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Abstract

Let G be a weighted graph in which each vertex initially has weight 1. A total
acquisition move transfers all the weight from a vertex u to a neighboring vertex v,
under the condition that before the move the weight on v is at least as large as the
weight on u. The (total) acquisition number of G, written at(G), is the minimum size
of the set of vertices with positive weight after a sequence of total acquisition moves.

Among connected n-vertex graphs, at(G) is maximized by trees. The maximum
is Θ(

√
n lg n) for trees with diameter 4 or 5. It is ⌊(n + 1)/3⌋ for trees with diameter

between 6 and 2
3(n + 1), and it is ⌈(2n − 1 − D)/4⌉ for trees with diameter D when

2
3(n+1) ≤ D ≤ n−1. We characterize trees with acquisition number 1, which permits
testing at(G) ≤ k in time O(nk+2) on trees.

If G 6= C5, then min{at(G), at(G)} = 1. If G has diameter 2, then at(G) ≤
32 ln n ln ln n; we conjecture a constant upper bound. Indeed, at(G) = 1 when G has
diameter 2 and no 4-cycle, except for four graphs with acquisition number 2.

Deleting one edge of an n-vertex graph cannot increase at by more than 6.84
√

n,
but we construct an n-vertex tree with an edge whose deletion increases it by more
than 1

2

√
n. We also obtain multiplicative upper bounds under products.

1 Introduction

Consider an army dispersed among many cities. We wish to consolidate the troops. Troops

move only to neighboring occupied cities, and the number of troops in a move cannot exceed

the number already at the destination. Can the troops all move to one city?

In another scenario, each person in a society starts with one vote. Person A may conclude

that friend B who has acquired at least as many votes as A has a better chance to win. In
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such a situation, A can transfer all his votes to B. Is it possible for the society to elect a

leader by one person acquiring all the votes?

We model such situations using graphs with vertex weights. Initially, each vertex has

weight 1; let 1 denote this initial assignment. An acquisition move transfers some weight

from a vertex u to a neighboring vertex v, provided that before the move the weight on v is

at least the weight on u. The total weight is preserved. We want to concentrate the weight

on the fewest vertices. Acquisition moves can be made until the set of vertices with positive

weight is an independent set; the final independent set is the residual set.

Lampert and Slater [5] introduced acquisition in graphs, using acquisition moves that

transfer all of the weight from a vertex to a neighbor. The total acquisition number, written

at(G), is the minimum possible size of the residual set after such acquisition moves (starting

from distribution 1). We refer to a succession of total acquisition moves as an acquisition

protocol. An acquisition protocol A on a graph G is optimal if it starts with the weight

assignment 1 and leaves positive weight on only at(G) vertices.

Allowing flexibility in the amount of weight moved leads to variations. When an acqui-

sition move may transfer any integer portion of the weight on a vertex, the minimum size

of the residual set is the unit acquisition number au(G). When it may transfer any positive

amount of the weight on a vertex, the minimum size of the residual set is the fractional

acquisition number af (G). For results on au and af , see [9, 12].

Lampert and Slater [5] proved that at(G) ≤ ⌊(n + 1)/3⌋ when G is a connected n-vertex

graph (for n > 1), and this is sharp. They also observed that a vertex v cannot acquire weight

more than 2d(v) and that no weight from u can reach v if the distance between them is greater

than d(v). Here dG(v) denotes the degree of vertex v in a graph G, shortened to d(v) when

G is understood. Slater and Wang [11] proved that testing at(G) = 1 is NP-complete, and

they provided a linear-time algorithm to compute at(G) when G is a caterpillar.

Later, Slater and Wang [10] introduced “competitive acquisition”: a “Consolidator” C

and an Adversary A alternately perform acquisition moves until no more are possible. The

Consolidator wants the residual set to be small; the Adversary wants it large. The competitive

acquisition number is the resulting size when C moves first and both play optimally. Slater

and Wang [10] computed this for the n-vertex path Pn, for all n. The problem is studied in

[7] for trees and complete bipartite graphs, under the name game acquisition.

In this paper we study only total acquisition, so we abbreviate “total acquisition number”

to “acquisition number” but maintain the notation at. Deleting edges cannot reduce at, so

at is maximized among n-vertex connected graphs by trees. In Section 2, we present a

family of trees showing that for k ≥ 3 and D ≥ 6, the largest acquisition number among n-

vertex graphs can be achieved by a tree with maximum degree k and diameter D whenever

n is between 3(k + D/2) − 10 and about 3(k − 2)⌊D/4⌋; the lower bound is equivalent to

D ≤ 2
3
(n + 1). In this range, the family of extremal trees is much richer than the single

n-vertex example given in [5]. Actually, our construction generates all n-vertex graphs with
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acquisition number (n + 1)/3 when n ≡ 2 mod 3 (except for the 5-cycle); this is proved

in [6]. For larger diameter, with 2
3
(n + 1) ≤ D ≤ n − 1, we show that the maximum of at is

⌈(2n − 1 − D)/4⌉.
Trees with diameter less than 6 have smaller acquisition numbers. Trivially, at(T ) = 1

when T is a tree with diameter at most 3. For n-vertex trees with diameter 4 and diameter

5, we show in Section 3 that the maximum is Θ(
√

n lg n), where lg denotes log2. In fact, the

maximum among n-vertex trees with diameter 4 is between
√

n lg n and
√

.5n lg n. We also

characterize trees T for which at(T ) = 1, which allows us to construct a polynomial-time

algorithm to test at(T ) ≤ k for any fixed positive integer k.

In Section 4, we give sufficient conditions for a graph to have acquisition number 1. We

show that, if G 6= C5, then at(G) or at(G) is 1, where G denotes the complement of G.

Furthermore, if δ(G) ≥ (|V (G)| − 1)/2, then at(G) = 1 (again, if G 6= C5), and no smaller

minimum degree is sufficient.

In Section 5, we consider graphs with diameter 2. We conjecture that at(G) is bounded

by an absolute constant for such graphs, perhaps by 2. We prove that at(G) ≤ 32 lnn ln ln n

when G has diameter 2 (the diameter of a graph is the maximum of the distances between

vertices). If in addition G has no 4-cycle, then at(G) = 1 except for C5, the Petersen graph,

one graph with seven vertices, and one graph with 13 vertices. The exceptions with seven

and 13 vertices are the polarity graphs of the projective planes of orders 2 and 3, and all

four exceptions have acquisition number 2.

In Section 6, we consider edge deletion. Deleting one edge in an n-vertex graph cannot

increase the acquisition number by more than 6.84
√

n, but there is an n-vertex tree having

an edge whose deletion increases the acquisition number by more than 1
2

√
n. For the strong

product ⊠ and cartesian product �, we show in Section 7 that at(G⊠H) ≤ at(G�H) ≤
at(G)at(H) and ask whether there are infinitely many examples with at(G⊠H) < 1

2
at(G)at(H).

In addition to the conjectures and open questions mentioned above, there are several

directions for further research on total acquisition in graphs. Motivated by the sufficient

conditions in Section 4 for acquisition number 1, it is natural to consider the more general

problem of finding sufficient conditions for acquisition number at most k. For example, one

can ask for the least such value of the minimum degree, the connectivity, or the minimum of

d(u)+d(v) over uv /∈ E(G) (known as an “Ore-type” condition). These questions also extend

naturally to random graphs; what is the threshold edge-probability function for acquisition

number at most k?

Alternatively, one can seek the maximum of at(G) over other families of n-vertex graphs.

For example, what is the maximum of at(G) when G is k-connected or when δ(G) ≥ k?

Similarly, what is the behavior of the acquisition number of the random graph G(n, p) with

edge-probability p(n)? Of particular interest would be p ∼ ln n
n

, the threshold for connectivity.

More generally, one can study the tradeoff between at(G) and other parameters. In par-

ticular, for n-vertex graphs, how does at(G) decrease as κ(G) or δ(G) increases. Is at(G)κ(G)
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or at(G)δ(G) bounded by a linear function of |V (G)|? Similarly, how does at(G(n, p)) de-

crease as p → 1? The material of Section 2 can be viewed as exploring the tradeoff between

diameter and acquisition number for trees.

