About

Rajesh Ranganath

I am an Assistant Professor at the Courant Institute at NYU in Computer Science and at the Center for Data Science. I am also part of the CILVR group. My research interests include causal, statistical, and probabilistic inference, out-of-distribution detection and generalization, deep generative modeling, interpretability, and machine learning for healthcare. Before joining NYU, I earned degrees in computer science; my PhD was completed at Princeton University working with Dave Blei and my undergraduate was done at Stanford University. I have also spent time as a research affiliate at MIT’s Institute for Medical Engineering and Science.

Papers

  • Survival Mixture Density Networks
    Xintian Han, Mark Goldstein, and Rajesh Ranganath. MLHC 2022.
    [pdf]

  • Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets
    Lily Zhang, Veronica Tozzo, John Higgins, Rajesh Ranganath. ICML 2022.
    [pdf]

  • Out-of-distribution Generalization in the Presence of Nuisance-Induced Spurious Correlations
    Aahlad Puli, Lily Zhang, Eric Oermann, Rajesh Ranganath. ICLR 2022.
    [pdf]

  • FastSHAP: Real-Time Shapley Value Estimation
    Neil Jethani, Mukund Sudarshan, Ian C Covert, Su-In Lee, R Ranganath. ICLR 2022.
    [pdf]

  • Learning invariant representations with missing data
    Mark Goldstein, Jörn Jacobsen, Olina Chau, Adriel Saporta, Aahlad Puli, Rajesh Ranganath, Andy Miller. CLeaR 2022.
    [pdf]

  • Individual treatment effect estimation in the presence of unobserved confounding using proxies: a cohort study in stage III non-small cell lung cancer
    Wouter AC van Amsterdam, Joost Verhoeff, Netanja I Harlianto, Gijs A Bartholomeus, Aahlad Manas Puli, Pim A de Jong, Tim Leiner, Anne SR van Lindert, Marinus JC Eijkemans, and Rajesh Ranganath. Scientific reports 12 (1), 2022.
    [pdf]

  • Inverse-Weighted Survival Games
    Xintian Han, Mark Goldstein, Aahlad Puli, Thomas Wies, Adler Perotte, and Rajesh Ranganath. NeurIPS 2021.
    [pdf]

  • Offline rl without off-policy evaluation
    David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. NeurIPS, 2021.
    [pdf]

  • Probabilistic machine learning for healthcare
    Irene Y Chen, Shalmali Joshi, Marzyeh Ghassemi, Rajesh Ranganath. Annual Review of Biomedical Data Science 4, 2021.
    [pdf]

  • RankFromSets: Scalable set recommendation with optimal recall
    Jaan Altosaar, Rajesh Ranganath, Wesley Tansey. Stat 10 (1), 2021.
    [pdf]

  • Understanding failures in out-of-distribution detection with deep generative models
    Lily Zhang, Mark Goldstein, Rajesh Ranganath. ICML 2021.
    [pdf]

  • Offline contextual bandits with overparameterized models
    David Brandfonbrener, William Whitney, Rajesh Ranganath, Joan Bruna. ICML 2021.
    [pdf]

  • Reproducibility in machine learning for health research: Still a ways to go
    Matthew BA McDermott, Shirly Wang, Nikki Marinsek, Rajesh Ranganath, Luca Foschini, Marzyeh Ghassemi. Science Translational Medicine 13 (586), 2021.
    [html]

  • Contra: Contrarian statistics for controlled variable selection
    Mukund Sudarshan, Aahlad Puli, Lakshmi Subramanian, Sriram Sankararaman, and Rajesh Ranganath. AISTATS, 2021.
    [pdf]

  • Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
    Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, Rajesh Ranganath. AISTATS, 2021.
    [pdf]

  • A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
    Narges Razavian, Vincent J Major, Mukund Sudarshan, … Rajesh Ranganath, Jonathan Austrian, Yindalon Aphinyanaphongs. NPJ digital medicine 3 (1), 1-13 44, 2020.
    [pdf]

  • The Counterfactual χ-GAN: Finding comparable cohorts in observational health data
    Amelia J Averitt, Natnicha Vanitchanant, Rajesh Ranganath, Adler J Perotte. Journal of Biomedical Informatics 109, 2020.
    [pdf]

