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1. Introduction

For an abelian group A, write Ators ⊂ A for its torsion subgroup and A � Afree := A/Ators for its max-
imal torsion-free quotient. For an algebraic group G, let G◦ ⊂ G denote its neutral component and
G� π0(G) := G/G◦ its group of connected components.

A variety over a field k is a separated scheme of finite type over k.

In this paper k will denote an infinite field of characteristic p ≥ 0, finitely generated over its prime subfield.
We fix a separable closure k ↪→ k̄ and write π1(k) =Gal(k̄|k) for the absolute Galois group.

1.1. Tate conjectures. Let X be a smooth projective variety over k. For every integer i ≥ 0, let CHi(X)
denote the group of algebraic cycles of codimension i on X modulo rational equivalence, and for every ring
R, set CHi(X)R := CHi(X)⊗Z R. For a prime ` 6= p, set

VZ` := H2i(Xk̄,Z`(i)).

Let G` ⊂ GL(VQ`) denote the Zariski-closure of the image of π1(k) acting on VQ` := VZ` ⊗Z` Q` and let

ṼQ` := (VQ`)
G◦` ⊂ VQ`

denote the Q`-vector space of Tate classes. The cycle class map c` : CHi(Xk̄)→ VZ` for Z`-étale cohomology
fits into the following canonical Cartesian diagram

(1) CHi(Xk̄) //

��

c`

**CHi(Xk̄)Z` // //

��

V a
Z`
� � //

����

ṼZ`
� � //

����
�

VZ`

����
V free,a
Z`

� � //
� _

��

Ṽ free
Z`
� � //
� _

��
�

V free
Z �̀ _

��
CHi(Xk̄)Q // CHi(Xk̄)Q` // // V a

Q`
� � // ṼQ`

� � // VQ` ,

where V a
Z` (resp. V a

Q`) is the image of the cycle class map c` ⊗ Z` : CHi(Xk̄)Z` → VZ` (resp. c` ⊗ Q`) and
where ṼZ` and Ṽ free

Z` are defined by the rightmost Cartesian squares of the diagram.

The (classical) rational Q`-Tate conjecturefor codimension i cycles on X [Ta65]

TateQ`(X, i) V a
Q` = ṼQ`
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admits the following integral variants:

Tatefree
Z` (X, i) V free,a

Z` = Ṽ free
Z` (Integral Tate conjecture modulo torsion);

TateZ`(X, i) V a
Z` = ṼZ` (Integral Tate conjecture).

While, tautologically,
TateZ`(X, i)⇒ Tatefree

Z` (X, i)⇒ TateQ`(X, i),

it is known that, in general, the converse implications fail (see e.g. [CTS10, AtH62] for an example of the
failure of TateZ`(X, i) and [CTS10, Ko90, To13] for examples of the failure of Tatefree

Z` (X, i)).

The aim of this note is to analyze the obstructions to TateZ`(X, i), Tatefree
Z` (X, i) when X varies in family.

Our arguments provide a new application of the structure theorem of the degeneration locus of `-adic local
systems of [CT13] (see Fact A), in the spirit of [CC20, C23].

Before considering the variational setting, we make some elementary remarks. By definition, the obstructions
to TateQ`(X, i), Tatefree

Z` (X, i), TateZ`(X, i) are, respectively:

C̃Q` := ṼQ`/V
a
Q` , C̃ free

Z` := Ṽ free
Z` /V free,a

Z` , C̃Z` := ṼZ`/V
a
Z` .

1.1.1. C̃ free
Z` versus C̃Z`. The short exact sequence

(2) 0→ (VZ`)tors/(V a
Z`)tors → C̃Z` → C̃ free

Z` → 0

realizes C̃Z` an extension of C̃ free
Z` by a finite group which is a quotient of (VZ`)tors. As (VZ`)tors is constant

in family, the problems of bounding uniformly C̃ free
Z` and C̃Z` are essentially equivalent.

1.1.2. C̃Q` versus C̃ free
Z` . From C̃Q` = C̃ free

Z` ⊗Z` Q` and the short exact sequence (2), one has the folllowing
equivalences

TateQ`(X, i)⇔ (C̃ free
Z` )tors = C̃ free

Z` ⇔ (C̃Z`)tors = C̃Z`

and, in case they hold, (2) reads

(3) 0→ (VZ`)tors/(V a
Z`)tors → (C̃Z`)tors → (C̃ free

Z` )tors → 0.

So that, assuming TateQ`(X, i), the obstructions we are interested in are (C̃Z`)tors, (C̃ free
Z` )tors. The obstruction

(C̃ free
Z` )tors can be described without involving the Z`-module Ṽ free

Z` of Tate classes. Indeed, writing

C free
Z` := V free

Z` /V free,a
Z` ,

it follows from the short exact sequence

0→ C free
Z` → C̃ free

Z` → V free
Z` /Ṽ free

Z` → 0

and the fact that V free
Z` /Ṽ free

Z` is torsion-free that

(C free
Z` )tors = (C̃ free

Z` )tors.

1.2. Let now S be a smooth, geometrically connected variety over k, with generic point η, and f : X → S
a smooth projective morphism. For s ∈ S, denote by a subscript (−)s the various modules attached to Xs

introduced above (e.g. VZ`,s := H2i(Xs̄,Z`(i)), V a
Z`,s := im[CHi(Xs̄)Z` → VZ`,s] etc.). One would like to

investigate how

ÕbZ`,s := |(C̃Z`,s)tors|

vary with s ∈ |S|. In particular, the vanishing of the obstruction group (C̃Z`,s)tors reads as ÕbZ`,s = 1.
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1.2.1. Assume first p = 0. The following statement is predicted by the main conjecture of [C23]. For every
integer d ≥ 1, let |S|≤d ⊂ |S| denote the set of all closed points s ∈ |S| with residue degree [k(s) : k] ≤ d.

