 
outcome measures. In addition to the simulation parameters outlines 
above – which outlines a per-arm population size of 2000 in which the 
size of the truly counterfactual populations is 0.5 (50%) of the popu
lation, and an unbiased, ‘true’ ATE of 50 – simulations were replicated 
for all combinations of N = [2000, 4000, 8000], overlap = [0.1, 0.5, 
0.9] and a ‘true’ ATE = [400, 70, 0.2]. This range for the sensitivity 
analysis represents the breadth of values that may be present in these 
parameters. To conduct this simulation and sensitivity analysis, para
meters that the distribution of each subpopulations’ features were 
randomly drawn according to all combinations of N and overlap, to 
create nine, unique populations for the sensitivity analysis. The cGAN 
and comparator methods were trained on each of these populations to 
learn feature-balancing weights. From each population, treatment ef
fects for units from subpopulation A were generated according to each 
of the ‘true’ ATEs. Units that were not from subpopulation A had dif
ferent treatment effects from subpopulation A, highlighting the possi
bility of heterogeneity of treatment effect in real-world scenarios. ATEs 
was calculated for all combinations of N, overlap, and ‘true’ ATE. ESS 
was calculated for all combinations of N and overlap, as this metric is 
independent of ’true’ ATE. 

To train the cGAN for the simulation and sensitivity analyses, the 
model was run for 200,000 training iterations at a learning rate of e1 5. 

3.2. Application to clinical data 

We additionally applied the cGAN to an experiments using real- 
world clinical data from a large, academic medical center. For this 
experiment, we constructed the treatment and comparator cohorts ac
cording to the protocol and indication of a published randomized 
clinical trial. The experiment compares sitagliptin and glimepiride in 
elderly patients with Type II Diabetes Mellitus (N = 144 per arm) [13]. 
We present the 37 most frequent clinical measurements from the 
electronic health record. 

We evaluate the ability of the cGAN to improve feature balance by 
comparing the Absolute Standardized Difference of Means (ASDM) 
between the treatment and comparator cohorts under different 
weighting methods. the ASDM is a popular method of assessing cohort 
similarity, with a lower metric corresponding to improved feature 
balance. The ASDM is presented for the cGAN and the comparator 
weighting methods mentioned in the Simulation Section (3.1). To train 
the cGAN for the Application to Clinical Data, the model was run for 
2,000,000 training iterations at a learning rate of e1 6. This learning 
rate is slightly smaller than that used in the simulation. It is a con
servative method to prevent against mode-collapse in this higher-di
mensional setting. 

4. Results 

4.1. Simulation 

The results of our simulation is summarized in Figs. 2. In the left 
hand-side of the Figure, the columns show the marginals of three pairs 
of continuous features. Row (i) shows the raw data, colored by which 
population units were drawn from. Row (ii) shows the same data as 
above, but coloring by subpopulation to highlight the overlapping 
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distribution. Row (iii) shows a set of samples from the generator after 
training colored in blue. Row (iv) depicts the original data from Row (i) 
with the opacity of data points reflecting the importance weights. The 
right-hand side of the Figure shows the distribution of weights by 
subpopulation. Note that, in both Populations 1 and 2, the mean 
weights of units from subpopulation A have weights near x5 10 4, which 
is the uniform weight when 2000 units are in each population. Units 
from other subpopulations have near negligible weights, and would not 
meaningfully contribute to expectations in Eq. 7. 

In the left-most figure, as you move down any column of feature 
pairs, it is apparent that points from the overlapping subpopulation A 
are both captured by the generator and assigned higher weights. This is 
confirmed by plotting the weights of data points by subpopulation 
(right-hand side of 2). Weights from subpopulations 1A and 2A are 
substantially higher than those from subpopulations 1B and 2C. 

The results of this simulation further demonstrate that the ATE es
timate from cGAN-weighted data is less biased than estimates from 
other weighting methods, given their respective targets (Table 1). By 
construction, the causal effect of the comparable subpopulations is 70. 

cGAN-weighted data produced an ATE of 70.01. We see similarly good 
performance when inspecting the ESS. The cGAN has an ESS of 3870. 
Given that there are 4000 units that are comparable across the two arms 
(each subpopulation contains 2000 units), this is an appropriate esti
mate. 

The results of the sensitivity analyses can only be found in the  
Supplementary Materials. The results of this analysis show that super
iority of cGAN performance over comparator methods persists across all 
settings of the simulations parameters. Across all combinations of per- 
arm sample size, overlap, and ’true ATE, the cGAN consistently pro
duced the least biased estimate of ATE and yielded the maximally ap
propriate ESS given the parameters. 

