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Abstract

Let k be a function field in one variable over C or the field C((t)). Let X
be a k-rationally simply connected variety defined over k. In this paper we
show that R-equivalence on rational points of X is trivial and that the Chow
group of zero-cycles of degree zero A0(X) is zero. In particular, this holds for
a smooth complete intersection of r hypersurfaces in Pnk of respective degrees

d1, . . . , dr with
r∑
i=1

d2
i ≤ n+ 1.

1 Introduction
Let X be a projective variety over a field k. Two rational points x1, x2 of X

are called directly R-equivalent if there is a morphism f : P1
k → X such that x1

and x2 belong to the image of P1
k(k). This generates an equivalence relation called

R-equivalence [Man]. The set of R-equivalence classes is denoted by X(k)/R. If
X(k) = ∅ we set X(k)/R = 0.

>From the above definition, the study ofR-equivalence onX(k) is closely related
to the study of rational curves on X, so that we need many rational curves on X.
The following class of varieties sharing this property was introduced in the 1990s
by Kollár, Miyaoka and Mori [KMM1], and independently by Campana.

Definition 1.1. Let k be a field of characteristic zero. A projective geometrically
integral variety X over k is called rationally connected if for any algebraically closed
field Ω containing k, two general Ω-points x1, x2 of X can be connected by a rational
curve: there is a morphism P1

Ω → XΩ such that its image contains x1 and x2.

Remark 1.2. One can define rational connectedness by other properties ([Ko96],
Section IV.3). For instance, if k is uncountable, one may ask that the condition
above is satisfied for any two points x1, x2 ∈ X(Ω).

By a result of Campana [Ca] and Kollár-Miyaoka-Mori [KMM2], smooth Fano
varieties are rationally connected. In particular, a smooth complete intersection of
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r hypersurfaces in Pnk of respective degrees d1, . . . , dr with
r∑
i=1

di ≤ n is rationally

connected. Another important result about rationally connected varieties has been
established by Graber, Harris and Starr [GHS]. Let k be a function field in one
variable over C, that is, k is the function field of a complex curve. Graber, Harris
and Starr prove that any smooth rationally connected variety over k has a rational
point.

One can see rationally connected varieties as an analogue of path connected
spaces in topology. From this point of view, de Jong and Starr introduce the notion
of rationally simply connected varieties as an algebro-geometric analogue of simply
connected spaces. ForX a projective variety with a fixed ample divisorH we denote
by M0,2(X, d) the Kontsevich moduli space for all genus zero stable curves over X
of degree d with two marked points (see section 2 for more details). In this paper
we use the following definition:

Definition 1.3. Let k be a field of characteristic zero. Let X be a projective
geometrically integral variety over k. Suppose that H2(X,Z) has rank one. We
say that X is k-rationally simply connected if for any sufficiently large integer e
there exists a geometrically irreducible component Me,2 ⊂ M0,2(X, e) intersecting
the open locus of irreducible curves M0,2(X, e) and such that the restriction of the
evaluation morphism

ev2 : Me,2 → X ×X
is dominant with rationally connected general fiber.

Remark 1.4. Following the work of de Jong and Starr, we restrict ourselves to the
case where H2(X,Z) has rank one.

Note that a k-rationally simply connected variety X over a field k is rationally
connected as X ×X is dominated by Me,2 ∩M0,2(X, e) from the definition above.
This implies that over any algebraically closed field Ω ⊃ k two general points of
X(Ω) can be connected by a rational curve.

By a recent result of de Jong and Starr [dJS], a smooth complete intersection X
of r hypersurfaces in Pnk of respective degrees d1, . . . , dr and of dimension at least

3 is k-rationally simply connected if
r∑
i=1

d2
i ≤ n+ 1.