Conjecture 1. For every integer d ≥ 1, one has

Õb
≤d
Z` := sup{ÕbZ`,s | s ∈ |S|

≤d} < +∞

and Õb
≤d
Z` = 1, `� 0.

Our first main result is that Conjecture 1 holds when S is a curve modulo some reasonable variational
realization conjecture, which we discuss now.
- Singular cohomology: Fix an embedding ∞ : k ↪→ C, let (−)∞ denote the base-change functor along

Spec(C) ∞→ Spec(k) and (−)an the analytification functor from varieties over C to complex analytic spaces.
For every s∞ ∈ S∞(C) the cycle class maps for singular cohomology

c : CHi(X∞)Q → H2i(Xan
∞ ,Q(i)), cs∞ : CHi(Xs∞)Q → H2i(Xan

s∞ ,Q(i))

fit into a canonical commutative diagram

CHi(X∞)Q
|X∞,s //

c
��

CHi(Xs∞)Q
cs∞
��

H2i(Xan
∞ ,Q(i)) ε // H0(San

∞ , R
2ifan
∞∗Q(i)) �

� // H2i(Xan
s∞ ,Q(i)),

where ε : H2d(Xan
∞ ,Q(i)) � E0,i

∞ ↪→ E0,i
2 = H0(San

∞ , R
2ifan
∞∗Q(i)) is the edge morphism from the Leray

spectral sequence for fan
∞ : Xan

∞ → San
∞ .

VSing0(f∞, i) For every s∞ ∈ S∞(C) and αs∞ ∈ H0(San
∞ , R

2ifan
∞∗Q(i)) ⊂ H2i(Xan

s∞ ,Q(i)) the following
properties are equivalent:
1) αs∞ ∈ im[cs,Q : CHi(Xs∞)Q → H2i(Xan

s∞ ,Q(i))];

2) there exists α̃ ∈ CHi(X∞)Q such that cs∞(α̃|Xs∞ ) = αs∞ .

Though it does not involve Hodge classes, the statement VSing0(f∞, i) is often referred to as the variational
Hodge conjecture for codimension i cycles because, by the fixed part theorem, it follows from the Hodge
conjecture for any smooth compactification of X∞ - see e.g. [CS13, §3.1] for details and an equivalent
formulation using de Rham cohomology. A priori the statement VSing0(f∞, i) is not preserved by base-
change along finite covers of smooth varieties while the obstructions ÕbZ`,s, s ∈ S are. So we will rather
consider the following "stabilized" variant VSing(f∞, i). For finite covers S′′∞ → S′∞ → S∞ of smooth
varieties, consider the notation in the base-change diagram:

X ′′∞ //

f ′′∞
��

�

X ′∞ //

f ′∞
��

�

X∞

f∞
��

S′′∞ // S′∞ // S∞.

VSing(f∞, i) There exists a finite cover S′∞ → S∞ of smooth varieties over C such that for every finite
cover S′′∞ → S′∞ of smooth varieties over C, VSing0(f ′′∞, i) holds.

- Étale Q`-cohomology: The following is the Q`-étale counterpart of VSing0(f∞, i):

VEt0Q`(f, i) For every s ∈ |S| and αs ∈ H0(Sk̄, R2if∗Q`(i)) ⊂ H2i(Xs̄,Q`(i)) the following properties are
equivalent:
1) αs ∈ im[cXs̄,` : CHi(Xs̄)Q → H2i(Xs̄,Q`(i))];

2) there exists α̃ ∈ CHi(Xk̄)Q such that cXs̄,`(α̃|Xs̄) = αs.

One could also consider the seemingly weaker variant WVEt0Q`(f, i) where CHi(Xs̄)Q, CHi(Xk̄)Q are
replaced with CHi(Xs̄)Q` , CHi(Xk̄)Q` , and the stabilized variants WVEtQ`(f, i), VEtQ`(f, i). Note that
the statements WVEt0Q`(f, i), VEt

0
Q`(f, i) also make sense when p > 0.
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Proposition 2. If p = 0, one has
WVEt0Q`(f, i)⇔ VEt0Q`(f, i)⇔ VSing0(f∞, i).

In general, one always has VEt0Q`(f, i)⇒WVEt0Q`(f, i) and TateQ`(Xη, i)⇒WVEtQ`(f, i).

We will give a proof of this proposition in section 3.1.3.
In particular, when p = 0, VSing0(f∞, i) is independent of the embedding ∞ : k ↪→ C and WVEt0Q`(f, i),
VEt0Q`(f, i) are independent of the prime `.

We can now state our first main result.

Theorem A. Assume S is a curve and VSing(f∞, i) holds for one (equivalently every) embedding ∞ : k ↪→
C. Then, for every integer d ≥ 1, one has Õb

≤d
Z` < +∞ and Õb

≤d
Z` = 1 for `� 0 (depending on d).