4.2. Application to clinical data 

The ASDM for the clinical cohorts is presented in Fig. 3. These 
findings are summarized by the mean ASDM over all features, under the 
varying weighting methods in Table 2. cGAN improved mean ASDM 
from the unweighted cohort and improved feature balance the most 
among all evaluated methods. Under cGAN-weighting, some features 
show worsening ASDM after weighting is applied. We hypothesize that 
this may be due to incomplete training, and may be alleviated with 
more iterations. Note that this task is particularly challenging due to the 
high dimensionality of the data and small study size. 

The results of this experiment can be found in Fig. 3 and Table 2. 
They demonstrate that cGAN-weighting achieves better feature balance 
than comparator methods. 

5. Discussion 

In this paper, we introduce the Counterfactual -GAN. It is a deep 
generative model for feature balance that minimizes the variance of 
importance sampling estimates of treatment effects. We leverage the f- 
GAN framework for estimating the 2-divergence and likelihood ratios 
necessary for achieving this. 

The experiments presented here suggest that cGAN is an effective 

Fig. 2. Simulation Results. Left: Select features (i) by population of origin; (ii) with subpopulation A highlighted; (iii) samples from the generator; (iv) opacity 
adjusted by weight. Right: Weights by subpopulation. 

Table 1 
Results of Simulation. The average treatment effect and effective sample size 
(ESS) after application of weighting methods from the Counterfactual -GAN 
and comparators.     

Weighting Method ATE ESS  

unweighted 50.03 8000 
IPW 92.00 6551 
clipped IPW 87.24 6997 
binary regression PS 92.00 6551 
generalized boosted modeling PS 84.51 7207 
covariate balancing PS 91.83 6686 
non-parametric covariate balancing PS 37.65 11 
entropy balancing 104.13 65 
empirical balancing calibration weights 52.06 65 
optimization-based weights 52.07 114 
cGAN 70.01 3870    
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method of learning feature balancing weights to support counterfactual 
inference. If we assume that all potentially confounding variables are 
observed, the superiority of cGAN in learning balancing weights, sug
gests that ATE estimates borne from cGAN-weighted cohorts would be 
less biased than those estimates generated from traditional weighting 
methods. As such, the cGAN may provide a reliable means to better 
understand the safety and effectiveness of interventions, when a ran
domized trial is not feasible. This may get high-quality interventions to 
patients faster, thereby improving patient health. 

The application of the model to real-world EHR data, demonstrates 
that this method could provide an alternative means to causal estima
tion from observational data when the assumptions of no unobserved 
confounding, positivity, and SUTVA are met. This finding could have 
been empirically verified through a comparison of the cGAN-weighted 
ATE with the gold standard, which is randomized trial in which strong 
ignorability should be upheld. The effect of randomization in the RCT 

and cGAN-weighting only addresses the differences that exist between 
the treatment and comparator cohorts within a single experimental 
setting. However, we found that the experimental setting from the RCT 
were markedly different from the observational data, notably in the 
distribution of gender and race. If the variables with differing dis
tributions elicit a heterogeneity of treatment effect, then the effect es
timates between these two data sources would never be comparable. 

Our experiments suggest that the flexibility of our framework pro
duces improved feature balance relevant for valid causal estimates. This 
method does, however, come with limitations. GANs are well known for 
their instability and lack of objective measures for convergence. This 
work shares those limitations. In future work, we will explore an ex
tension of the cGAN that overcome the many current limitations of 
GANs. To make the model of use to the informatics community, we may 
extend upon our model and develop a new method that still minimizes 
the -divergence but does so in a way that is (i) rapid, (ii) allows 
monitoring of convergence, (iii) that is more robust to hyperparameter 
settings, and (iv) handles heterogeneous and missing data seamlessly. 

CRediT authorship contribution statement 

AA contributed Investigation, Methodology, Software, Validation, 
Visualization, and Writing - original draft. AP contributed 
Conceptualization, Methodology, Project administration, Supervision, 
and Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influ
ence the work reported in this paper. 

Fig. 3. Absolute standardized difference of the means (ASDM) of real-world clinical features after application weighting methods from the Counterfactual -GAN and 
comparators. 

Table 2 
Results of Application to Clinical Data. Absolute standardized difference 
of the means (ASDM) of real-world clinical features after application 
weighting methods from the Counterfactual -GAN and comparators.    

Weighting Method ASDM  

unweighted 0.1103 
IPW 0.0876 
clipped IPW 0.0631 
binary regression PS 0.0625 
generalized boosted modeling PS 0.0749 
covariate balancing PS 0.0681 
non-parametric covariate balancing PS 0.0596 
entropy balancing 0.0524 
empirical balancing calibration weights 0.0524 
optimization-based weights 0.0536 
cGAN 0.0364 
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