Recovering a sparse linear dynamical system
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Abstract

We design a ¢; optimization based sparse recov-
ery algorithm to recover a linear system of dif-
ferential equations from snapshots of the data at
few different points in time, when the number
of non-zero coefficients is known to be sparse,
and also prove an upper-bound on the number of
samples required for unique recovery. Typically,
dynamical systems governing gene expressions
are naturally sparse — a gene can be directly con-
trolled by only a handful of genes. Therefore, as
an application, we recover the coefficients of a
part of the underlying dynamical system relevant
to the expression of the gene Carboxypeptidase E
(Cpe) from scRNA-seq data in murine pancreatic
tissue.

1. Introduction

The problem of ascertaining which gene directly influences
which other gene, and to what degree, is a fundamental
problem in genomics. From a mathematical perspective, it
is equivalent to computing the dynamical system underly-
ing gene expression mechanisms. In this note, we define
and study one concrete version of the problem, where we
work under the assumption that one gene can be directly
influenced by only a small number of other genes.

Mathematically, the problem we study in this note can be
succinctly stated as follows. Given a high-dimensional
noisy linear dynamical system represented as a multi-variate
Ornstein-Uhlenbeck (OU) process that has a sparse! speed
matrix?, i.e., any row of the speed matrix has few non-zero
entries, we want to recover the coefficients of the speed
matrix from a small number of samples of the position and
velocity vectors of the dynamical system.

A natural way to solve the above problem is via compressed
sensing algorithms, for example, basis pursuit (equivalently
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"Here sparse means poly-logarithmic in the dimension of the
system.
2See Equation 3 for a definition.

¢1 minimization). However, for such algorithms to work the
null space property or one of its stronger cousins has to hold
true. Typically, that requires a condition on the covariance
matrix when the distribution of each entry in the measure-
ment matrix is a Gaussian (see for example (Raskutti et al.,
2010) for the most general of such conditions). The condi-
tion in (Raskutti et al., 2010) assumes that the rows of the
sensing/measurement matrix are independent, which is not
the case for the matrices derived from noisy linear dynami-
cal systems. That said, the linear nature of our dynamical
system still allows us to extend their theorems, which rely
on Gordon’s inequality, to the case of mildly dependent
rows. Note that we do not prove any theorems in this brief
note, and our main theoretical contribution is an overview
in Section 3 with remarks (Remarks 3.1 and 3.2) that sum-
marize our main ideas. They will be proven in a full version
of the paper. As an application, we use single cell RNA-seq
data from (Bastidas-Ponce et al., 2019) and RNA velocity
package scvelo® from (Bergen et al., 2020) to recover the
speed matrix using the well-known basis pursuit algorithm
(see Figure 1). Section 4 contains some details about our
experimental setup.

2. Compressed sensing: Basics

A basic problem in the field of compressed sensing is to
reconstruct an unknown sparse* signal ¢ € R" using data
from a (small) sample of measurements. These measure-
ments are represented by a matrix X € R™*" where
m is the number of samples. Typically, m ~ logo(l) n.
Moreover, the m sample observations y are related to
¢ as: X¢ = y or in the case of noisy measurements:
[[X¢ — yll2 < n. The matrix X is assumed to be known.

The central problem in compressed sensing is to reconstruct
(or recover) the s-sparse unknown signal ¢ (for s < n)
from y, while keeping m < n (see (Foucart & Rauhut,
2013)). The crux of the solution lies in solving a convex

3Their data is available at https://scvelo.
readthedocs.io/en/stable/scvelo.datasets.
pancreas/ and https://github.com/theislab/
pancreatic-endocrinogenesis/

*A n-dimensional real vector is said to be s-sparse if it is non-
zero on at most s co-ordinates.
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Figure 1. Regulatory genes for Cpe and Nnat. The x-axis denotes the gene name, the y-axis denotes the (negative) influence it has on the
expression of the gene: (a) Cpe and (b) Nnat. Note y-axis signs are inverted as there is a negative sign in front of the speed matrix ® in

Equation 3.

program (CP) of the form:

min (|6l (M
st [[Xo—yll2 <.

Definition 2.1. A matrix X has the (s, ~)-null space prop-
erty (NSP) if

Yo € Ker(X)\ {0}, VIT| < s, oz |y < 7llore -
While the number of fundamental results in compressed
sensing are too numerous to list here, we point the reader
who is new to the area to the book (Foucart & Rauhut, 2013).
Below we state a canonical theorem from compressed sens-
ing literature.

Theorem 2.2. (Chen, 2012), (Cahill et al., 2016) Let S be
the set of s-sparse vectors in R™. If X has (s,~)-NSP, then
any minimizer T of CP in Equation I satisfies

42N 4(147)
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where x is the original signal to be recovered, \ is the small-
est positive singular value of X and o5(x) := min,cg ||z —
ZH 1-

Definition 2.3. (Raskutti et al., 2010) Suppose the rows of
am x n matrix X are chosen according to independent mul-
tivariate normal distributions with 7 X n covariance matrix
Y. Then X is said to follow a (s, o, y)-restricted eigenvalue
(RE) condition of order v, if || Y/2v||y > a|v||2, for all v
that satisfy a (s,~y)-NSP with respect to X.