We conclude this introduction with elementary observations about total acquisition. Let

α(G) denote the maximum size of an independent set in G, and let γ(G) denote the minimum

size of a dominating set in G, where a dominating set is a vertex set S such that every vertex

outside S has a neighbor in S.

Observation 1.1. For a graph G, the following statements hold:

(1) at(G) ≤ α(G) and at(G) ≤ γ(G).

(2) The set of edges used in an acquisition protocol is acyclic, and each is used at most once.

(3) at(G) = min{at(F ) : F ∈ F}, where F is the set of spanning forests of G.

Proof. (1) An acquisition protocol can consolidate weight onto any maximal independent set

or any minimal dominating set.

(2) Weight can never be moved to a vertex once it has weight 0. Hence a cycle cannot

be completed and an edge cannot be reused (and every acquisition protocol is finite).

(3) By (2), the set of edges used in an optimal acquisition protocol on G is the edge set

of a spanning forest. Deleting the unused edges does not change the residual set. �

Example 1.2. With Pn and Cn denoting the n-vertex path and n-vertex cycle, at(Pn) =

at(Cn) = ⌈n/4⌉. As noted earlier, the weight on a vertex of degree d cannot exceed 2d

when starting with weights 1 [5]. Hence the acquisition number of any graph with maximum

degree 2 is at least ⌈n/4⌉. The vertices of a path or cycle with n vertices can be covered by

⌈n/4⌉ paths with at most four vertices, each having acquisition number 1. �

The acquisition problem generalizes to every graph G with vertex weights; let at(G)

denote the minimum size of the residual set after an acquisition protocol starting with the

weighted graph G. A cut-set in a graph G is a set S ⊆ V (G) such that G−S is disconnected,

where G − S is the result of deleting the vertices of S from G.

Observation 1.3. Let S be a cut-set in a weighted graph G. If each vertex in S has weight

0, then at(G) is at least the number of components of G − S having positive total weight.

Proof. No weight can move to a vertex of weight 0, so no weight can move from one compo-

nent of G − S to another. �
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2 Extremal Trees

Lampert and Slater [5] showed that ⌊(n + 1)/3⌋ is the maximum of at(G) over n-vertex

graphs, when n > 1. For n ≡ 2 mod 3, they provided a tree achieving this bound, but its

maximum degree is (n + 1)/3 and its diameter is 6. We construct a more general family of

extremal trees. Note that since at(Pn) = ⌈n/4⌉, the bound is not sharp when ∆(G) = 2,

where ∆(G) denotes the maximum vertex degree in G.

It is sometimes useful to view the initial weight on each vertex as a chip that moves from

vertex to vertex under total acquisition moves. One can then follow a given chip to see where

that weight goes during an acquisition protocol.

Lemma 2.1. Let x and y be vertices in a tree T . If the unique x, y-path in T contains a

vertex of degree 2 not adjacent to x or y, then the initial weight from x and y cannot reach

a common vertex via total acquisition moves.

Proof. Let v be a vertex of degree 2 on the x, y-path. For the weight from x and y to reach

the same vertex, vertex v must be used. The first move involving v transfers weight 1 to or

from it, so this move cannot transfer the weight that was originally on x or y. After this

move, v or one of its neighbors has weight 0. By Observation 1.3, the weight from x and y

cannot then reach the same vertex. �

Theorem 2.2. Starting with P5, let T be the family of trees constructed by iteratively growing

a path with three edges from the neighbor of a leaf. If T ∈ T , then at(T ) = (|V (T )| + 1)/3.

Proof. We use induction on j, the number of augmentations. Each augmentation adds a

path of length 3 through three new vertices, so |V (T )| = 3j + 5. Each augmentation adds

one new leaf, so T has j + 2 leaves. Initially, the central vertex of P5 is a vertex of degree 2

separating the two leaves and adjacent to neither.

With each augmentation, the vertex v at distance 2 from the new leaf x is a vertex of

degree 2 that separates x from all earlier leaves. Since v was made adjacent to a neighbor

w of an earlier leaf, it is not adjacent to any earlier leaf. Also, w is not a vertex that

was nonadjacent to all earlier leaves, so the vertices previously chosen to witness separation

between leaves still have degree 2. By Lemma 2.1, at(T ) ≥ j + 2.

Equality holds, because at(P5) = 2, and for j > 0 the weight on each added path can be

acquired to the central vertex among the three new vertices. �

Corollary 2.3. For k ≥ 3 and D ≥ 6 with D even, there is an n-vertex tree with maximum

degree k, diameter D, and acquisition number ⌊(n + 1)/3⌋ if 3(k + D/2) − 10 ≤ n ≤ nk,D,

where

nk,D =











3
2
D − 1 for k = 3,

2 + 3(k − 1) (k−2)(D−2)/4−1
k−3

for k > 3 and D ≡ 2 mod 4,

5 + 6(k − 2) (k−2)(D−4)/4−1
k−3

for k > 3 and D ≡ 0 mod 4.
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Proof. Suppose first that n ≡ 2 mod 3. We construct such a tree T in the family T of

Theorem 2.2, which guarantees at(T ) = (n + 1)/3.

To reach maximum degree k, begin with P5 in which v is the neighbor of a leaf, and

augment at v exactly k − 2 times. Now the diameter is 6, and v has degree k. Next

increase the diameter to D by iteratively augmenting at the neighbor of a leaf on a longest

path, (D − 6)/2 times. The resulting tree T has diameter D, maximum degree k, and

3(k + D/2) − 10 vertices, since there were k − 2 + D/2 − 3 augmentations to P5. Figure 1

shows such a construction for k = 6 and D = 10.

• • •
•••

• • •
•••

•

• • •

•

• •

•

• •

•

Figure 1: An extremal tree with maximum degree 6 and diameter 10.

When k = 3, the lower bound 3(k + D/2) − 10 on n equals the upper bound 3D/2 − 1,

so the construction is finished. Henceforth we assume k > 3.

To increase the number of vertices, note that except for v, the neighbors of leaves have

degree 3 or 2. Augmenting at neighbors of endpoints of longest paths would increase the

diameter (see Figure 1), but we can augment at neighbors of other leaves, increasing the

number of vertices by 3 with each augmentation. We can continue such augmentations until

every neighbor of a leaf that is not an endpoint of a longest path has degree k.

To count the vertices, it is helpful to grow such a tree in another way. When D/2 is

odd, let ℓ = (D − 2)/4. Again start with P5 and let v be the neighbor of a leaf; v has

degree 2. Augmenting k − 2 times at v completes level 1; now v has degree k, and the k − 1

vertices at distance 2 from v are neighbors of leaves (see the leftmost part of Figure 1).

For i ≥ 1, augment k − 2 times at the neighbor of each leaf introduced when forming level

i, until ℓ levels are complete. After level 1, the diameter is 6. Each successive level adds

4 to the diameter, so the resulting diameter is 6 + 4(ℓ − 1), which equals D. Counting

the initial P5 as a (degenerate) augmentation of P2 to start level 1, reaching the largest

possible tree takes
∑ℓ

i=1(k−1)(k−2)i−1 augmentations, so that tree has 2+3(k−1) (k−2)ℓ−1
k−3

vertices. The augmentations can be reordered to begin with the initial example above having

3(k + D/2)− 10 vertices, so all intermediate values congruent to 2 modulo 3 are attainable.

When D/2 is even, instead build ℓ levels equally from the neighbors of both leaves of P5,

where ℓ = (D − 4)/4. There are k − 2 augmentations at each of them to complete level 1,

reaching diameter 8. Augment k−2 times at the neighbor of each new leaf to complete level

2, and so on through level ℓ. Starting with the initial P5 and counting the subtree from the

6



neighbors of both leaves, the resulting maximum number of vertices is 5 + 6(k − 2) (k−2)ℓ−1
k−3

.