1.2.2. Assume now p > 0. One has a variant of Theorem A for d = 1 but it is slightly more technical. To
state it, one has to make a mild assumption on the Q`-local system VQ` := R2if∗Q`(i), namely that it is
GLU - see Subsection 2.2.1.2 for the definition. One also needs a substitute for VSing(f∞, i). According to
Proposition 2, a first substitute is WVEtQ`(f, i). Another natural substitute is the variational realization
conjecture in crystalline cohomology VCrys(f, i). This is more subtle. Indeed, as crystalline cohomology
is only well-behaved over a perfect residue field, one has first to spread out all the involved data over a
finite base field. Another difficulty is that the proof of Theorem A heavily relies on Artin’s comparison
isomorphism bewteen étale and singular cohomology. But there is no such a direct functorial comparison
isomorphism between crystalline and étale cohomology; to remedy this, one has to invoke a weak form -
CrysEtQ`(f, i) of the motivic conjecture predicting that homological and numerical equivalence should co-
incide (combined with a theorem of Ambrosi - see Fact 12).

We now state VCrys(f, i) and CrysEtQ`(f, i). Let F denote the algebraic closure of Fp in k and let K be
a smooth, separated, geometrically connected scheme over F with generic point ηK : Spec(k) → K , let
S → K be a smooth, separated and geometrically connected morphism and f : X → S a smooth proper
morphism fitting in the following Cartesian diagram

X
f //

�

S //

�

K

X
f
//

OO

S //

OO

k

ηK

OO

Let K denote the fraction field of the ring W of Witt vectors of F . For a F -scheme Z, write Hicrys(Z) :=
Hicrys(Z/W )K for the crystalline cohomology with K-coefficients and

ccrys : CHi(Z)Q → H2i
crys(Z)

for the cycle class map. For every t ∈ |S| the cycle class maps
ccrys : CHi(X )→ H2i

crys(X ), ccrys,t : CHi(Xt)→ H2i
crys(Xt)

fit into a canonical commutative diagram

CHi(X )Q
|Xt //

ccrys
��

CHi(Xt)Q
ccrys,t
��

H2i
crys(X ) ε // H0(S, R2ifcrys,∗OX/W )K �

� // H2i
crys(Xt),

where ε : H2i
crys(X ) � E0,i

∞ ↪→ H0(S, R2ifcrys,∗OX/W )K is, again, the edge morphism from the Leray spectral
sequence for f : X → S in crystalline cohomology - see [M23, §1] and the references therein for details. The
following is the crystalline analogue of VSing0(f∞, i), VEt0Q`(f, i) [M23, Conj. 0.1].

VCrys0(f, i) For every t ∈ |S| and αt ∈ H0(S, R2ifcrys,∗OX/W )Q ⊂ H2i
crys(Xt) the following properties are

equivalent:
1) αt ∈ im[ccrys,t : CHi(Xt)Q → H2i

crys(Xt)];



UNIFORM BOUNDS FOR OBSTRUCTIONS TO THE INTEGRAL TATE CONJECTURE 5

2) there exists α̃ ∈ CHi(X )Q such that ccrys,t(α̃|Xt) = αt.
As before, let VCrys(f, i) denote its stabilized variant.

Also, consider the following statement
CrysEtQ`(f, i) For every t ∈ |S|, the kernel of the cycle class maps

ccrys,t : CHi(Xt)Q → H2i
crys(Xt), c`,t : CHi(Xt)Q → H2i(Xt̄,Q`)

coincide,
which follows from the standard conjecture predicting that homological and numerical equivalences should
coincide, which, in turn, is a consequence of the conjecture predicting that the category of effective motives
should be abelian semisimple [J92].

We can now state the analogue of Theorem A when p > 0.

Theorem B. Assume S is a curve, VQ` is GLU and either (i) WVEtQ`(f, i) or (ii) VCrys(f, i)+CrysEtQ`(f, i)
holds. Then, one has Õb

≤1
Z` < +∞.

Remark 3. We do not know if, under the assumptions of Theorem B, Õb
≤1
Z` = 0, `� 0.

1.2.3. Unramified cohomology. When i = 2, (C̃Z`,s)tors can be described in terms of degree 3 unramified
cohomology. More precisely, set CZ`,s := VZ`/V

a
Z`,s. From the short exact sequence

0→ C̃Z`,s → CZ`,s → VZ`,s/ṼZ`,s → 0

and the fact that VZ`,s/ṼZ`,s is torsion-free, one has (C̃Z`,s)tors = (CZ`,s)tors. If i = 2, [CTK13, Thm. 2.2]
states that (CZ`,s)tors is isomorphic to

H3
nr(Xs̄,Q`/Z`(2))ndiv

def= coker[H3
nr(Xs̄,Q`/Z`(2))div → H3

nr(Xs̄,Q`/Z`(2))].
Here for an abelian group A, we let Adiv ⊂ A denote its maximal divisible subgroup.

Hence Theorem A and Theorem B for i = 2 imply:

Corollary 4. Assume S is a curve.
(1) Assume p = 0 and VSing(f∞, i) for some embedding ∞ : k ↪→ C holds. Then, for every integer d ≥ 1,

sup{|H3
nr(Xs̄,Q`/Z`(2))ndiv| | s ∈ |S|≤d}| < +∞,

and H3
nr(Xs̄,Q`/Z`(2))ndiv = 0, s ∈ |S|≤d for `� 0 (depending on d).

(2) Assume p > 0, VQ` is GLU and either (i) WVEtQ`(f, i) or (ii) VCrys(f, i)+CrysEtQ`(f, i) holds. Then,

sup{|H3
nr(Xs̄,Q`/Z`(2))ndiv| | s ∈ S(k)}| < +∞,

and H3
nr(Xs̄,Q`/Z`(2))ndiv = 0, s ∈ S(k) for `� 0.