Let us now recall the definition of A0(X). Denote Z0(X) the free abelian group
generated by the closed points of X. The Chow group of degree 0 is the quotient of
the group Z0(X) by the subgroup generated by the π∗(divC(g)), where π : C → X
is a proper morphism from a normal integral curve C, g is a rational function on C
and divC(g) is its divisor. It is denoted by CH0(X). If X is projective, the degree
map Z0(X) → Z which sends a closed point x ∈ X to its degree [k(x) : k] induces
a map deg : CH0(X)→ Z and we denote A0(X) its kernel.

At least in characteristic zero, the set X(k)/R and the group A0(X) are k-
birational invariants of smooth projective k-varieties, and they are reduced to one
element if X is a projective space. Thus X(k)/R = 1 and A0(X) = 0 if X is a
smooth projective k-rational variety.
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For k a function field in one variable over C and for k = C((t)), one wonders
whether a similar statement holds for arbitrary smooth rationally connected k-
varieties ([CT], 10.11 and 11.3). This has been established for some special classes
of varieties ([CT83], [CTSa], [CTSk], [CTSaSD], [Ma]). Most of these results hold
if k is a C1-field or, more generally, if cd(k) ≤ 1.

In this paper, we prove the following result:

Theorem 1.5. Let k be either a function field in one variable over C or the field
C((t)). Let X be a k-rationally simply connected variety over k. Then

(i) X(k)/R = 1;

(ii) A0(X) = 0.

Combined with the theorem of de Jong and Starr, this gives:

Corollary 1.6. Let k be either a function field in one variable over C or the
field C((t)). Let X be a smooth complete intersection of r hypersurfaces in Pnk of

respective degrees d1, . . . , dr. Assume that
r∑
i=1

d2
i ≤ n+ 1. Then

(i) X(k)/R = 1;

(ii) A0(X) = 0.

The methods we use in the proof of the theorem apply more generally over a
field k of characteristic zero such that any rationally connected variety over k has
a rational point. As for the corollary, one can prove it in a simpler way for any C1

field k in the case
∑
d2
i ≤ n (see section 4).

Note that one knows better results for smooth cubics and smooth intersections
of two quadrics. Let k be either a function field in one variable over C or the field
C((t)).

In the case of smooth cubic hypersurfaces in Pnk we have X(k)/R = 1 if n ≥ 5
([Ma], 1.4). It follows that A0(X) = 0 if n ≥ 5. In fact, we have A0(X) = 0 if
n ≥ 3. One can prove it by reduction to the case n = 3. The latter case follows
from the result on geometrically rational k-surfaces ([CT83], Thm.A), obtained by
K-theoretic methods.

In the case of smooth intersections of two quadrics in Pnk we have X(k)/R = 1
if n ≥ 5 ([CTSaSD], 3.27). Hence A0(X) = 0 if n ≥ 5. In fact, we also have
A0(X) = 0 if n = 4 as a particular case of [CT83], Thm.A.

It was also known that under the assumption of the theorem there is a bound
N = N(d1, . . . , dr) such that A0(X) = 0 if n ≥ N ([Pa], 5.4). The bound N here
is defined recursively: N(d1, . . . , dr) = f(d1, . . . , dr;N(d1 − 1, . . . , dr − 1)) where
the function f grows rapidly with the degrees. For example, one can deduce that
N(3) = 12 and N(4) = 3 + 312.
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Theorem 1.5 is inspired by the work of de Jong and Starr [dJS] and we use their
ideas in the proof. In section 2 we recall some notions about the moduli space of
curves used in [dJS] and we analyse the case when we can deduce some information
about R-equivalence on X from the existence of a rational point on the moduli
space. Next, in section 3 we deduce Theorem 1.5. In section 4 we give an applica-
tion to complete intersections.

Acknowledgement: I am very grateful to my advisor, Jean-Louis Colliot-
Thélène, for his suggestion to use the result of [dJS], for many useful discussions
and the time that he generously gave me. I would like to express my gratitude to
Jason Starr for his interest, for pointing out Proposition 4.3 and for allowing me to
put his arguments into this paper. I also want to thank to Jean-Claude Douai and
David Harari for very helpful discussions concerning 2.5.

