

NUMBER THEORY MIDTERM PRACTICE

0. Solve the system of congruence:

$$\begin{aligned}3x &\equiv 1 \pmod{5} \\2x &\equiv 1 \pmod{7} \\4x &\equiv 2 \pmod{6}\end{aligned}$$

1. Let p be a prime.

- (1) Show that $p \mid \binom{p}{k}$ for $1 \leq k \leq p-1$.
- (2) Show that $(a+b)^p \equiv a+b \pmod{p}$. (Hint: binomial theorem.)

2. Find $(189, 1239)$ by using Euclidean algorithm. Find integers x, y such that $189x + 1239y = (189, 1239)$. Find a formula for all integer solutions to the equation.

3. Show that $\phi(n)$ is even when $n > 2$.

4. Suppose we have integers x, y, z such that

$$x^3 + y^3 \equiv z^3 \pmod{7}$$

- (1) Show that if 7 does not divide x , then $x^3 \equiv \pm 1 \pmod{7}$.
- (2) Deduce that $7 \mid xyz$.

5. Show that \sqrt{p} is irrational for any prime p .

6. Let q be an integer. Suppose for any a, b , we know that $q \mid ab \Rightarrow$ either $q \mid a$ or $q \mid b$. Show that if $d \mid q$, then either $d = 1$ or $d = q$.

7. Suppose $(a, b) = d$, show that

- (1) For any positive n , $\phi(n^2) = n\phi(n)$. (Hint: show this for $n = p^k$ first. Or you can use a previous homework assignment.)
- (2) Show that $\phi(d)\phi(ab) = d\phi(a)\phi(b)$.

8. Can -1 be a quadratic residue in some congruence classes?

9. Let p be a prime.

- (1) What is the definition of the order of 2 in the congruence class mod N ?
- (2) Show that if $2^k \equiv 1 \pmod{N}$, then order of 2 divides k . (Hint: let order of 2 be d . If this is not true, then $k = dq + r$. Consider 2^{dq+r} .)
- (3) Let $N = 2^p - 1$. Show that $2^p \equiv 1 \pmod{N}$. Deduce that order of 2 is p .
- (4) Show that $p \mid \phi(N)$.
- (5) Show that $p \mid 2^p - 2$ for all primes, and conclude that $2^{N-1} \equiv 1 \pmod{N}$, where N is defined in (3).

10. Find an upper bound for each of the functions $\phi(n), \tau(n), \sigma(n)$. That is, find numbers N_1, N_2, N_3 , such that $\phi(n) \leq N_1, \tau(n) \leq N_2, \sigma(n) \leq N_3$. (N_i should be expressed in terms of n .)