For integers a ≥ 0, b, c and A` = Z`,Q`,Q`/Z` etc., Schreieder introduces refined unramified cohomology
groups Hac,nr(Xs̄, A`(b)) [S23, §1.2] which, when c = 0, coincide with the usual unramified cohomology groups.
By [S23, Thm. 1.8], for every integer i ≥ 0 one has:

(C̃Z`,s)tors ' H2i−1
i−2,nr(Xs̄,Q`/Z`(i))ndiv

def= coker[H2i−1
i−2,nr(Xs̄,Q`/Z`(i))div → H2i−1

i−2,nr(Xs̄,Q`/Z`(i))].

So, Corollary 4 holds more generally with H3
nr(Xs̄,Q`/Z`(2))ndiv replaced by H2i−1

i−2,nr(Xs̄,Q`/Z`(i))ndiv.

1.3. Acknowledgements. The second author is partially supported by the NSF DMS-2201195 grant. We
thank Stefan Schreieder for pointing out the application to refined unramified cohomology groups. We thank
François Charles for his interest and comments on the manuscript.

∗ ∗ ∗
In Section 2.1 we review basic properties of cycle class maps for étale Z`-cohomology in families, introduce
the notion of VQ`-generic points and describe the general strategy for the proof of Theorem A and Theorem
B. In Section 3, we inject comparison with singular cohomology - Subsection 3.1, to prove Proposition 2 and
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conclude the proofs of Theorem A, and with crystalline cohomology - Subsection 3.2, to conclude the proof
of Theorem B. In Subsection 3.1.5, we also explain how to derive from Theorem A its variant in the setting
of the integral Hodge conjecture.

2. Étale cycle class maps in families and global strategy

2.1. Étale Z`-local systems. Let S be a smooth, geometrically connected variety over k. For every s ∈ S,
fix a geometric point s̄ over it and an étale path αs̄ : (−)s̄→̃(−)η̄. In particular, for every Z`-local system VZ`
on S, one identifies VZ`,s̄→̃VZ`,η̄ equivariantly with respect to the isomorphism of étale fundamental groups
π1(S, s̄)→̃π1(S, η̄), γ 7→ αs̄γα

−1
s̄ . As a result, we will in general omit fiber functors from our notation and

simply write
VZ` := VZ`,s̄→̃VZ`,η̄, VQ` := VZ` ⊗Z` Q`.

Let f : X → S be a smooth projective morphism.

2.1.1. Notational conventions. Consider the Z`-étale local system VZ` := R2if∗Z`(i) on S. LetG` ⊂ GL(VQ`)
denote the Zariski-closure of the image of π1(S) acting on VQ` ; let also G` ⊂ G` and, for every s ∈ S,
G`,s ⊂ G` denote the Zariski closure of the images of π1(Sk̄) and π1(s) acting on VQ` by restriction along
the functorial morphisms π1(Sk̄) → π1(S) and π1(s) → π1(S) respectively (in particular G`,η = G`). As S
is geometrically connected over k, the functorial sequence

1→ π1(Sk̄)→ π1(S)→ π1(k)→ 1

is exact, hence G` ⊂ G` is a normal subgroup, and for every closed point s ∈ |S|, one has G◦` = G
◦
`G
◦
`,s.

2.1.2. Specialization and extension of algebraically closed fields. We recall the following two properties of
the cycle class map for étale Z`-cohomology.

2.1.2.1. Compatibility with specialization of algebraic cycles. For every s ∈ S, one has a commutative diagram

CHi(Xk̄)
|Xη̄ //

|Xs̄
��

CHi(Xη̄)

c`,η

��
spη,syy

CHi(Xs̄) c`,s
// VZ`

(see [F98, § 20.3, Ex. 20.3.1 and 20.3.5]).

2.1.2.2. "Invariance" under extension of algebraically closed field. Let Ω ↪→ Ω′ be an extension of alge-
braically closed fields of characteristic 6= ` and let Y be a smooth proper variety over Ω. Consider the
canonical commutative square

CHi(Y )

|YΩ′
��

c` // H2i(Y,Z`(i))

'
��

CHi(YΩ′)
c` // H2i(YΩ′ ,Z`(i)).

Then1,
im[c` ◦ −|YΩ′ ] : CHi(Y )→ H2i(YΩ′ ,Z`(i)) = im[c` : CHi(YΩ′)→ H2i(YΩ′ ,Z`(i))].

In particular, V a
Z`,s, V

free,a
Z`,s etc. are independent of the geometric point s̄ over s.

1In fact, a cycle ξ ∈ CHi(YΩ′ ) is defined over a finitely generated algebraically closed field Ω′′ ⊂ Ω′. One could then find
a smooth and proper model of Y over a small affine scheme U over Ω with generic point Ω′′ and use the specialization at a
Ω-point of U , as in 2.1.2.1.
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2.1.3. The lattice ΛZ`. For every s ∈ S, define

ΛZ`,s := im[CHi(Xk̄)Z` → CHi(Xs̄)Z`
c`,s→ V free

Z` ] ⊂ V free
Z` .

By construction and 2.1.2, one has

ΛZ`,s ⊂ V
free,a
Z`,η ⊂ V

free,a
Z`,s ⊂ V

free
Z` .

Lemma 5. The lattice ΛZ` := ΛZ`,s ⊂ V free
Z` is independent of s (modulo the identifications VZ` = VZ`,s̄ '

VZ`,η̄).