6 —¢ll1 < o5(¢), ()

Note that a RE condition of order (s, a, ), for any constant
«, implies a (s, y)-NSP. Hence the former is stronger than
the latter.

3. Overview of our results

Let z(t) € R™ denote the position vector of our dynami-
cal system in question. Let m denote the number of our
snapshots of x(t), taken at times {¢1,¢2,...,tm }, and let
& € R™*™ denote the speed matrix for the underlying OU
process, i.e.,

dz(t) = ®(p — z(t))dt + odWy, 3)

where ;1 € R™ is the long term mean expression level of
each gene and 0 € R™*" denotes the fluctuation in mea-
surements, W; € R™ denotes Weiner noise. For theoretical
purposes, we will assume p = 0, as the process can be
centered, if necessary. Note that for our running example
for gene expression levels which can not assume negative
values, x(t) can be chosen to be the log of the expression
levels, in case the diffusivity o is significant compared to
the mean.

The measurement matrix X is obtained by concatenating
the snapshot vectors [z(t1), z(t2), ..., ©(t:m)]. We assume
the time derivatives & (¢) can be measured as well, these are
our observations (y in Equation 1). In the gene expression
example, they are computed from steady-state RNA velocity
data (Bergen et al., 2020), (Bastidas-Ponce et al., 2019).

Note that z(t), and hence the measurement matrix, is Gaus-
sian, but the rows are not independent, unlike the usual
assumption in compressed sensing papers (see for exam-
ple (Raskutti et al., 2010), (Foucart & Rauhut, 2013)). When
rows are independent Gaussians, the paper (Raskutti et al.,
2010) shows that the required number of snapshots for the
recovery of any row of ® is small (around O(logn)), under
the RE condition (see Definition 2.3). This leads to the
basic compressed sensing question: how many samples are
enough for our case, with a Gaussian measurement matrix



coming from an OU process, as above?

The correlations between any two rows of our measurement
matrix decay rapidly with time as long as the real part of
the eigenvalues of the recovered matrices is negative and
not too small. We state our main result as a remark, without
proof, in this note. Since we do not provide full proofs, our
results are stated as remarks, instead of theorems.

Remark 3.1. Let tq,...,t,, be the snapshot times of the
OU process in Equation 3, such that |t; — t;| > C, for a
large enough constant C, for all ¢ and j in [m/]. For large ¢,
positive definite ool and measurement matrix X € R™*"
(as defined above) with N (0, T') rows, there exist constants
K, ¢, ¢ such that:

|1 X ]2 logn

22 > KTV 20, - p(X

T KT = ()

with probability at least 1 — ¢ exp(—cm), where p(X) :=
max;e[,) X;; and K depends upon C'.

ol @)

As in (Raskutti et al., 2010) this implies a condition stronger
than the null space property and ensures recovery with high
confidence. The proof relies on generalizing the first part
of the proof in (Raskutti et al., 2010) that uses Gordon’s
inequality and may be interesting in itself. Some details are
sketched later in this section.

However, if we assume C' is very large in Remark 3.1 then
the rows of the measurement matrix X are independent,
and (Raskutti et al., 2010) implies successful recovery us-
ing basis pursuit, as long as Y satisfies the RE condition.
However, in our case Y depends upon ®! Thus even in
this “independent” setting, we still need to derive sufficient
conditions on ® which can be inspected after recovery to
have high confidence that the covariance matrix T satisfies
the RE condition of order (s, c, 7y), for some « and . Only
after that verification, based on the values of « and ~, one
can say that the number of snapshots used, i.e., m, was large
enough for successful recovery, with high probability. This
motivates the following remark.
Remark 3.2. Assuming Vi, j € [m] : |t; —t;| — oo, then T
satisfies RE condition for some positive constants (s, a,7y)
if:

1. 00T is positive definite with minimum eigenvalue

lower bounded by a positive constant, or

2. {®ooT, ®%007, ..., ®¥00T} spans R™ for some finite
k.
Note that the coefficient « although positive, may go to 0 as
t; — o0.

The proof of Remark 3.2, although not involved by itself,
relies on Hormander’s condition (see (Hormander, 1967))

and requires some background in Lie algebra and differential
equations. We skip the proof in this note.

It is worth noting that the number of samples required
for successful recovery grows as O(loa#), see for exam-
ple (Raskutti et al., 2010). Therefore, characterizing the
constant v is an important problem when oo’ is not positive
definite, and corresponds to the stochastic process version
of the minimum positive singular value in Chen’s bound for
the deterministic setting (Theorem 2.2).