When n 6≡ 2 mod 3, simply use the construction T ′ for the next smaller number of

vertices congruent to 2 modulo 3 and duplicate a leaf at the end of a longest path. Lemma 2.1

again yields the desired lower bound, and the Lampert–Slater bound requires equality. �

As noted in the introduction, when n ≡ 2 mod 3, the family T is the family of all n-

vertex graphs achieving the maximum value of the aquisition number, (n+1)/3 (except also

C5 when n = 5). The proof that this is the complete extremal family will appear in [6].

Theorem 2.2 solves the extremal problem for n-vertex trees with diameter D whenever

6 ≤ D ≤ 2
3
(n + 1), the upper bound being imposed by requiring k ≥ 3 in the construction.

When D is larger, fewer vertices are available outside a longest path, and hence we cannot

have as many of the leaves that by Lemma 2.1 force up the acquisition number. At D = n−1,

the graph reduces to Pn. More generally, when D > 2
3
(n+1), the maximum of the acquisition

number is achieved by a special caterpillar. We begin by bounding the value on caterpillars.

•
• • • • • • • • • • • • • • • • •

• • •

Figure 2: An extremal tree with high diameter.

Proposition 2.4. If T is an n-vertex caterpillar with diameter D, then at(T ) ≤
⌈

2n−1−D
4

⌉

.

Proof. We will use induction on D. If D ≤ 3, then T is P1, P2, a star, or a double-star. In

each case at(T ) = 1 ≤
⌈

2n−1−D
4

⌉

. Let T be a caterpillar with diameter D, where D ≥ 4,

and let P be a longest path in T . Let the vertices of P be v1, . . . , vD+1, indexed by their

order along the path P . Let C and C ′ be the components of T − v3v4 containing v3 and

v4, respectively. Observe that C is a caterpillar with diameter at most 3 and that C ′ is

a caterpillar with diameter at most D − 2 and with at most n − 3 vertices. Applying the

induction hypothesis yields at(T ) ≤ at(C) + at(C
′) ≤ 1 +

⌈

2(n−3)−1−(D−2)
4

⌉

=
⌈

2n−1−D
4

⌉

�

Theorem 2.5. For 2
3
(n + 1) < D ≤ n − 1, the maximum of at(T ) when T is an n-vertex

tree with diameter D is
⌈

2n−1−D
4

⌉

.

Proof. We first provide a construction to prove sharpness of the upper bound. When D =

n−1, the tree is a path and has the desired acquisition number, so assume D < n−1. Begin

by letting T ′ be the tree produced in Corollary 2.3 for maximum degree 3 and diameter

2(n−D) (when D = n− 2 this initial subtree is P5). Note that T ′ has 3(n−D)− 1 vertices

and n−D leaves. From the neighbor of an endpoint of a longest path in T ′, grow a path P

of length 3D − 2n + 1 through 3D − 2n + 1 new vertices; this completes T with n vertices

and diameter D (see Figure 2).
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By Lemma 2.1, weight from two leaves of T ′ cannot reach a common vertex, and they

cannot combine with weight from P that starts farther along P than the second vertex. Since

at(Pr) = ⌈r/4⌉ (Example 1.2), we have at(T ) ≥ n−D + at(P3D−2n−1) =
⌈

2n−D−1
4

⌉

. Equality

holds, since the neighbors of leaves in T ′ can each acquire weight 3, with the endpoint of P

also acquiring the weight from the second new vertex along P .

Now we prove the upper bound. For fixed D, we use induction on n. If n = D + 1, then

T = Pn and at(T ) =
⌈

2n−1−D
4

⌉

. For a larger tree T , let P be a longest path in T . If T is

a caterpillar, then Proposition 2.4 applies. Otherwise, there is a nontrivial component C of

T −V (P ). Let s = |V (C)|. Note that at(T ) ≤ at(C)+at(T −V (C)). The tree T −V (C) has

diameter D and n− s vertices. By the induction hypothesis, at(T − V (C)) ≤
⌈

2(n−s)−1−D
4

⌉

.

The bound of Lampert and Slater gives at(C) ≤
⌊

s+1
3

⌋

. We compute
⌊

s + 1

3

⌋

+

⌈

2n − 2s − 1 − D

4

⌉

=

⌈

s − 1

3

⌉

+

⌈

2n − 2s − 1 − D

4

⌉

≤
⌈

2n − 1 − D

4
+

2s − 3s − 2

6

⌉

≤
⌈

2n − 1 − D

4

⌉

�

3 Trees of Small Diameter

Since trees with diameter 2 or 3 have total acquisition number 1, Theorem 2.2 and Propo-

sition 2.5 leave only the extremal problems for diameter 4 and 5. These are settled in

Theorems 3.3 and 3.4. We next define an acquisition protocol used in the proof of Theo-

rem 3.3 and also in Section 5. It moves the maximum amount of weight to the central vertex

in a tree of diameter 4.

Definition 3.1. Let T be a tree with diameter 4, and let u be the center of T . Let v1, . . . , vk

be the neighbors of u labeled in nondecreasing order of degree (as in Figure 3). Define the

u-greedy protocol, denoted A(u), as follows. Let wi denote the weight on u at the beginning

of step i; initially, w1 = 1. In step i, move weight min{wi, d(vi)} − 1 from leaf neighbors of

vi to vi; the weight on vi is now min{wi, d(vi)}. Complete step i by transferring all weight

on vi to u. Thus wi+1 = wi + min{wi, d(vi)}.

A closer look at the u-greedy protocol yields an upper bound for at(T ).

Lemma 3.2. Let T be a tree with diameter 4, let u be the center of T , and run the u-

greedy protocol A(u) on T . No weight remains on NT (u). Also, if r is the degree of the

highest-indexed neighbor of u having leaf neighbors with positive weight after A(u), then at

most ⌈lg r⌉ neighbors of u have leaf neighbors with positive weight after A(u). Consequently,

at(T ) ≤ r⌈lg r⌉.
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Proof. By construction, no weight remains on N(u). Now, let S be the set of neighbors

of u having leaf neighbors with positive weight after A(u). Let m = max{i : vi ∈ S}, so

d(vm) = r. If vi ∈ S, then d(vi) > wi. Therefore, the weight at u doubles during step i for

each i ∈ S, and r > wm. Hence the weight on u has doubled at most lg(r − 1) times by step

m, so |S| ≤ 1+ ⌊lg(r − 1)⌋ = ⌈lg r⌉. Since each vertex in S has at most r− 1 leaf neighbors,

at(T ) ≤ r ⌈lg r⌉. �

Our upper bound for trees with diameter 4 uses the u-greedy protocol when the degree

of the central vertex is large and none of its neighbors have large degree.

•

• • • • • •

u

v1 vk

• •• •• •• •• •• •• •• •• •• ••

Figure 3: Vertex labeling for trees of diameter 4

Theorem 3.3. Let T be an n-vertex tree. If T has diameter 4, then at(T ) ≤
√

n lg n. If T

has diameter 5, then at(T ) ≤
√

2n lg n.

Proof. First consider diameter 4; we prove the bound by induction on n. Let u be the central

vertex of T , and label its neighbors v1, . . . , vk in nondecreasing order of degree, as in Figure 3.

If k ≤
√

n lg n, then it suffices to let the neighbors of u absorb all the weight. If k >√
n lg n, then k ≥ n/2 if n ≤ 16. We will show in Lemma 4.3 that at(G) = 1 when G has a

vertex of degree at least |V (G)|/2 whose neighborhood is a dominating set. Hence we may

assume that k >
√

n lg n and n > 16.

If d(vk) ≥ √
n, then we let vk acquire the weight on its leaf neighbors and apply the

induction hypothesis to the tree obtained by deleting vk and its leaf neighbors. Thus at(T ) ≤
1 +

√

(n −√
n) lg n. Note that 1 +

√
A − B ≤

√
A if and only if B ≥ 2

√
A − 1. Since√

n lg n ≥ 2
√

n lg n when n ≥ 16, this case is complete.