Proof. This follows from the fact that the restriction morphism H2i(Xk̄,Z`(i)) → H2i(Xs̄,Z`(i)) = VZ`
factors through the edge morphism ε : H2i(Xk̄,Z`(i)) � E0,i

∞ ↪→ E0,i
2 = H0(S∞, R2if∗Z`(i)) of the Leray

spectral sequence for f : X → S as

CHi(Xk̄)Z`
|Xs̄ //

c`
��

CHi(Xs̄)Z`
c`,s

��
H2i(Xk̄,Z`(i))

ε // H0(Sk̄, R2if∗Z`(i))
(−)s̄ // V free

Z`

and the fact the embedding

V free
Z` ∩ (VQ`)

G` = im[H0(Sk̄, R
2if∗Z`(i))

(−)s̄→ V free
Z` ] ⊂ V free

Z`

is independent of s (modulo the identifications VZ` = VZ`,s̄ ' VZ`,η̄). �

Remark 6. Assume2 there exists a smooth compactification X ↪→ Xcpt. Then the surjectivity of the
restriction morphism CHi(Xcpt

k̄
) � CHi(Xk̄) and the functoriality of cycle class maps shows that ΛZ` can

also be described as

ΛZ` = im[CHi(Xcpt
k̄

)Z`
c`→ H2i(Xcpt

k̄
,Z`(i))→ H2i(Xcpt

s̄ ,Z`(i)) � V free
Z` ].

In particular, if k̄ ↪→ Ω is an extension of algebraically closed fields and sΩ a geometric point on SΩ over s̄,
then 2.1.2.2 shows that

ΛZ` = im[CHi(XΩ)Z` → CHi(XsΩ)Z`
c`,sΩ→ V free

Z` ].

2.2. Strategy for the proof of Theorem A and Theorem B. We retain the notation and conventions
of Subsection 1.2 and Subsection 2.1.1. For every s ∈ S, set

Obfree
Z`,s := |(C free

Z`,s)tors|.

As
ÕbZ`,s ≤ |(VZ`)tors|Obfree

Z`,s

and as (VZ`)tors is independent of s ∈ S and, if3 p = 0, (VZ`)tors = 0, `� 0 , it is enough to prove Theorem
A, Theorem B for Obfree

Z`,s instead of ÕbZ`,s.

2.2.1. VQ`-generic points. The proofs of Theorem A and Theorem B are parallel and follow from the com-
bination of two independent statements involving VQ`-generic points. Let VZ` be a Z`-local system on S.

2.2.1.1. VQ`-generic points. Define the sets of closed VQ`-generic points to be the subset |S|gen
VQ`
⊂ |S| of all

s ∈ |S| satisfying the following equivalent conditions

G◦`,s = G◦` ⇔ G◦`,s ⊃ G◦` ⇔ G◦`,s ⊃ G
◦
` ,

and let |S|ngen
VQ`

:= |S| \ |S|gen
VQ`
⊂ |S| be the subset of closed non-VQ`-generic points. Note that |S|gen

VQ`,
is

contained in the set of all s ∈ |S| such that V a
Q`,s ⊂ (VQ`)G

◦
` .

2If p = 0, this is always the case - see [Na62], [Na63], [Hi64].
3This follows from Artin’s comparison - see Subsection 3.1.2 and the fact that singular cohomology groups are finitely

generated. This is also true if p > 0 [G83] but we will not resort to this fact.
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2.2.1.2. Sparcity. Under mild assumptions one expects non-VQ`-generic points to be sparce - see [C23] for
details. When S is a curve, one has the following unconditional results. Let Π` denote the image of π1(Sk̄)
acting on VQ` and, if p > 0, let Π+

` (⊃ Π`) denote the image of π1(SkF̄p) acting on VQ` ; these are `-adic Lie
groups. One says that VQ` is:

- GLP (geometrically Lie perfect) if Lie(Π`) is a perfect Lie algebra viz one has [Lie(Π`),Lie(Π`)] = 0;

- and, if p > 0, GLU (geometrically Lie unrelated) if Lie(Π`) and Lie(Π+
` ) have no non-trivial common

quotient.

Fact A. ([CT13, Thm. 1]). Assume p = 0, S is a curve and VQ` is GLP. Then for every integer d ≥ 1, the
set |S|ngen

VQ`
∩ |S|≤d is finite.

Fact B. ([T24]; see also the discussion in [A23, 1.7.1]). Assume p > 0, S is a curve and VQ` is GLU. Then
the set |S|ngen

VQ`
∩ S(k) is finite.

The Z`-local system V` = R2if∗Q`(i) is GLP [D71], [D80]. If p > 0, it is not necessarily GLU but still, it is
e.g. if Π` is open in the derived subgroup of the image of π1(Sk̄) acting on VQ` - see [A23, Rem. 1.7.1.4] for
details.

2.2.2. The main Lemmas. Fact A immediately reduce the proof of Theorem A to the proof of:

Lemma A. Set VZ` := R2if∗Z`(i). Assume p = 0 and VSing(f∞, i) holds for some (equivalently every)
embedding ∞ : k ↪→ C. Then,

Obfree,gen
Z` := sup{Obfree

Z`,s | s ∈ |S|
gen
VQ`
} < +∞,

and Obfree,gen
Z` = 1 for `� 0.

The proof of Lemma A will be carried out in Section 3.1.4.

