FINAL MATH-GA 2350.001 DIFFERENTIAL GEOMETRY I December, 12, 2016, 1.25-3.15pm.

1. Let p, q be integers with $p > 0, q \ge 0$ and let E be the real vector space $\mathbb{R}^p \times \mathbb{R}^q$. We denote by $(x_1, x_2, \dots, x_p, y_1, \dots, y_q)$ the coordinates of E. For $x = (x_1, x_2, \dots, x_p, y_1, \dots, y_q)$, we define

$$Q(x) = x_1^2 + \ldots + x_p^2 - y_1^2 - \ldots - y_q^2.$$

Let $M \subset E$ be defined by equation

$$Q(x) = 1.$$

(a) Show that M is a regular submanifold of E. What is the dimension of M?

The differential of Q at a point $x = (x_1, x_2, \dots, x_p, y_1, \dots, y_q)$ is a map

$$(X_1, \dots, X_p, Y_1, \dots, Y_q) \mapsto 2\sum_{i=1}^p x_i X_i - 2\sum_{j=1}^q y_j Y_j.$$

Hence it is non-zero for $x \neq 0$, hence submersive, as a map to \mathbb{R} . The image of Q contains 1 since $p \neq 0$, so that $M = Q^{-1}(1)$ for a submersive map Q on $E \setminus 0$. Hence M is regular submanifold of dimension p+q-1.

(b) Assume that $p, q \ge 2$ and define, for $x = (x_1, x_2, \dots, x_p, y_1, \dots, y_q)$:

$$A(x) = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2}, \ B(x) = y_2 \frac{\partial}{\partial y_1} - y_1 \frac{\partial}{\partial y_2}, \ C(x) = y_1 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial y_1}.$$

Show that A, B and C are complete vector fields on M. Compute the flow for C. Compute [A, C].

The tangent space of M at $x = (x_1, x_2, \dots, x_p, y_1, \dots, y_q)$ is

$$T_x M = \ker dQ_x = \{ (X_1, \dots, X_p, Y_1, \dots, Y_q) \in E, \ \sum_{i=1}^p x_i X_i - \sum_{j=1}^q y_j Y_j = 0.$$

We then see that $A(x), B(x), C(x) \in T_x M$. In addition, the maps $x \mapsto A(x), x \mapsto B(x), x \mapsto C(x)$ are smooth, so that A, B, C are smooth vector fields on M. Let $\phi_t : M \to M$ be the map

 $(x_1, x_2, \dots, x_p, y_1, \dots, y_q) \mapsto (x_1 \cosh t + y_1 \sinh t, x_2, \dots, x_p, x_1 \sinh t + y_1 \cosh t, y_2 \dots, y_q).$ Then $\phi_0(x) = x$ and $\frac{d}{dt}\phi_t(x) = C(\phi_t(x))$. By unicity, ϕ_t is the flow of C. Similarly we obtain the flows for A and B:

$$(x_1, x_2, \dots, x_p, y_1, \dots, y_q) \mapsto (x_1 \cos t + y_1 \sin t, -x_1 \sin t + x_2 \cos t, \dots, x_p, y_1, y_2, \dots, y_q)$$

 $(x_1, x_2, \dots, x_p, y_1, \dots, y_q) \mapsto (x_1, x_2, \dots, x_p, y_1 \cos t + y_2 \sin t, -y_1 \sin t + y_2 \cos t, \dots, y_q).$

These flows are defined on \mathbb{R} , so that A, B, C are complete. Since C does not depend on x_2 and A does not depend on y_1 , we compute

$$[A, C](x) = x_2 \frac{\partial}{\partial y_1} + y_1 \frac{\partial}{\partial x_2}.$$

(c) Show that M retracts on $M \cap (\mathbb{R}^p \times \{0\})$. For example, the following map is the requested retraction

$$h(t,x) = \frac{1}{\sqrt{(x_1^2 + \ldots + x_p^2) - (1-t)^2(y_1^2 + \ldots + y_q^2)}} (x_1, \ldots x_p, (1-t)y_1, \ldots + (1-t)y_q)$$

(d) Compute the de Rham cohomology $H^i_{dR}(M)$ for $i \ge 0$. By the previous question, the cohomology of M coincide with cohomology of $M \cap (\mathbb{R}^p \times \{0\})$, hence the cohomology of spheres.

2. Let

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} a > 0, b \in \mathbb{R} \right\} \subset GL_2(\mathbb{R}).$$

(a) Show that G is a Lie group.

First note that G is stable by multiplication and by taking inverses. It is then enough to verify that the map $x, y \to xy^{-1}$ is smooth $(x, y \in G)$, that is straightforward. Another argument: $GL_2(\mathbb{R})$ is a Lie group, so the map $x, y \mapsto xy^{-1}$ is smooth, hence the restriction of this map to a closed subset G is also smooth.

(b) Let \mathfrak{g} be the Lie algebra of G and let $A, B \in \mathfrak{g}$ be defined by

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Compute [A, B].

From a result in the lectures, since $G \subset GL_2(\mathbb{R})$ is closed, the Lie bracket on G is the restriction of the Lie bracket on $GL_2(\mathbb{R})$. Hence [A, B] = AB - BA = B.

(c) Describe all one-parameter subgroups of G.
Again, the exponential on G is the restriction of the exponential on GL₂(R), hence it's the usual exponential of a matrix. Note that

$$exp\begin{pmatrix} x & y\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} e^x & \frac{e^x - 1}{x}y\\ 0 & 1. \end{pmatrix}$$

Note that A and B generate \mathfrak{g} , so that for $X \in \mathfrak{g}$ one can write X = xA + yB. Then $exp(xA + yB) = \begin{pmatrix} e^x & \frac{e^x - 1}{x}y \\ 0 & 1 \end{pmatrix}$. The one parameter subgroups of G all of type $t \mapsto exp(tX)$ for an element $X \in G$. With the description above, we obtain that all one parameter subgroups are of type $t \mapsto \begin{pmatrix} e^{tx} & \frac{e^{tx} - 1}{x}y \\ 0 & 1 \end{pmatrix}$

3. Show that there is no Lie group structure on a sphere of dimension n with n > 0 even. (Hint: you can use the conclusion in the last homework.)

Assume that there is a Lie group structure on S^n with n even. Then, for $v \in T_e S^n$ one could define the following vector field: $X(x) = T_e L_x(v)$. If $v \neq 0$, this vector field is nowhere vanishing. This is a contradiction (see HW9, ex.4).