Hence we may assume that k >
√

n lg n, that d(vk) <
√

n, and that n > 16. Let S be the

set of neighbors of u having leaf neighbors with positive weight after running the u-greedy

protocol A(u). Let m = max{i : vi ∈ S}. By Lemma 3.2, at(T ) ≤ d(vm)⌈lg d(vm)⌉.
We will prove that d(vm) < 2n/k − 1. Given this, and using k ≥

⌈√
n lg n

⌉

,

at(T ) ≤ d(vm)⌈lg d(vm)⌉ ≤
⌊

2n
⌈√

n lg n
⌉ − 1

⌋⌈

lg

⌊

2n
⌈√

n lg n
⌉ − 1

⌋⌉

≤
√

n lg n.
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For n > 216, the last bounds follows, since in this case
⌊

2n
⌈√

n lg n
⌉ − 1

⌋⌈

lg

⌊

2n
⌈√

n lg n
⌉ − 1

⌋⌉

< 2

√

n

lg n

[

lg

(

2

√

n

lg n

)

+ 1

]

≤
√

n lg n.

For n ≤ 216, the desired inequality holds by explicit computation.

To prove d(vm) < 2n/k − 1, we first argue that m < k/2. Since u acquires weight

with each step, m ≤ wm. Since m ∈ S, we have wm < d(vm). We are in the case where

d(vk) <
√

n. Finally, k >
√

n lg n yields
√

n < k/2 when n > 16. Thus

m ≤ wm < d(vm) ≤ d(vk) <
√

n < k/2.

Since the k − m + 1 neighbors of u in {vm, . . . , vk} each have at least d(vm) − 1 leaf

neighbors, and at least m vertices are outside the subtrees rooted at those neighbors, d(vm) <
n−m
k−m

. With m < k/2, we have d(vm) < 2n/k − 1. This completes the proof for diameter 4.

When T has diameter 5, deleting the central edge of T leaves two subtrees with diameter

at most 4, using p and n − p vertices, for some p. Applying the bound for diameter 4 and

the concavity of that bound yields

at(T ) ≤
√

p lg p +
√

(n − p) lg(n − p) ≤ 2
√

(n/2) lg(n/2) <
√

2n lg n,

which completes the proof. �

The bound of Theorem 3.3 for diameter 4 is within a factor of
√

2 of being sharp.

Theorem 3.4. For sufficiently large n, there is an n-vertex tree Tn with diameter 4 and

at(Tn) ≥ (1 − o(1))
√

1
2
n lg n.

Proof. Let Tn have central vertex u, and let r =
√

2n/lg n. Let u have degree k, where

k =
⌊

n−1
⌊r⌋+1

⌋

. Let the neighbors v1, . . . , vk of u all have degree ⌈r⌉ or ⌊r⌋. Note that k =

(1 − o(1))
√

1
2
n lg n. We prove that at(Tn) ≥ k.

Let A be an optimal acquisition protocol on Tn, and let q be the number of neighbors of

u that transfer weight to u. Without loss of generality, we can assume that weight moves

from v1, . . . , vq to u in order. To minimize the residual set, A transfers the weight from all

the leaf neighbors of vi to vi for q < i ≤ k.

Let T ′ be the subtree obtained by deleting vq+1, . . . , vk and their leaf neighbors. Since

weight moves from vi to u for 1 ≤ i ≤ q, the residual set in T ′ consists of u and some of the

leaves. To minimize the number of leaves in the residual set, on T ′ the weight of u should

be maximized, and hence A should run the u-greedy protocol on T ′.

If q < lg r, then weight remains on a leaf neighbor of each vi with 1 ≤ i ≤ q and also on

vq+1, . . . , vk, so weight remains on at least k vertices, and at(Tn) ≥ k = (1 − o(1))
√

1
2
n lg n.
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If q > lg r, then because each neighbor has degree at least ⌊r⌋, the u-greedy protocol on

T ′ puts weight at least ⌈r⌉ on u. Now u is able to acquire all of the weight from each vi

and its leaf neighbors when i > q, so it is not optimal to leave any weight there. Given that

A is optimal, we conclude that q = k when q > lg r. Since the moved weight will double

with each iteration for the first ⌊lg r⌋ iterations, the number of vertices stranded is at least
∑⌊lg r⌋

i=1 (r − (2i−1 − 1)). We compute

at(Tn) ≥ r ⌊lg r⌋ −
⌊lg r⌋
∑

i=1

(2i−1 − 1) = (1 − o(1))(r lg r)

= (1 − o(1))

√

2n

lg n
lg

√

2n

lg n
= (1 − o(1))

1

2

√

2n

lg n
lg n = (1 − o(1))

√

n lg n

2
. �

Slater and Wang [11] proved that the problem of determining at(G) for general graphs

is NP-complete. In fact, it is NP-complete even to test whether at(G) = 1. They asked

whether the same statements are true when the problem is restricted to trees. We partly

answer this by providing for any fixed k a polynomial-time algorithm to determine whether

at(T ) ≤ k. We start by characterizing trees with acquisition number 1.

A rooted tree (T, r) consists of a tree T and a distinguished vertex r ∈ V (T ). A rooted

acquisition tree is a rooted tree (T, r) such that some acquisition protocol transfers all the

weight in T to r.

Lemma 3.5. A rooted tree (T, r) is a rooted acquisition tree if and only if

1) |V (T )| = 1, or

2) T has an edge rr′ whose deletion leaves rooted acquisition trees rooted at r and r′, such

that the component containing r′ is no bigger than the component containing r.

Proof. For necessity, let rr′ be the last edge used in an acquisition protocol that moves all

weight to r. For sufficiency, use rr′ after such protocols in the two subtrees. �

The recursive characterization of rooted acquisition trees in Lemma 3.5 is just the defi-

nition of union trees, a class of trees used as a data structure in computer science. Thus

(T, r) is a rooted acquisition tree if and only if it is a union tree.

Cai [3] characterized union trees and gave a O(n2)-time algorithm to recognize them. We

use it in our algorithm for testing at(T ) ≤ k.

Theorem 3.6. For each positive integer k, there is an O(|V (T )|k+2)-time algorithm for

testing at(T ) ≤ k when T is a tree.
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Proof. The edges along which weight moves to an element of the residual set form a subtree,

and these subtrees are disjoint. Thus at(T ) ≤ k if and only if there are k disjoint rooted

acquisition trees in T that together span V (T ). Deletion of an edge from a tree increases

the number of components by 1. Thus k disjoint subtrees spanning V (T ) are obtained by

deleting k − 1 edges of T .

For all B ⊆ E(T ) with |B| = k − 1, let T1, . . . , Tk be the components of T − B. For

each vertex r ∈ V (Ti), use Cai’s algorithm to test whether (Ti, r) is a rooted acquisition

tree. Conclude at(T ) ≤ k if and only if, for some B, each component of T − B is a rooted

acquisition tree rooted at one of its vertices.

There are O(nk−1) choices for B. Given B, testing whether a vertex of T is a suitable

root for its component takes at most quadratic time, using Cai’s algorithm, and we need

only test a linear number of roots. Thus our algorithm runs in O(nk+2) time. �

4 Sufficient Conditions for at(G) = 1

Since recognizing graphs with acquisition number 1 is NP-hard, it is natural to seek sufficient

conditions for that property; such conditions are the goal of this section. A clique in a graph

is a set of pairwise adjacent vertices; a dominating clique is a clique that is a dominating set.

Proposition 4.1. If a graph G has a dominating clique, then at(G) = 1.

Proof. When K is a dominating clique, we can move all weight from V (G)−K onto K and

then consolidate all weight onto a single vertex using edges within K. �

An H-free graph is a graph not having H as an induced subgraph. Bacsó and Tuza [1]

showed that every connected graph that is both P5-free and C5-free has a dominating clique.

Thus Proposition 4.1 has a corollary.

Corollary 4.2. If a graph G is connected, P5-free, and C5-free, then at(G) = 1.