Similarly, Fact B immediately reduces the proof of Theorem B to the proof of:

Lemma B. Set VZ` := R2if∗Z`(i). Assume p > 0 and either (i) WVEtQ`(f, i) or (ii) VCrys(f, i) +
CrysEtQ`(f, i) holds. Then, Obfree,gen

Z` < +∞.

The proof of Lemma Lemma B will be carried out in Section 3.2.2.

Note that Lemma A and Lemma B do not involve any restriction on the dimension of S nor on the degree
of the residue field k(s) for s ∈ |S|gen

VQ`
.

Remark 7. A priori, the assumptions in Lemma A, Lemma B do not imply TateQ`(Xs, i), s ∈ |S|gen
VQ`

.
However, if one assumes TateQ`(Xs0 , i) holds for some s0 ∈ |S|gen

VQ`
then these assumptions indeed imply

TateQ`(Xs, i), s ∈ |S|gen
VQ`

. Indeed, the proofs of Lemma A, Lemma B will show these assumptions imply
ΛQ` = V a

Q`,s, s ∈ |S|
gen
VQ`

, where ΛQ` = ΛZ` ⊗Z` Q`. Assume furthermore TateQ`(Xs0 , i) holds - that is
V a
Q`,s0 = ṼQ`,s0 , for some s0 ∈ |S|gen

VQ`
. But then, for every s ∈ |S|gen

VQ`
, one has

V a
Q`,s = ΛQ` = V a

Q`,s0 = ṼQ`,s0
(α)= ṼQ`,s,

where (α) follows from s0 ∈ |S|gen
VQ`

.

2.2.3. Reduction to connected monodromy groups. To bound Obfree
Z`,s uniformly for s ∈ |S|gen

VQ`
, one can freely

replace f : X → S by a base change along a finite cover π : S′ → S of connected smooth varieties over k.
Indeed, consider the base-change diagram

X ′ //

�f ′

��

X

f
��

S′ // S



UNIFORM BOUNDS FOR OBSTRUCTIONS TO THE INTEGRAL TATE CONJECTURE 9

and write V ′Z` := R2if ′∗Z`(i). For s ∈ |S| and s′ ∈ |S′| over s ∈ |S|, let s̄′ be a geometric point over s′ and
let s̄ = π ◦ s̄′ denote its image on S. Then, X ′s̄′→̃Xs̄ as k̄-schemes hence, a fortiori, CHi(X ′s̄′)→̃CHi(Xs̄).
On the other hand, by proper base change, V ′Z` = π∗VZ` hence, one gets a canonical commutative square

CHi(Xs̄)
c`,s // H2i(Xs̄,Z`(i))

CHi(X ′s̄′)
c`,s′//

'

OO

H2i(X ′s̄′ ,Z`(i))

,

where the vertical arrows are isomorphisms and the right vertical one is equivariant with respect to the
functorial morphism π1(S′) ↪→ π1(S). In particular, as π1(S′) ↪→ π1(S) is open, one has s ∈ |S|gen

VQ`
if and

only if s′ ∈ |S′|gen
V ′Q`

.

After base change along a finite cover S′ → S of smooth varieties (which, working componentwise, we may
assume to be connected and, replacing k by a finite field extension, geometrically connected over k), one
may assume VSing0(f ′∞, i) (resp. WVEt0Q`(f

′, i), resp. VCrys0(f ′, i)) holds for every base change along a
finite cover S′∞ → S∞ (resp. S′ → S, resp. S ′ → S) of smooth varieties. Then, the assumptions and
conclusions of Theorem A and Theorem B become unchanged by base change along finite covers of smooth
varieties, so that one may assume:
a) the algebraic group G` is connected4;
b) the algebraic groups G`,s, s ∈ S are all connected5.

2.2.4. An elementary lemma. Recall that for every s ∈ S, we identify VZ` := VZ`,s̄→̃VZ`,η̄. For a subset
Σ ⊂ S, set

V free,a
Z`,Σ :=

⋂
s∈Σ

V free,a
Z`,s ⊂ V

free,a
Z`,s ⊂ V

free
Z` .

Lemma 8. For every Z`-submodule TZ` ⊂ V
free,a
Z`,Σ and for every s ∈ Σ, one has the following implications

TQ` = V a
Q`,s ⇐⇒ [V free,a

Z`,s : TZ` ] < +∞ =⇒ Obfree
Z`,s ≤ c(TZ`) := |(V free

Z` /TZ`)tors|.

Proof. The first equivalence is straightforward. The second implication follows from the canonical commu-
tative diagram of short exact sequences

(4) 0 // TZ`
//

_�

��

V free
Z`

// V free
Z` /TZ`

//

����

0

0 // V free,a
Z`,s

// V free
Z`

// C free
Z`,s

// 0

which, by the snake lemma, identifies

QZ`,s := coker[TZ` ↪→ V free,a
Z`,s ]→̃ ker[V free

Z` /TZ` � C free
Z`,s] =: KZ`,s.