  • Data-driven physiologic thresholds for iron deficiency associated with hematologic decline
    Brody H Foy, Aodong Li, James P McClung, Rajesh Ranganath, John M Higgins. American Journal of Hematology 95 (3), 2020.
    [pdf]

  • Deep learning models for electrocardiograms are susceptible to adversarial attack
    Xintian Han, Yuxuan Hu, Luca Foschini, Larry Chinitz, Lior Jankelson, Rajesh Ranganath. Nature medicine 26 (3), 2020.
    [html]

  • General Control Functions for Causal Effect Estimation from IVs
    Aahlad Puli, Rajesh Ranganath. NeurIPS 2020.
    [pdf]

  • Causal Estimation with Functional Confounders
    Aahlad Puli, Adler Perotte, Rajesh Ranganath. NeurIPS 2020.
    [pdf]

  • X-CAL: Explicit Calibration for Survival Analysis
    Mark Goldstein, Xintian Han, Aahlad Puli, Adler Perotte, Rajesh Ranganath. NeurIPS 2020.
    [pdf]

  • Deep Direct Likelihood Knockoffs
    Mukund Sudarshan, Wesley Tansey, Rajesh Ranganath. NeurIPS 2020.
    [pdf]

  • A Review of Challenges and Opportunities in Machine Learning for Health
    Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L Beam, Irene Y Chen, Rajesh Ranganath. AMIA Summits on Translational Science Proceedings 2020.
    [html]

  • Practical Guidance on Artificial Intelligence for Healthcare Data
    Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L Beam, Irene Y Chen, and Rajesh Ranganath. The Lancet Digital Health 1 (4), 2019.
    [pdf]

  • ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission
    Kexin Huang, Jaan Altosaar, Rajesh Ranganath. CHIL workshop 2020.
    [pdf]

  • Kernelized complete conditional Stein discrepancy
    Raghav Singhal, Xintian Han, Saad Lahlou, Rajesh Ranganath. arXiv 2019.
    [pdf]

  • Energy-Inspired Models: Learning with Sampler-Induced Distributions
    Dieterich Lawson, George Tucker, Bo Dai, Rajesh Ranganath. Neurips 2019.
    [pdf]

  • Predicate Exchange: Inference with Declarative Knowledge
    Zenna Tavares, Javier Burroni, Edgar Minasyan, Amando Solar-Lezama, Rajesh Ranganath. ICML 2019.
    [pdf]

  • The Variational Predictive Natural Gradient
    Da Tang, Rajesh Ranganath. ICML 2019.
    [pdf]

  • Support and Invertibility in Domain-Invariant Representations
    Fredrik Johansson, David Sontag, Rajesh Ranganath. AISTATS 2019.
    [pdf]

  • Deep Survival Analysis: Missingness and Nonparametrics
    Xenia Miscouridou, Adler Perotte, Noemie Elhadad, Rajesh Ranganath. MLHC 2018.
    [pdf]

⌄ Expand ⌄
  • Max-margin Learning with the Bayes factor
    Rahul Krishnan, Arjun Khandelwal, Rajesh Ranganath, David Sontag. UAI 2018.
    [pdf]

  • NOISIN: Unbiased Regularization for Recurrent Neural Networks
    Adji Dieng, Rajesh Ranganath, Jaan Altosaar, David M. Blei. ICML 2018.
    [pdf]

  • Variational Sequential Monte Carlo
    Christian Naesseth, Scott Linderman, Rajesh Ranganath, David M. Blei. AISTATS 2018.
    [pdf]

  • Proximity Variational Inference
    Jaan Altosaar, Rajesh Ranganath, David M. Blei. AISTATS 2018.
    [pdf]

  • Identifying potentially induced seismicity and assessing statistical significance in Oklahoma and California
    Mark McClure, Riley Gibson, Kit‐Kwan Chiu, and Rajesh Ranganath. Journal of Geophysical Research: Solid Earth 2017.
    [html]

  • Variational Inference via Chi Upper Bound Minimization
    Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David M. Blei. Neurips 2017.
    [pdf]

  • Hierarchical Implicit Models and Likelihood-Free Variational Inference
    Dustin Tran, Rajesh Ranganath, and David M. Blei. Neurips 2017.
    [pdf]

  • Correlated Random Measures
    Rajesh Ranganath and David M. Blei. JASA 2017.
    [fulltext] [arxiv]