2 Rational points on a moduli space of curves

2.1 The moduli space M 0,n(X, d)

Let X be a projective variety over a field k of characteristic zero with an ample
divisor H. Let k̄ be an algebraic closure of k. While studying R-equivalence on
rational points of X we need to work with a space parametrizing rational curves on
X. We fix the degree of the curves we consider in order to have a space of finite
type.

The space of rational curves of fixed degree on X is not compact in general. One
way to compactify it, due to Kontsevich ([KonMan], [FP]), is to use stable curves.

Definition 2.1. A stable curve over X of degree d with n marked points is a datum
(C, p1, . . . , pn, f) of

(i) a proper geometrically connected reduced k-curve C with only nodal singu-
larities,

(ii) an ordered collection p1, . . . , pn of distinct smooth k-rational points of C,

(iii) a k-morphism f : C → X with degC f
∗H = d,

such that the stability condition is satisfied:

(iv) C has only finitely many k̄-automorphisms fixing the points p1, . . . , pn and
commuting with f .

We say that two stable curves (C, p1, . . . , pn, f) and (C ′, p′1, . . . , p
′
n, f

′) are iso-
morphic if there exists an isomorphism φ : C → C ′ such that φ(pi) = p′i, i = 1, . . . , n
and f ′ ◦ φ = f .

We use the construction of Araujo and Kollár [AK] to parametrize stable curves.
They show that there exists a coarse moduli space M0,n(X, d) for all genus zero
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stable curves over X of degree d with n marked points, which is a projective k-
scheme ([AK], Thm. 50). Over C the construction was first given in [FP]. The
result in [AK] holds over an arbitrary, not necessarily algebraically closed field and,
more generally, over a noetherian base.

We denote byM0,n(X, d) the open locus corresponding to irreducible curves and
by

evn : M0,n(X, d)→ X × . . .×X︸ ︷︷ ︸
n

the evaluation morphism which sends a stable curve to the image of its marked
points.

When one says that M0,n(X, d) is a coarse moduli space, it means that the
following two conditions are satisfied:

(i) there is a bijection of sets:

Φ :


isomorphism classes of

genus zero stable curves over k̄
f : C → Xk̄ with n marked points,

degC f
∗H = d

 ∼→M0,n(X, d)(k̄);

(ii) if C → S is a family of genus zero stable curves of degree d with n marked
points, parametrized by a k-scheme S, then there exists a unique morphism
MS : S →M0,n(X, d) such that for every s ∈ S(k̄) we have

MS(s) = Φ(Cs).

In general, over nonclosed fields we do not have a bijection between isomorphism
classes of stable curves and rational points of the corresponding moduli space, see
[AK] p.31. In particular, a k-point of M0,n(X, d) does not in general correspond to
a stable curve defined over k.

2.2 Rational points on M 0,2(X, d)

Let P and Q be two k-points of X. Suppose there exists a stable curve f : C → Xk̄

over k̄ with two marked points mapping to P and Q, such that the corresponding
point Φ(f) is a k-point of M0,2(X, d). Even if we are not able to prove that f can
be defined over k, using combinatorial arguments we will show that P and Q are
R-equivalent over k. Let us state the main result of this section.

Proposition 2.2. Let X be a projective variety over a field k of characteristic zero.
Let P and Q be k-points of X. Let f : C → Xk̄ be a stable curve over k̄ of genus
zero with two marked points mapping to P and Q. Let H be a fixed ample divisor
on X and let d = degC f

∗H. If the corresponding point Φ(f) ∈ M0,2(X, d) is a
k-point of M0,2(X, d), then the points P and Q are R-equivalent over k.