Our next objective is to show that if G 6= C5, then at(G) = 1 or at(G) = 1. We first prove

that at(G) = 1 if the neighborhood of a vertex with sufficiently high degree is a dominating

set. We then show that if G 6= C5 and G is (|V (G)|−1)/2-regular, then at(G) = 1. Together

with Proposition 4.1, these results will complete the proof. Let NG(v) or N(v) denote the

set of neighbors of vertex v, and let N [v] = N(v) ∪ {v}.

Lemma 4.3. If G is an n-vertex graph having a vertex v such that d(v) ≥ n/2 and N(v) is

a dominating set, then at(G) = 1.

12



Proof. Since N(v) is a dominating set, we can first move all weight from V (G) − N [v] onto

N(v). Let α be the maximum of the weights on vertices of N(v) at this point. Note that

α − 1 units of weight came to one vertex of N(v) from vertices among the n − 1 − d(v)

vertices of V (G)−N [v]. Since d(v) ≥ n/2, at most n/2−α units of weight have been moved

from V (G) − N [v] to other vertices of N(v), and hence there remain at least α − 1 vertices

in N(v) with weight 1. Moving the weight from each neighbor of v with weight 1 to v gives

v weight at least α, after which all remaining weight can be moved to v. �

Lemma 4.4. If G is an n-vertex, (n − 1)/2-regular graph other than C5, then at(G) = 1.

Proof. Since C5 is excluded, we may assume n ≥ 7. Choose v ∈ V (G). Since any two

nonadjacent vertices have a common neighbor, N(v) is a dominating set. Let x be a vertex

of N(v) with the most neighbors outside N [v]. Let R = V (G) − N [v].

If |N(x) ∩ R| ≥ 2, then move all weight from N(x) − N [v] onto x; let its weight now be

α. Move the rest of the weight from R onto N(v) − {x}. Choose y ∈ N(v) − {x} having

maximum weight at this point; let its weight be β.

We have moved weight α+β−2 from R onto {x, y}. Hence weight (n−1)/2−(α+β−2)

was moved onto the (n−1)/2−2 vertices of N(v)−{x, y}, leaving at least α+β−4 vertices

there with weight 1. Let v acquire the weight on those vertices, reaching weight α + β − 3.

Since α ≥ 3, now v has weight at least β and can acquire the weight from all vertices of

N(v) − {x}, after which weight remains on only v and x, which are adjacent.

The remaining case is α = 2. This requires each vertex of N(v) to have at most one

neighbor in R, so each vertex of R has exactly one neighbor in N [v] and (n− 3)/2 neighbors

in R. Thus R is a clique, and each vertex of N(v) is adjacent to all but one vertex of N(v).

Since d(v) ≥ 3, there is an edge within N(v). Each such edge is a dominating clique for the

subgraph induced by N [v], and we can acquire all weight from that subgraph onto a vertex

z of N(v). Since R is a clique, we can move all its weight to the neighbor of z in R. Now all

weight from G rests on two neighboring vertices. �

Theorem 4.5. If G is a graph and G 6= C5, then at(G) or at(G) equals 1.

Proof. If G has diameter at least 3, then any pair of vertices x and y satisfying dG(x, y) ≥ 3

form a dominating clique in G, so at(G) = 1 by Proposition 4.1. By symmetry, we may

assume that G and G both have diameter 2.

Let n = |V (G)|. If G has a vertex v of degree at least n/2, then N(v) dominates G (since

G has diameter 2), so Lemma 4.3 implies at(G) = 1. We may assume, therefore, that ∆(G)

and ∆(G) (by symmetry) are at most (n − 1)/2. It follows that G is (n − 1)/2-regular, and

Lemma 4.4 yields at(G) = 1. �

13



Ore’s Theorem [8] states that if any two nonadjacent vertices in an n-vertex graph have

degree sum at least n, then the graph has a spanning cycle. A similar condition guarantees

total acquisition number 1.

Theorem 4.6. Let G be an n-vertex graph other than C5. If d(u) + d(v) ≥ n − 1 whenever

u and v are nonadjacent vertices in G, then at(G) = 1.

Proof. The hypothesis guarantees that any two nonadjacent vertices have a common neigh-

bor, so every vertex neighborhood is a dominating set. If some vertex has degree at least

n/2, then Lemma 4.3 applies. Otherwise, G is (n − 1)/2-regular and Lemma 4.4 applies. �

Theorem 4.6 implies that at(G) = 1 when δ(G) ≥ (|V (G)|−1)/2. This threshold is sharp,

since 2Kn/2 has minimum degree (n − 2)/2 and acquisition number 2 (when n is even).

5 Diameter 2

Intuitively, graphs with diameter 2 should have small acquisition numbers, since it is easier

to move weight smaller distances. Because every graph with diameter 2 has a spanning tree

with diameter at most 4, it is natural to apply Lemma 3.2 to these graphs. Lemma 3.2

implies that if u is a vertex in a graph G with diameter 2, and d = maxv∈N(u)(N(v)−N [u]),

then at(G) ≤ d⌈lg(d)⌉. Our first goal in this section is to prove a better bound that is nearly

logarithmic in the number of vertices.

Nevertheless, we conjecture a much stronger upper bound.

Conjecture 5.1. There is an absolute constant c such that at(G) ≤ c whenever G has

diameter 2.

In fact, we know of no graph with diameter 2 having acquisition number more than 2. For

example, the only nontrivial Cartesian products with diameter 2 are Cartesian products of

two complete graphs, and at(Kr�Ks) = 1. Also, at(C5 ⊠ C5) = 1 (see Section 7). Although

we cannot prove Conjecture 5.1, we will prove the constant bound for graphs having diameter

2 and no 4-cycle. With four exceptions, these graphs all have acquisition number 1.

Of course, many graphs with diameter 2 have 4-cycles, which brings us back to the

general bound for graphs with diameter 2. To prove this bound, we will use another protocol

in conjunction with the u-greedy protocol. Roughly speaking, it provides a better bound

when the degree of the center is large and the number of vertices at distance 2 is small.

Lemma 5.2. Let T be a tree with diameter 4 and let u be the center of T . Let d = dT (u),

and let R = V (T ) − N [u]. Suppose d ≥ 256. If |R| ≤ d⌈lg d⌉, then at(T ) ≤ 10 lg d lg lg d.

Also, under some protocol achieving this bound, u acquires weight at least d − 4 ⌈lg d⌉.
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Proof. Let N1 be the set of neighbors of u with degree less than 4 lg d, let N2 be the set of

neighbors of u with degree at least 4 lg d and less than d/4, and let N3 be the set of neighbors

of u with degree at least d/4 (See Figure 4). For i ∈ {1, 2}, let Ti be the subtree of T with

vertex set
⋃

x∈Ni
N [x]. We will apply the u-greedy protocol to T1 and then show that this

gives u enough weight to acquire all of the weight in T2.

•

N1 N2 N3

deg< 4 lg d deg< d/4 deg≥ d/4

• • • • • • • • •

u

R •••• ••••

Figure 4: The partition of N(u) for Lemma 5.2.

We have |N1| ≥ d/4, since otherwise |R| > 3d
4
(4 lg d− 1) > d⌈lg d⌉ ≥ |R|. By Lemma 3.2

there is a total acquisition protocol on T1 that moves weight from all but 4 lg d⌈lg(4 lg d)⌉
vertices in T1 to u. Note that 4 lg d ⌈lg(4 lg d)⌉ ≤ (4 lg d)(3 + lg lg d) ≤ 8 lg d lg lg d, since

d ≥ 256. Also, u now has weight at least |N1|. Since |N1| ≥ d(x) for x ∈ N2, we can transfer

all the weight in T2 to u. Finally, transfer all weight from
⋃

x∈N3
N(x) − u to N3.

Since |R| ≤ d⌈lg d⌉, we have |N3| ≤ |R|/(d/4) ≤ 4 + 4 lg d. Therefore,

at(T ) ≤ 1 + 8 lg d lg lg d + |N3| ≤ 10 lg d lg lg d,

since d ≥ 256. Also, the weight on u is at least |N1| + |N2|, which is at least d − 4 ⌈lg d⌉. �

We now prove our bound for graphs with diameter 2. The proof starts by applying the

u-greedy protocol to a subgraph of G, where u is a vertex of maximum degree. We then apply

Lemma 5.2 to a subtree where the leaves are the vertices with weight 1 after the application

of the u-greedy protocol. Combining the two protocols yields a much stronger bound.