  • Automatic Differentiation Variational Inference
    Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. JMLR 2017.
    [pdf]

  • Operator Variational Inference
    Rajesh Ranganath, Jaan Altosaar, Dustin Tran, and David M. Blei. Neurips 2016.
    [pdf]

  • Deep Survival Analysis
    Rajesh Ranganath, Adler Perotte, Noemie Elhadad, and David M. Blei. MLHC 2016.
    [pdf]

  • Hierarchical Variational Models
    Rajesh Ranganath, Dustin Tran, and David M. Blei. ICML 2016.
    [pdf]

  • Variational Tempering
    Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, and David M. Blei. AISTATS 2016.
    [pdf]

  • The Variational Gaussian Process
    Dustin Tran, Rajesh Ranganath, and David M. Blei. ICLR 2016.
    [pdf]

  • The Population Posterior and Bayesian Modeling on Streams
    James McInerney, Rajesh Ranganath, and David M. Blei. Neurips 2015.
    [pdf]

  • Automatic Variational Inference in Stan
    Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Neurips 2015.
    [pdf]

  • Dynamic Poisson Factorization
    Laurent Charlin, Rajesh Ranganath, James McInerney, and David M. Blei. RecSys 2015.
    [pdf]

  • The Survival Filter: Joint Survival Analysis with a Latent Time Series
    Rajesh Ranganath, Adler Perotte, Noemie Elhadad, and David M. Blei. UAI 2015.
    [pdf]

  • Risk Prediction for Chronic Kidney Disease Progression Using Heterogeneous Electronic Health Record Data and Time Series Analysis
    Adler Perotte, Rajesh Ranganath, Jamie Hirsch, David M. Blei, and Noemie Elhadad. JAMIA 2015.
    [html]

  • Deep Exponential Families
    Rajesh Ranganath, Linpeng Tang, Laurent Charlin, and David M.Blei. AISTATS 2015.
    [pdf] [supplement]

  • Hierarchical Topographic Factor Analysis
    Jeremy R. Manning, Rajesh Ranganath, Waitsang Keung, Nicholas B. Turk-Browne, Jonathan D. Cohen, Kenneth A. Norman, and David M. Blei. IEEE Xplore, 4th International Workshop on Pattern Recognition in Neuroimaging.
    [pdf]

  • Bayesian nonparametric Poisson factorization for recommendation systems
    Prem Gopalan, Francisco JR Ruiz, Rajesh Ranganath, and David M. Blei. AISTATS 2014.
    [pdf]

  • Black Box Variational Inference
    Rajesh Ranganath, Sean Gerrish, and David M. Blei. AISTATS 2014.
    [pdf] [supplement]

  • Topographic Factor Analysis: a Bayesian model for inferring brain networks from neural data
    Jeremy R. Manning, Rajesh Ranganath, Kenneth A. Norman, and David M. Blei. Plos One 9(5) 2014.
    [pdf]

  • An Adaptive Learning Rate for Stochastic Variational Inference
    Rajesh Ranganath, Chong Wang, David M. Blei, and Eric P. Xing. ICML 2013.
    [pdf]

  • Detecting friendly, flirtatious, awkward, and assertive speech in speed-dates
    Rajesh Ranganath, Dan Jurafsky, and Daniel A. McFarland. Computer Speech and Language. vol. 27, no. 1, pp. 89-115, 2013, doi:10.1016/j.csl.2012.01.00.
    [fulltext]

  • Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks
    Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Communications of the ACM, vol. 54, no. 10, pp. 95-103, 2011. (Research Highlights)
    [pdf]

  • It’s Not You, it’s Me: Detecting Flirting and its Misperception in Speed-Dates
    Rajesh Ranganath, Dan Jurafsky, and Dan McFarland. EMNLP 2009.
    [pdf]

  • Extracting Social Meaning: Identifying Interactional Style in Spoken Conversation
    Dan Jurafsky, Rajesh Ranganath, and Dan McFarland. NAACL HLT 2009.
    [pdf]

  • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    Honglak Lee, Roger Grosse, Rajesh Ranganath and Andrew Y. Ng. ICML 2009 (Best paper award: Best application paper)
    [pdf]

People

PhD Students

Alumni

Teaching

Contact

NYU Courant Institute of Mathematical Science
Computer Science
60 Fifth Ave
New York, NY 10011
rajeshr at cims dot nyu dot edu