But if KZ`,s is finite, one gets a short exact sequence

0→ KZ`,s → (V free
Z` /TZ`)tors → (C free

Z`,s)tors → 0,

whence the assertion. �

4 First, after replacing k by a finite field extension, one may assume S(k) 6= ∅, so that fixing s ∈ S(k) yields a splitting
s : π1(s) = π1(k) ↪→ π1(S) of the canonical short exact sequence

1→ π1(Sk̄)→ π1(S)→ π1(k)→ 1

and a well-defined action by conjugacy of π1(k) on π1(S). Then, let S′
k̄
→ Sk̄ denote the connected étale cover corresponding

to ker(π1(Sk̄) → π0(G`)). As G◦` is normal in G`, the π1(k)-action stabilizes π1(S′
k̄
) hence s(π1(k))π1(S′

k̄
) ⊂ π1(S) is an open

subgroup corresponding to a connected étale cover S′ → S which, by construction, has the requested property.
5After base-change along the connected étale cover S′ → S trivializing V`/˜̀ (with ˜̀ = 4 if ` = 2 and ˜̀ = ` if ` 6= 2, this

classically follows from the Cebotarev density theorem, using Frobenius tori.
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Lemma 8 reduces the proof of Lemma A and Lemma B to finding a Z`-submodule TZ` ⊂ V free,a
Z`,Σ such that

TQ` = V a
Q`,s, s ∈ Σ = |S|gen

VQ`
and, in the setting of of Lemma A, such that c(TZ`) = 0, ` � 0. In all cases,

we will consider the Z`-submodule TZ` := ΛZ` introduced in Subsection 2.1.3, Lemma 5. As a warm-up, we
end this Section with the proof of Lemma B (i).

2.2.5. Proof of Lemma B (i). Let s ∈ Σ = |S|gen
VQ`

. Assuming WVEtQ`(f, i), we are to prove that the inclusion
ΛQ` ⊂ V a

Q`,s is an equality. This follows from the inclusions

V a
Q`,s = V a

Q`,s ∩ ṼQ`,s
(α)= V a

Q`,s ∩ ṼQ`,η
(β)
⊂ V a

Q`,s ∩ (VQ`)
G`

(γ)= ΛQ` ⊂ VQ` ,
where (α) follows from s ∈ |S|gen

VQ`
, (β) from the reduction 2.2.3 a), and (γ) is WVEtQ`(f, i).

3. Comparison with singular and crystalline cohomologies

3.1. Singular cohomology.

3.1.1. Singular Z-local systems. Let S∞ be a connected variety smooth over C. For every s0∞, s∞ ∈ S∞(C) =
San
∞ , fix a topological path s∞ → s0∞, inducing an isomorphism of fiber functors αs∞ : (−)s∞→̃(−)s0∞ . In

particular, for every singular Z-local system VZ on San
∞ , one identifies V∞,Z,s∞→̃V∞,Z,s0∞ equivariantly with

respect to the isomorphism of topological fundamental groups πtop
1 (San

∞ , s∞)→̃πtop
1 (San

∞ , s0∞), γ 7→ αs∞γα
−1
s∞ .

So that we will in general omit fiber functors from our notation and simply write
VZ := VZ,s∞→̃VZ,s0∞ .

Let f∞ : X∞ → S∞ be a smooth projective morphism. The singular Z-local system VZ := R2ifan
∞Z(i) on San

∞
underlies a polarizable Z-variation of Hodge structure. Let G ⊂ GL(VQ) denote the generic Mumford-Tate
group of VQ := VZ ⊗Z Q, and for every s∞ ∈ S∞(C), let Gs∞ ⊂ G denote the Mumford-Tate group of
the polarizable Q-Hodge structure s∗∞VQ. Let also G ⊂ GL(VQ) denote the Zariski-closure of the image
of πtop

1 (San
∞) acting on VQ. By the fixed part theorem, G◦ a normal closed subgroup of G and, for every

s∞ ∈ S∞(C), one has G = G
◦
Gs∞ .

As in Subsection 2.1.3, for every s∞ ∈ S∞(C) set

ΛZ,s∞ := im[CHi(X∞)→ CHi(Xs∞) cs∞→ V free
Z ] ⊂ V free

Z .

The same argument as in the proof of Lemma 5 (using Leray spectral sequence for singular cohomology)
shows that ΛZ := ΛZ,s∞ is independent of s∞ ∈ S∞(C).

3.1.2. Artin’s comparison. Assume p = 0 and fix an embedding ∞ : k ↪→ C. Recall that (−)∞ denotes the
base-change functor along Spec(C) ∞→ Spec(k) and (−)an the analytification functor from varieties over C to
complex analytic spaces. Let S be a geometrically connected, smooth variety over k. For every s∞ ∈ S∞(C)
over s ∈ S let k(s̄) ⊂ C denote the algebraic closure of k(s) determined by k(s) ↪→ C and let s̄ denote the
corresponding geometric point over s. Let f : X → S be a smooth projective morphism. The local systems
VZ := R2ifan

∞Z(i) on San
∞ and VZ` := R2ifan

∞Z`(i) on S are related by Artin’s comparison isomorphism [SGA4,
XI]
(5) VZ ⊗Z Z`→̃Van

Z` ,

where we write Van
Z` for the pull-back of VZ` along6 the morphisms of sites (Xan

∞)an → X∞,et → Xet. Equiva-
lently, for every s∞ ∈ S∞(C) over s ∈ |S|, one has a canonical isomorphism of Z`-modules
(6) VZ ⊗Z Z` = VZ,s∞ ⊗Z Z`→̃VZ`,s̄ = VZ` , VQ ⊗Q Q`→̃VQ` ,
which is equivariant with respect to the profinite completion morphism composed with the GAGA isomor-
phism and the projection

πtop
1 (San

∞)→ πtop
1 (San

∞)∧→̃π1(S∞)→̃π1(Sk̄) ↪→ π1(S).
In particular, G ⊂ GL(VQ) identifies, modulo (6), with the scalar extension GQ` ⊂ GL(VQ ⊗Q Q`) of
G ⊂ GL(VQ).