5



Let us first fix some notation. Let k be a field of characteristic zero. Let us
fix an algebraic closure k̄ of k. Let L

i
↪→ k̄ be a finite Galois extension of k, and

let G = Autk(L). For any σ ∈ G we denote σ∗ : SpecL → SpecL the induced
morphism. If Y is an L-variety, denote σY the base change of Y by σ∗ and σYk̄
the base change by (i ◦ σ)∗. We denote the projection σY → Y by σ∗ too. If
f : Z → Y is an L-morphism of L-varieties, then we denote σf : σZ → σY and
σfk̄ : σZk̄ → σYk̄ the induced morphisms.

Note that if Y ⊂ PnL is a projective variety, then σY can be obtained by applying
σ to each coefficient in the equations defining Y . Thus, if Y is defined over k, then
the subvarieties Y, σY of PnL are given by the same embedding for all σ ∈ G. In
this case the collection of morphisms {σ∗ : Y → Y }σ∈G defines a right action of G
on Y . By Galois descent ([BLR], 6.2), if a subvariety Z ⊂ Y is stable under this
action of G, then Z also is defined over k.

For lack of a suitable reference, let us next give a proof of the following lemma:

Lemma 2.3. Let C be a projective geometrically connected curve of arithmetic
genus pa(C) = h1(C,OC) = 0 over a perfect field k. Assume C has only nodal
singularities. Then any two smooth k-points a, b of C are R-equivalent.

Proof. Since the arithmetic genus of C is zero, its geometric components are smooth
rational curves over k̄ intersecting transversally and, moreover, there exists a unique
(minimal) chain of k̄-components joining a and b. We may assume that all the com-
ponents of the chain, as well as their intersection points, are defined over some finite
Galois extension L of k. By unicity we see that every component of the chain is
stable under the action of Autk(L) on CL, hence it is defined over k. By the same
argument, the intersection points of the components of the chain are k-points. We
conclude that the points a and b are R-equivalent over k.

Let us now give the proof of Proposition 2.2.
We call a and b the marked points of C. We may assume that C, f , a and b are

defined over a finite Galois extension L
i
↪→ k̄ of k. Let us denote T = SpecL and

G = Autk(L). Note that T ×k k̄ =
∏
G

Spec k̄ where the morphism Spec k̄ → T is

given by (i ◦ σ)∗ on the corresponding component. We view L as a k-scheme and
f : C → X ×k T as a family of stable curves parametrized by T . Thus we have a
moduli map MT : T = SpecL→M0,2(X, d) defined over k and such that for every
t ∈ T (k̄), corresponding to σ ∈ G, we have

MT (t) = Φ( σCk̄)

where σfk̄ : σCk̄ → Xk̄ and the marked points of σCk̄ are σ(a) and σ(b).
Since the curve fk̄ : Ck̄ → Xk̄ corresponds to a k-point of M0,2(X, d), we can

factor MT as
T = SpecL→ Spec k

Φ(fk̄)→ M0,2(X, d).
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We thus see that for every t ∈ T (k̄) the point MT (t) is the same point Φ(fk̄) of
M0,2(X, d). Hence for every σ ∈ G the curves σCk̄ and Ck̄ are isomorphic as stable
curves. This means that there exists a k̄-morphism φσ : Ck̄ → σCk̄, such that
φσ(a) = σ(a), φσ(b) = σ(b) and σfk̄ ◦ φσ = fk̄.

As a consequence, the proposition results from the following lemma.

Lemma 2.4. Let X be a projective variety over a perfect field k. Let L be a finite
Galois extension of k. Denote G = Autk(L). Let P and Q be k-points of X.
Suppose we can find an L-stable curve of genus zero f : C → XL with two marked
points a, b ∈ C(L), satisfying the following conditions:

(i) f(a) = P , f(b) = Q;

(ii) for every σ ∈ G there exists a k̄-morphism φσ : Ck̄ → σCk̄ such that

φσ(a) = σ(a), φσ(b) = σ(b) and σfk̄ ◦ φσ = fk̄.