Next, we briefly sketch the modification involved in gen-
eralizing the proof in (Raskutti et al., 2010) to incorporate
auto-correlations from our OU process setting. The proof of
the main theorem in (Raskutti et al., 2010), which inspired
Remark 3.1, proceeds in three parts: (1) An upper-bound
on E[M (r, ®)], where M (r,®) := 1 — inf,cy “‘%5
(2) a sharp concentration result for M (r, ®) around its ex-
pectation, and (3) a peeling argument to show the final high
probability statement holds. For our purposes, we only
need to modify (1), the crux of which relies on Gordon’s
inequality.

The point of the using Gordon’s inequality is to upper bound
the Euclidean norm of a linear combination of Gaussians
using the supremum of a linear combination of a different
set of Gaussians. Gordon’s inequality allows us to upper
bound the expectation of the former with that of the latter,
as long as the total variance of the latter is greater than that
of the former. The crux of the entire method is verifying
this relationship between the total variance of the two sets
of Gaussians. See the book (Foucart & Rauhut, 2013) for
more details about Gordon’s inequality.

In our case, the Gaussians are correlated, so calculating the
variances requires us to keep track of O(mn) covariance
matrices as well. This may seem daunting, but it is easily
accomplished by observing that the cross-covariance matrix
I'(t;,t;) between the n-dimensional Gaussians z(t;) and
x(t;) with t; — t; = C are given by:

tj
L(t;,t;) = e*C¢/ e ool e " gt 5)
0

For large t;, the integral in Equation 5, denoted by I/, where
T = e~ “®IY, can be written as:

oI’ + 10T = 50T /2. (6)

See the results in (Vatiwutipong & Phewchean, 2019) for a
proof of the above. Therefore, the mn covariance matrices
are just a matrix exponential times a common covariance
matrix (given by I'V). This makes the total variance calcula-
tion for Gordon’s inequality tractable. We defer the details
to the full version of the paper.

SHere V(1) := {v € R™ : | Y205 = 1, ||v|1 < 7}



Finally, we remark that a potential generalization, that com-
bines the Remarks 3.1 and 3.2, to the case when C is finite
and oo is not necessarily positive definite would be inter-
esting. The proof would need to combine the Héormander
condition based ideas in the independent case and take
into account the auto-correlations and build over the proof
in (Raskutti et al., 2010).

4. Further details: scRNA-seq data

In this section, we provide some details about how we ob-
tain the graphs in Figure 1, based on the scRNA-seq data
in (Bastidas-Ponce et al., 2019) (also see (Bergen et al.,
2020)) for about 4000 cells murine pancreatic tissue. The
vectors x(t) are merely the total RNA expression levels for
a cell as sampled from the data. Each cell is assumed to pro-
vide a (noisy) snapshot of the underlying dynamical system.
For the velocity, we use the definition of RNA velocity as
measured by the difference in spliced and unspliced RNA
levels in (Bergen et al., 2020) to approximate @(t). Finally,
we use the basis pursuit algorithm (see (Foucart & Rauhut,
2013)) to infer the speed matrix ® in Equation 1 for the
genes Cpe and Nnat, by solving the second order cone pro-
gram (using cvx). Figure 1 is the result of application of
basis pursuit algorithm for the rows corresponding to the
genes Cpe and Nnat.

Note that, since linear systems of differential equations
can encode for higher order derivatives, the notion of RNA
acceleration and other higher order terms are implicit in our
dynamical system.

Also note that, for computational efficiency, we remove
low count genes from the data using scvelo, the recovered
coefficients in Figure 1 may leave out some intermediate
genes. So for the purposes of this discussion “directly influ-
ence” should be understood as confined to the universe of
unfiltered genes.

We can use Figure 1 to make the following initial observa-
tions:

1. In Figure 1, Cck, the gene directly responsible for
secreting the peptide hormone Cholecystokinin seems
to have a positive effect on Cpe, which is required for
maturation of Cholecystokinin, as explained in this
endocrinology encyclopedia entry. So this is expected.
That Spp1 (Osteopontin) negatively effects Cpe in the
pancreas could be an interesting corollary that needs
experimental verification. Osteopontin has been known
to positively correlate with the diabetic state (Cai et al.,
2018).

2. This naturally leads to the question: how do we know
that we have enough data samples vs the number of
genes to have uniquely and accurately recovered the

interactome (dynamical system)? The answer lies in
the upper-bounds, sketched in the theoretical overview
in Section 3.

5. Conclusion

In this note, we summarized an application of compressed
sensing algorithms to recover genes which directly effect
the expression of a given gene. More generally, the idea
can be used to recover the coefficients of the equations of
any linear dynamical system which satisfies the sparsity
assumption. We sketched theoretical bounds on the sample
size that can allow us to have high degree of confidence on
the recovered dynamical system coefficients.
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