Theorem 5.3. If G is an n-vertex graph with diameter 2, then at(G) ≤ 32 lg n lg lg n.

Proof. For the main case, we will need n > 2562. For n ≤ 2562, we apply Theorem 3.3. We

obtain a spanning tree of diameter 4 in G showing that at(G) ≤
√

n lg n, and therefore

at(G) ≤ 16 lg n lg lg n.

Henceforth we assume that n > 2562. Let d = ∆(G), and let u be a vertex of maximum

degree. Since G has diameter 2, we have d ≥
√

n − 1 ≥ 256. Let N(u) = {v1, . . . , vd} and
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let R = V (G) − N [u]. Among all vertices in N(u), let v be one with the most neighbors in

R. Let r = |N(v) ∩ R|. If r < 256, then G has a spanning tree T with diameter 4 centered

at u such that maxx∈NT (u) dT (x) ≤ 256. Lemma 3.2 then yields

at(G) ≤ 256⌈lg 256⌉ = 32 lg 2562 lg lg 2562 ≤ 32 lg n lg lg n.

Thus we may assume r ≥ 256. Let S = N(u) ∩ N(v) and M = N(u) − N [v]. Let W be

the subset of R consisting of vertices with no neighbor in S ∪ {v} (See Figure 5).

•

•

u

v

W ′

N(u) S M

R Q W

Figure 5: The structure of the diameter 2 graph G in Theorem 5.3.

Since all of W is within distance 2 of u, every vertex of W has a neighbor in M . Let T be

a spanning tree of diameter 4 with center u in the subgraph of G induced by {u} ∪M ∪W .

Let k = maxx∈M |NT (x)∩W | − 1; note that k < r. Lemma 3.2 applied to the subtree yields

a protocol on T that leaves weight on fewer than k⌈lg k⌉ vertices in W and no weight on M .

Let W ′ be the set of vertices in W that retain positive weight; note that |W ′| < k ⌈lg k⌉.
Since all of W ′ is within distance 2 of v, vertices of W ′ have common neighbors with v,

which can only be in N(v)∩R. Let H be the subgraph of G induced by W ′∪{v}∪(N(v)∩R).

Note that dH(v) = r ≥ 256; we will apply Lemma 5.2 to a suitable spanning tree of H . Since

all of H is within distance 2 of v, there is in H a spanning tree T ′ of diameter 4 with v as

its center, such that dT ′(v) = r > k and |W ′| < k⌈lg k⌉. Because k < dH(v) = r, Lemma 5.2

implies at(H) ≤ 10 lg r lg lg r, and there is a protocol achieving this bound such that the

weight at v is m, where m ≥ r − 4 ⌈lg r⌉.
Let Q = R−W −N(v). The only remaining vertices outside of V (H)∪{u} with positive

weight are in S ∪ Q. Among vertices in S, let y be one with the most neighbors in Q. If

m > |Q ∩ N(y)|, then the weight on v is greater than |Q ∩ N(vi)| for all vi ∈ S, and we

can transfer all weight from S ∪ Q to v. By then transferring weight along the edge uv, the

weight is consolidated on at most 1 + 10 lg d lg lg d vertices.

If m ≤ |Q ∩ N(y)|, then transfer weight from m − 1 vertices in Q to y and then move

weight m from y to v. After this move, the weight on v is 2m, and 2m ≥ 2r− 8 ⌈lg r⌉. Since

r ≥ 256, we have 2r−8 ⌈lg r⌉ > r, so the weight now on v exceeds |N(vi)∩Q| for each vi ∈ S.

In N(y)∩Q, we left weight on at most r−m+1 vertices; note that r−m+1 ≤ 4 ⌈lg r⌉+1.
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Now all of the weight in G lies on u, at most 10 lg d lg lg d vertices in H , and at most

4 ⌈lg r⌉ + 1 vertices in Q. Since r < d,

at(G) ≤ 2 + 10 lg d lg lg d + 4 ⌈lg d⌉ ≤ 12 lg n lg lg n.

In all cases, at(G) ≤ 32 lg n lg lg n. �

In the remainder of this section, we prove that at(G) = 1 when G has diameter 2 and no

4-cycle, with four exceptions. Note that graphs with diameter 2 have girth at most 5. Very

few have girth 5; these are called Moore graphs. They are regular and exist only for degrees

2, 3, 7, and possibly 57 [4]. The other possible graphs have triangles. The arguments for

upper bounds will proceed by bringing the weight to a shortest cycle.

We begin by presenting the exceptional graphs; two with girth 5 and two with girth 3.

The two examples with triangles happen to be the polarity graphs of the projective planes

of orders 2 and 3; for this reason we call them F2 and F3.

Lemma 5.4. Graphs with diameter 2, no 4-cycle, and acquisition number 2 include C5, the

Petersen graph, and the graphs F2 and F3 in Figure 6.

•
•

•

• • •

• • • • •1 2 3 4

•
•

•

• • • • • •

x1

x2
x3

12 34 14 23 31 24

F2 F3

Figure 6: Graphs with diameter 2, no 4-cycle, and acquisition number 2.

Proof. Consider first C5 and the Petersen graph. They have acquisition number at least 2,

because that is required by 2∆(G) < |V (G)|. On the other hand, since the independence

number of C5 is 2, the acquisition number of any graph having a 5-cycle whose vertices form

a dominating set is at most 2.

To prove the lower bound for F2 and F3, consider rooted acquisition trees. In a graph

with maximum degree D, the weight of the root in a rooted acquisition tree before the final

acquisition is at most 2D−1. Hence in a 7-vertex graph with D = 3, the final move combines

weights 4 and 3, while in a 13-vertex graph with D = 4, the final move combines weights 8
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and 5 or weights 7 and 6. Hence both vertices in the final move have degree D in the tree.

However, in both cases every subgraph having adjacent vertices of degree D has a triangle

and cannot be a tree. With no rooted acquisition tree, the acquisition number cannot be 1.

For the upper bound, the vertices of the graph on the left partition into two sets inducing

graphs with acquisition number 1: a star and a triangle. For the graphs represented on the

right, it suffices to show that all the weight except that on vertex 4 can be acquired to a

single vertex. Simply aquire weight from {1, 2, 3, 34, 14, 24} to {12, 23, 31, x1, x2, x3} along a

matching, after which there is weight 2 on every vertex of a 6-vertex graph with a dominating

triangle. �

In order to prove that the other graphs with diameter 2 and no 4-cycle have acquisition

number 1, we need an old lemma that is not hard to prove.

Lemma 5.5. (Bondy, Erdős, and Fajtlowicz [2]) If a graph G has diameter 2 and no 4-

cycle, and x and y are nonadjacent vertices with a common neighbor u, then N(x) − N [u]

and N(y) − N [u] have the same size and are joined by matching in G.

Proof. Let A = N(x) − N [u] and B = N(y) − N [u]. For z ∈ A, distance 2 to y requires z

to have a neighbor in B, and avoiding 4-cycles prevents it from having more than 1. Hence

each vertex of A has exactly one neighbor in B, and by symmetry each vertex of B has

exactly one neighbor in A. �

In fact, the theorem proved in [2] is that if G has diameter 2 and no 4-cycle, then one

of the following holds: (a) G has a dominating vertex, or (b) G is a Moore graph (girth 5),

or (c) G is a polarity graph. Rather than use that conclusion and study the structure of

these types of graphs separately using known properties, we instead develop common aspects

directly from the hypothesis that allow us to bound the acquisition number when case (a)

does not hold.