Then the points P and Q are R-equivalent over k.

Proof. By lemma 2.3, we have a unique (minimal) chain {C1, . . . , Cm} of geometri-
cally irreducible L-components of C, joining a ∈ C1(L) and b ∈ Cm(L).

Let us take σ ∈ G. We have two chains of k̄-components of σC joining σ(a) and
σ(b): { σC1,k̄, . . . ,

σCm,k̄} and {φσ(C1,k̄), . . . , φσ(Cm,k̄)} . Since the arithmetic genus
of σCk̄ is zero, we thus have

φσ(Ci,k̄) = σCi,k̄, i = 1, . . . ,m.

Let us fix 1 ≤ i ≤ m. Denote the image f(Ci) of Ci in XL by Zi. From the
commutative diagram

σCi
σf−−−→ σXy y

Ci
f−−−→ X

we see that σf( σCi) = σZi and that σfk̄(
σCi,k̄) = σZi,k̄ (using base change by

i : L → k̄ in the first line of the diagram above). On the other hand, since
φσ(Ci,k̄) = σCi,k̄ and σfk̄ ◦ φσ = fk̄, we have σZi,k̄ = σfk̄(

σCi,k̄) = σfk̄(φσ(Ci,k̄)) =
fk̄(Ci,k̄) = Zi,k̄. Since σZi and Zi are L-subvarieties of XL, we deduce that σZi = Zi
for all σ ∈ G. By Galois descent, there exists a k-curve Di ⊂ X such that Zi =
Di ×k L.

Let D̃i → Di be the normalisation morphism. Since Ci is smooth, the morphism
f |Ci : Ci → Di ×k L extends to a morphism fi : Ci → D̃i ×k L:

D̃i ×k L

��
Ci

f |Ci//

fi
::vvvvvvvvv

Di ×k L.
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We have φσ(Ci ∩ Ci+1) = σCi ∩ σCi+1 and σfi,k̄ ◦ φσ = fi,k̄, as this is true over a
Zariski open subset of Di. Using the same argument as above, we deduce that the
point fi(Ci ∩ Ci+1) is a k-point of D̃i. This implies that D̃i is a k-rational curve as
it is L-rational and has a k-point. Moreover, the point f(Ci ∩ Ci+1) is a k-point of
X as the image of fi(Ci ∩ Ci+1). We deduce that P and Q are R-equivalent by the
chain D̃i → X, i = 1, . . .m.

Remark 2.5. If the cohomological dimension of the field k is at most 1, one can
use more general arguments to prove Proposition 2.2: see [DDE], cor. 1.3, applied
to the fibre of the morphismM0,2(X, d) → M0,2(X, d) over the point Φ(f), where
M0,2(X, d) is the stack of all genus zero stable curves over X of degree d with two
marked points.

3 Proof of the theorem
In this section we use the previous arguments to prove Theorem 1.5. Let k be

a function field in one variable over C or the field C((t)). Let X be a k-rationally
simply connected variety. In particular, X is rationally connected. Note that by the
theorem of Graber, Harris and Starr [GHS], a smooth rationally connected variety
over a function field in one variable over C has a rational point, and the same result
is also known over k = C((t)) (cf. [CT] 7.5). As any smooth projective variety
equipped with a birational morphism to X is still rationally connected, it has a
rational point. This implies that X(k) 6= ∅.

Let us fix a sufficiently large integer e and an irreducible component Me, 2 ⊂
M0,2(X, e) such that the restriction of the evaluation morphism ev2 : Me, 2 → X×X
is dominant with rationally connected general fibre.

Let P and Q be two k-points of X. A strategy is the following. We would like to
apply [GHS] and to deduce that there is a rational point in a fibre over (P,Q). Then,
by Proposition 2.2, we deduce that P and Q are R-equivalent. But we only know
that a general fibre of ev2 is rationally connected. If k = C((t)), this is sufficient as
R-equivalence classes are Zariski dense in this case by [Ko99]. If k is a function field
in one variable over C, our strategy will also work by a specialization argument of
the lemma below (see also [Sta] p.25 and [Lie] 4.5). So we obtain X(k)/R = 1 as
X(k) 6= ∅.