Lemma 5.6. Let G be a graph with diameter 2 and no 4-cycle, and let x1, . . . , xg (in order)

induce a shortest cycle C in G. Also let R be the set of vertices having no neighbor in C,

and let Xi = N(xi) − V (C). The sets X1, . . . , Xg are disjoint and of equal size, k. Every

vertex of R has exactly one neighbor in each such set. For z ∈ Xi, the set N(z)∩R also has

size k if g = 3, and it has size k − 1 if g = 5.

Proof. Since graphs with girth g have diameter at least (g − 1)/2, we have g ∈ {3, 5}.
Avoiding 4-cycles (and 3-cycles when g = 5) forces X1, . . . , Xg to be disjoint. In order to

stay within distance 2 of each vertex of C (and avoid 4-cycles), each vertex of R must have

exactly one neighbor in each Xi.

If G = C5, then k = 0 and the statements about z are vacuous. Otherwise, note that

N(z) ∩ V (C) = {xi} and view indices modulo g. Since z and xi+1 are nonadjacent and
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have xi as a common neighbor, Lemma 5.5 applies. Deleting N [xi] eliminates xi−1 and all

of Xi, leaving a matching that joins N(z) − N [xi] to N(xi+1) − N [xi]. If g = 3, then these

sets are N(z) ∩ R and Xi+1. If g = 5, then reaching xi+2 and xi−2 in two steps requires

z to have one neighbor each in Xi+2 and Xi−2, and the second set is Xi+1 ∪ {xi+2}; thus

|N(z) ∩ R| = |Xi+1| − 1 in this case.

The same argument with i− 1 in place of i+1 establishes the same relationship between

|N(z) ∩ R| and |Xi−1|. Thus |Xi+1| = |Xi−1|. Calling this common value k, we also have

|N(z) ∩ R| = k when g = 3, and |N(z) ∩ R| = k − 1 when g = 5.

Since z and i were arbitrary, the full claim follows. �

We can now complete the analysis for graphs of diameter 2 with no 4-cycles. Obviously

at(G) = 1 when G has a dominating vertex, so we consider only the remaining cases.

Theorem 5.7. Let G be a graph with diameter 2, no 4-cycle, and no dominating vertex.

Define g, C, and k and the various vertex subsets as in the statement of Lemma 5.6. If

k ≥ 3, then at(G) = 1. Otherwise, G is one of the four graphs in Lemma 5.4.

Proof. Each vertex of R has one neighbor in Xi, and each vertex of Xi has k or k − 1

neighbors in R, depending on g. Thus |R| = k2 when g = 3, and |R| = k(k− 1) when g = 5.

When k ≥ 3, we will gather all weight onto C (mostly at x1 and x2) and then to one vertex.

If k = 0, then G = C. If k = 1 and g = 3, then |R| = 1 and G = F2. If k = 1 and

g = 5, then |R| = 0; since the one vertex of Xi has neighbors in Xi+2 and Xi−2, we obtain

the Petersen graph.

Before excluding k = 2, we develop structure for R. Let X1 = {u1, . . . , uk} and X2 =

{v1, . . . , vk}. If g = 3, then R is partitioned into neighborhoods of size k by both X1 and

X2. Avoiding 4-cycles ensures that no two vertices of R have the same neighbors in X1 and

X2. Let wr,s be the common neighbor of ur and vs in R.

If g = 5, then matchings join X4 to both X1 and X2, by Lemma 5.5. Index X1 and

X2 so that uj and vj have a common neighbor called wj,j in X4. Now R is partitioned into

neighborhoods of size k − 1 by both X1 and X2. Again let wr,s be the common neighbor of

ur and vs in R, but now only when r 6= s. The vertices of the form wj,j augment R to a set

R′ of size k2. When g = 3, let R′ = R.

Now consider k = 2. If g = 5, then the various matchings we have obtained yield an

8-cycle through u1, w1,1, v1, w2,1, u2, w2,2, v2, w1,2 in order. We still must add edges joining R

to X4, but each possible edge creates a triangle. Hence this case does not occur.

If k = 2 and g = 3, then |R| = 4 and |V (G)| = 13. In Figure 6, let u1, u2, v1, v2 be

the vertices labeled 12, 34, 14, 23, respectively; now w1,1, w1,2, w2,2, w2,1 are labeled 1, 2, 3, 4,

respectively. Any two vertices of R have a common neighbor in X1 ∪X2 ∪X3, so P3 6⊆ G[R].

With no 4-cycles, distance 2 between vertices of Xi and R requires exactly one of (a) an edge

in Xi, or (b) a matching in R joining the neighbors of one vertex of Xi to the neighbors of
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the other. If each Xi induces an edge, then now G = F3. Otherwise, R induces a matching,

which forbids edges in two of X1, X2, X3 and requires an edge in the third; by symmetry,

assume u1u2 ∈ E(G). Now G ∼= F3 by an automorphism sending {u1, u2, x1} to {x3, x2, x1}.
The remaining case is k ≥ 3; we show at(G) = 1. Recall that wi,j is adjacent to ui and

vj . First x1 acquires the weight from X1 and almost all wi,j with j ≤ i via a weakening of

the x1-greedy protocol. That is, x1 acquires weight from the following: (1) u1, (2) u2 and

w2,1, and (3) for 3 ≤ i ≤ k, all of ui and {wi,j : j ≤ i}. Note that x1 acquires enough weight

to permit each subsequent step. After this phase, x1 has weight (k + 2)(k + 1)/2 − 2.

Next x2 acquires the weight from X2 and almost all the remaining weight on R′. That

is, x2 acquires weight from the following: (1) v1, (2) v2 and w2,2, and (3) for 3 ≤ j ≤ k, all

of vj and {wi,j : j > i}. After this phase, x2 has weight k(k + 1)/2 + 1.

Besides x1 and x2, weight remains on w1,1, w1,2, x3, and X3. If g = 5, then weight also

remains on x4, x5, and X5 (note that X4 ⊂ R′ when g = 5). Since w1,1 and w1,2 have u1

as a common neighbor, their neighbors in X3 are distinct; move their weight to X3. Since

k ≥ 3, there is another vertex in X3; move its weight to x3. Now x3 can aquire the remaining

weight from X3, reaching weight k + 3.

Note that k(k + 1)/2 + 1 > k + 3, so x2 can acquire the weight from x3. If g = 5, then

next x5 acquires the weight from x4 and X5, reaching weight k + 2, and x1 can acquire this

weight since (k + 2)(k + 1)/2 − 2 > k + 2. Whether g is 3 or 5, end by combining x1 and

x2. �

6 Operations on Graphs

We now consider the effect of edge deletion on the acquisition number. We show that

the effect can be large, as there are graphs G having an edge e such that at(G) = 1 and

at(G − e) ∈ Θ(
√

|V (G)|). We will also show that always at(G − e) − at(G) ∈ O(
√

|V (G)|).
We begin with a lemma about the amount of weight that can move to one vertex.

Lemma 6.1. Let T be a tree, with v ∈ V (T ), and suppose some acquisition protocol puts

weight w on v. If 1 ≤ k ≤ w, then there is a protocol that puts weight k on v.

Proof. We use induction on k. The base case k = 1 is clear. Also, the case k = w is given,

so assume k < w.

Let A be a protocol that yields weight w on v. Let v1, . . . , vt be the neighbors of v

that transmit weight to v, indexed by their order in A, and let wi be the amount of weight

sent from vi to v. Let j be the largest integer such that 1 +
∑j

i=1 wi ≤ k, and let k′ =

k − 1 −
∑j

i=1 wi. Let T ′ be the component of T − vvj+1 containing vj+1.

The restriction of A to T ′ puts weight wj+1 on vj+1, since weight does not move to vj+1

from v. Since k′ < k, the induction hypothesis yields a protocol A′ on T ′ putting weight k′
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on vj+1. To put weight k on v, run the restriction of A on T − V (T ′) until it moves weight

from vj to v, then run A′ on T ′, and finally move the resulting weight on vj+1 to v. �

Recall that the rooted acquisition trees are the trees with acquisition number 1.

Lemma 6.2. Let (T, r) be an n-vertex rooted acquisition tree containing an edge rv. If T ′

is the component of T − rv containing r, then a(T ′) ≤ 2
√

n.

Proof. Index the components of T − r as T1, . . . , Tk so that |V (T1)| ≤ · · · ≤ |V (Tk)|. Let vi

be the root of Ti, with vq = v. By the recursive characterization of rooted acquisition trees,

Ti is a rooted acquisition tree, so a(Ti) = 1 for all i.

Let t be the least index such that |V (Tt)| >
√

n, if some such index exists, and otherwise

let t = k + 1. Note that t ≥ k − √
n. Define a total acquisition protocol for T ′ as follows.

Transfer all weight from
⋃q−1

i=1 Ti onto r. Next, transfer weight |V (Ti−1)| from Ti to r for

q +1 ≤ i ≤ t− 1; this is possible by Lemma 6.1. Finally, transfer all weight from Ti to vi for

i ≥ t, leaving this weight on vi. This protocol establishes the following bound on at(T − e):

at(T − e) ≤ 1 +
t
∑

i=q+1

(|V (Ti)| − |V (Ti−1)|) + max{k − t, 0} ≤ 1 + |V (Tt−1)| +
√

n ≤ 2
√

n.

�

We now consider deleting an arbitrary edge in a rooted acquisition tree.

Lemma 6.3. If (T, r) is an n-vertex rooted acquisition tree and e ∈ E(T ), then a(T − e) ≤
1 + c

√
n, where c = 2

√
2√

2−1
< 6.84.

Proof. Let x0 be the endpoint of e whose distance to r is greater. Let the vertices of the

x0, r-path in T be x0, . . . , xk, with r = xk. Let T ′ = T − {xj−1xj : 1 ≤ j ≤ k} and let Ti be

the component of T ′ containing xi (see Figure 7). Since T ′ is a spanning subgraph of T − e,

we have at(T − e) ≤ at(T
′).

For 0 ≤ i ≤ k − 1, let Si be the component of T − xixi+1 containing xi, and let Sk = T .

By the recursive definition, (Si, xi) is a rooted acquisition tree, for each i. Thus at(T0) = 1.

For 1 ≤ i ≤ k, Lemma 6.2, allows all the weight from Ti to be moved to at most 2
√

|V (Si)|
vertices (Ti plays the role of T ′ in the statement of Lemma 6.2). Therefore

at(T
′) ≤ 1 +

k
∑

i=1

2
√

|V (Si)|. (1)

Since (Si, xi) is a rooted acquisition tree, |V (Si−1)| ≤ 1
2
|V (Si)|. With |V (Sk)| = n, it

follows that |V (Si)| ≤ n/2k−i. Thus we establish the following bound on at(T ):
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Figure 7: The subgraph T ′ of T .

at(T ) ≤ at(T − e) ≤ 1 +
k
∑

i=1

2

√

n

2k−i
≤ 1 + 2

√
n

( √
2√

2 − 1

)

.

�

The bound extends to all graphs.

Corollary 6.4. If e is an edge of an n-vertex graph G, then at(G − e) ≤ at(G) + 6.84
√

n.

Proof. If at(G) = k, then G contains k acquisition trees T1, . . . , Tk that together span V (G).

If e does not belong to any of these trees, then at(G − e) = at(G). If e ∈ E(Ti), then

at(Ti − e) ≤ 6.84
√

n + 1 from Lemma 6.3, and at(Tj) = 1 for j 6= i. �

The order of growth in these upper bounds cannot be reduced.

Theorem 6.5. For each positive integer n, there is an n-vertex rooted acquisition tree T

having an edge e such that at(T − e) ≥ √
n/2.

Proof. Let ℓ = ⌈lg√n⌉ and m = ⌈n/2ℓ⌉ − 1. We construct a tree T of diameter 4 with

central vertex r. The neighbors of r are v1, . . . , vℓ+m. For 1 ≤ i ≤ ℓ, vertex vi has degree

2i−1. The total number of vertices in the subtree consisting of r, its children v1, . . . , vℓ, and

their leaf neighbors is 2ℓ. For i > ℓ, vertex vi has degree 2ℓ or 2ℓ − 1, chosen so T has n

vertices. By construction, the r-greedy protocol on T transfers all weight to r, so at(T ) = 1.

Let e = rv1; we show at(T − e) ≥ √
n/2. Let A be an optimal protocol on T − e. If no

weight moves from vi to r for i > ℓ, then at(T − e) ≥ m + 1, since v1 is isolated in T − e.

Since m = ⌈n/2ℓ⌉ − 1 and ℓ = ⌈lg√n⌉, we have at(T − e) ≥ √
n/2 in this case.

If A transfers weight from vi to r for some i > ℓ, then let vq be the first such vertex. Since

v1 is not available, r has only ℓ − 1 neighbors that can send it weight before all neighbors
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with index greater than ℓ. Thus the weight on r is at most 2ℓ−1 before r receives weight

from vq. Hence vq sends weight at most 2ℓ−1 to r. Since d(vq) ≥ 2ℓ − 1, at least 2ℓ−1 − 1 leaf

neighbors of vq retain their weight in A. Also v1 is isolated in T − e, so weight remains on

at least 2ℓ−1 vertices. Hence at(T − e) ≥ √
n/2. �

7 Graph Products

In this section we consider the behavior of acquisition number under graph products. Let

G�H and G⊠H denote the Cartesian product and strong product of G and H , respectively.

Each has vertex set V (G)× V (H). In the Cartesian product, (u, v) and (u′, v′) are adjacent

if (1) u = u′ and vv′ ∈ E(H) or (2) v = v′ and uu ∈ E(G). In the strong product, (u, v)

and (u′, v′) are adjacent if u′ ∈ NG[u] and v′ ∈ NH [v]. For each product, the notation is a

picture of the product of K2 with itself.

Proposition 7.1. If G and H are graphs, then at(G ⊠ H) ≤ at(G�H) ≤ at(G)at(H).

Proof. First, at(G ⊠ H) ≤ at(G�H) is implied by G�H ⊆ G ⊠ H .

To show at(G�H) ≤ at(G)at(H), first run the same optimal protocol in each copy of

G. Now all the weight in G�H lies in at(G) copies of H , and the weight on each vertex

of a copy of H is the same. In the at(G) copies of H with positive weight, run an optimal

acquisition protocol for H . This leaves positive weight on exactly at(G)at(H) vertices. �

The bounds in Proposition 7.1 can be arbitrarily loose, even for connected graphs.

Proposition 7.2. Let Gm be the graph with 3m vertices obtained from a path with vertices

v1, . . . , v2m in order by giving each odd indexed vertex a leaf neighbor. For k ∈ N,

at(G4k�K2) ≤ 3k =
3

4
at(G4k)at(K2)

and

at(G2k ⊠ K2) ≤ k =
1

2
at(G2k)at(K2).

Proof. First note that Gm has m “added” leaves, any two of which are separated by a vertex

of degree 2 adjacent to no leaf. By Lemma 2.1, at(Gm) ≥ m. Since the neighbors of these

leaves form a dominating set, by Observation 1.1 equality holds. Since at(K2) = 1, we have

at(Gm)at(K2) = m.

To see that at(G4k�K2) ≤ 3k, delete k − 1 edges from each copy of G4k to get k copies

of G4�K2. Figure 8 shows one copy of G4�K2 cut into three groups of vertices, each

inducing a graph with acquisition number 1 (the copies of K2 are not shown). Therefore

at(G4k�K2) ≤ kat(G4�K2) ≤ 3k.
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Figure 8: at(G4�K2) ≤ 3

Finally, note that at(G2k ⊠ K2) contains k disjoint copies of G2 ⊠ K2, each of which has

acquisition number 1, so at(G2k ⊠ K2) ≤ k. �

We know of only finitely many G and H such that at(G ⊠ H) < 1
2
at(G)at(H). For

example, at(C5 ⊠ C5) = 1, while at(C5)at(C5) = 4. For both the Cartesian product and the

strong product, it remains open how small at can be as a function of at(G) and at(H).
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