Let us now prove that the group A0(X) is trivial. Pick x0 ∈ X(k). It is sufficient
to prove that for every closed point x ∈ X of degree d we have that x− dx0 is zero
in CH0(X). Let us take a rational point x′ ∈ Xk(x) over a point x. By the first part
of the theorem, applied to Xk(x), x′ is R-equivalent to x0 over k(x). Hence x′ − x0

is zero in CH0(Xk(x)). Applying the push-forward by the morphism p : Xk(x) → X,
we deduce that x− dx0 is zero in CH0(X). This completes the proof.

Lemma 3.1. Let k = C(C) be the function field of a (smooth) complex curve
C. Let Z and T be projective k-varieties, with T smooth. Let f : Z → T be a
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morphism with rationally connected general fibre. Then for every t ∈ T (k) there
exists a rational point in the fibre Zt.

Proof. One can choose proper models T → C and F : Z → T of T and Z respec-
tively with T smooth. We know that any fibre of F over some open set U ⊂ T is
rationally connected.

The point t ∈ T (k) corresponds to a section s : C → T . What we want is to
find a section C → Z×T C. One can view the image s(C) in T as a component of a
complete intersection C ′ of hyperplane sections of T for some projective embedding.
In fact, it is sufficient to take dim T −1 functions in the ideal of s(C) in T generating
this ideal over some open subset of s(C). Moreover, one may assume that C ′ is a
special fibre of a family C of hyperplane sections with general fibre a smooth curve
intersecting U . After localization, we may also assume that C is parametrized by
C[[t]]. Let A be any affine open subset in C containing the generic point ξ of s(C).
We have the following diagram:

Z ×T SpecA

FA
��

// Z
F

��
ξ // SpecA⊗C[[t]] C //

��

SpecA

��

// T

SpecC // SpecC[[t]].

LetK = C((t)) and let K̄ be an algebraic closure ofK. By construction, the generic
fibre of FK̄ : Z×T K̄ → SpecA⊗C[[t]]K̄ is rationally connected. By [GHS] we obtain
a rational section of FK̄ . As K̄ is the union of the extensions C((t1/N)) for N ∈ N,
we have a rational section for the morphism Z×T C[[t1/N ]]→ SpecA⊗C[[t]]C[[t1/N ]]
for some N . By properness, this section extends to all codimension 1 points of
SpecA ⊗C[[t]] C[[t1/N ]], in particular, to the point ξ on the special fiber. This ex-
tends again to give a section C → Z ×T C as desired.

4 Proof of the corollary
The following result is essentially contained in [dJS]. We include the proof here as
we need the precise statement over a field which is not algebraically closed.

Proposition 4.1. Let k be a field of characteristic zero. Let X be a smooth
complete intersection of r hypersurfaces in Pnk of respective degrees d1, . . . , dr with
r∑
i=1

d2
i ≤ n + 1. Suppose that dimX ≥ 3. Then for every e ≥ 2 there exists a

geometrically irreducible k-component Me,2 ⊂ M0,2(X, e) such that the restriction
of the evaluation morphism

ev2 : Me,2 → X ×X
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is dominant with rationally connected generic fibre.

Proof. Let us first recall the construction of [dJS] in the case k = C. Note that, as
dimX ≥ 3, we know that H2(X,Z) = Zα where the degree of α equals to 1 ([V],
13.25).

In [dJS], de Jong and Starr prove that for every integer e ≥ 2 there exists an
irreducible component Me,2 ⊂M0,2(X, e) such that the restriction of the evaluation
morphism ev2 : Me,2 → X ×X is dominant with rationally connected generic fibre.
In order to convince ourselves that Me,2 is in fact the unique component satisfying
the above property, we will specify the construction of Me,2 more precisely:

1. One first shows that there exists a unique irreducible component M1,1 ⊂
M0,1(X, 1) such that the restriction of the evaluation ev1|M1,1 : M1,1 → X is
dominant ([dJS], 1.7).

2. The component M1, 0 ⊂M0, 0(X, 1) is constructed as the image of M1,1 under
the morphism M0,1(X, 1) → M0, 0(X, 1) forgetting the marked point. Then
one constructs the component of higher degree Me,0 as the unique component
of M0, 0(X, e) which intersects the subvariety of M0, 0(X, e) parametrizing a
degree e cover of the smooth, free curve parametrized by M1, 0 ([dJS], 3.3).

3. The component Me,2 ⊂ M0,2(X, e) is the unique component such that its
image under the morphismM0,2(X, e)→M0, 0(X, e), which forgets about the
marked points, is Me,0.

Let us now consider the general case. Let k̄ be an algebraic closure of k. As k
is of finite type over Q, we may assume that k̄ ⊂ C. Since the decomposition into
geometrically irreducible components does not depend on which algebraically closed
field we choose, by the first step above there exists a unique irreducible component
M1,1 ⊂M0,1(Xk̄, 1) such that the restriction of the evaluation ev1|M1,1 is dominant.
As this component is unique, it is defined over k. Hence, from the construction
above, the component Me,2 is also defined over k, which completes the proof.

Let us now prove the corollary. Let X be a smooth complete intersection of r

hypersurfaces in Pnk of respective degrees d1, . . . , dr with
r∑
i=1

d2
i ≤ n + 1. Thus, if

dimX = 1 then X is a line and the corollary is obvious. If dimX = 2 then X is a
quadric surface in P3

k. We have that X is birational to P2
k as it has a k-point and the

corollary follows. If dimX ≥ 3, we have that X is k-rationally simply connected
by Proposition 4.1. If k is a function field in one variable over C or the field C((t))
we have X(k)/R = 1 and A0(X) = 0 by Theorem 1.5. This completes the proof of
the corollary.

Remark 4.2. The next argument, due to Jason Starr, gives a simpler way to prove
the corollary in the case

∑
d2
i ≤ n. More precisely, we have :
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Proposition 4.3. Let k be a C1 field. Let X
i
↪→ Pnk be the vanishing set of r

polynomials f1, . . . fr of respective degrees d1, . . . dr. If
∑
d2
i ≤ n then any two

points x1, x2 ∈ X(k) can be joined by two lines defined over k: there is a point
x ∈ X(k) such that l(x, xi) ⊂ X, i = 1, 2, where l(x, xi) denote the line through x
and xi.

Proof. We may assume that x1 = (1 : 0 : . . . : 0) and x2 = (0 : 1 : 0 : . . . : 0)
via the embedding i. The question is thus to find a point x = (x0 : . . . : xn) with
coordinates in k such that{

fi(tx0 + s, tx1, . . . txn) = 0
fi(tx0, tx1 + s, . . . txn) = 0,

i = 1, . . . r.

As x1, x2 are in X(k) these conditions are satisfied for t = 0. Thus we may assume

t = 1. Writing fi(x0 + s, x1, . . . xn) =
di∑
j=0

P i
j (x0, . . . xn)sj with degP i

j = di − j we

see that each equation fi(x0 + s, x1, . . . xn) = 0 gives us di conditions on x0, . . . xn
of degrees 1, . . . di. By the same argument, each equation fi(x0, x1 + s, . . . xn) = 0
gives di−1 conditions of degrees 1, . . . di−1 as we know from the previous equation
that we have no term of degree zero. The sum of the degrees of all these conditions

on x0, . . . xn is
r∑
i=0

d2
i . As

r∑
i=0

d2
i ≤ n by Tsen-Lang theorem we can find a solution

over k, which completes the proof.
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