6More precisely, write VZ` = limn VZ/`n as a limit of Z/`n-local systems and define the analytification of VZ` as (VZ` )an :=
limn VZ/`n |(Xan

∞ )an .
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Artin’s comparison isomorphism is compatible with cycle class maps on both sides. Namely, for every
s∞ ∈ S∞(C) over s ∈ S one has a canonical commutative diagram

CHi(Xk̄)
|Xs̄ //

|X∞
��

CHi(Xs̄)
c`,s //

|Xs∞
��

V free
Z`

CHi(X∞)
|Xs∞

// CHi(Xs∞)cs∞
// V free

Z
� �

−⊗ZZ`
//

?�

OO

V free
Z ⊗Z Z`.

(6)
'

ee

As a result, we will identify subgroups of V free
Z (e.g. ΛZ, V free,a

Z,s∞ etc.) with their image in V free
Z` . Set

Λ`,Z := im[CHi(Xk̄)→ CHi(Xs̄)
c`,s→ V free

Z` ] ⊂ V free,a
`,Z,s := im[CHi(Xs̄)

c`,s→ V free
Z` ].

Then, from 2.1.2.2 and Remark 6 applied to k̄ ↪→ C, one has

ΛZ = Λ`,Z, V free,a
Z,s∞ = V free,a

`,Z,s ,

hence

(7) Λ`,Z ⊗Z Z`→̃ΛZ` , V free,a
`,Z,s ⊗Z Z`→̃V free,a

Z`,s .

3.1.3. Proof of Proposition 2. For every s ∈ S, write

Λ`,Q = im[CHi(Xk̄)Q → CHi(Xs̄)Q
c`,s→ VQ` ] ⊂ V

a
`,Q,s := im[CHi(Xs̄)Q

c`,s→ VQ` ] ⊂ V
a
Q`,s,

ΛQ` = im[CHi(Xk̄)Q` → CHi(Xs̄)Q`
c`,s→ VQ` ].

If p = 0, fix an embedding ∞ : k ↪→ C and, for every s∞ ∈ S∞(C), write

ΛQ = im[CHi(X∞)Q → CHi(Xs∞)Q
cs∞→ VQ] ⊂ V a

Q,s∞ .

Recall from Subsection 3.1.1 and Subsection 2.1.3 that ΛQ is independent of s∞ and Λ`,Q, ΛQ` are indepen-
dent of s (as the notation suggests) and, if p = 0, from Subsection 3.1.2, that Λ`,Q = ΛQ.

With these notation, VSing0(f∞, i), VEt0Q`(f, i) and WVEt0Q`(f, i) can be reformulated as

VSing0(f∞, i) V a
Q,s∞ ∩ (VQ)G ⊂ ΛQ, s∞ ∈ S∞.

VEt0Q`(f, i) V a
`,Q,s ∩ (VQ`)G` ⊂ Λ`,Q, s ∈ |S|.

WVEt0Q`(f, i) V a
Q`,s ∩ (VQ`)G` ⊂ ΛQ` , s ∈ |S|.

The implication VEt0Q`(f, i)⇒WVEt0Q`(f, i) immediately follows from the fact that, for every s ∈ S, V a
Q`,s

is the Q`-span of V a
`,Q,s.

As TateQ`(Xη, i) is invariant under base-change along finite covers S′ → S of smooth varieties, to prove
TateQ`(Xη, i)⇒WVEtQ`(f, i) one may first perform such a base-change hence assume:

- V a
Q`,η = im[CHi(Xη)Q` → CHi(Xη̄)Q`

c`,η→ VQ` ], which, from the surjectivity of the restriction map
CHi(X) � CHi(Xη), implies ΛQ` = V a

Q`,η;

- G` is connected - see Footnote 4, which ensures V a
Q`,s ∩ (VQ`)G` ⊂ ṼQ`,η

(α)= V a
Q`,η = ΛQ` , where (α) is

TateQ`(Xη, i).

If p = 0, for every s∞ ∈ S∞(C) above s ∈ |S|, Artin’s comparison isomorphism yields the following canonical
commutative diagram:

(8) V a
Q,s∞ ∩ (VQ)G ' //

_�

��

V a
`,Q,s ∩ (VQ`)G`

_�

��
ΛQ '

// Λ`,Q,
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which shows VSing0(f∞, i)⇔ VEt0Q`(f, i), and the isomorphisms

(V a
`,Q,s ∩ (VQ`)

G`)⊗Q Q` = V a
Q`,s ∩ (VQ`)

G` , Λ`,Q ⊗Q Q` = ΛQ` ,

(similar to (7)), which, together with (8), show WVEt0Q`(f, i)⇒ VEt0Q`(f, i).

3.1.4. Proof of Lemma A. As we already observed that VSing(f∞, i) ⇔WVEtQ`(f, i) and WVEtQ`(f, i) ⇒
ΛQ` = V a

Q`,s, s ∈ |S|
gen
VQ`

- see Subsection 2.2.5, it only remains to prove that c(ΛZ`) = 0 for ` � 0. This
follows at once from Artin’s comparison isomorphism, which yields the identifications

(V free
Z` /ΛZ`)tors ' (V free

Z /ΛZ)tors ⊗Z Z`.

and the fact that (V free
Z /ΛZ)tors is a finite group.

3.1.5. Obstruction to the integral Hodge conjecture. In this subsection, we deduce from Artin’s comparison
and Theorem A uniform bounds for the obstruction to the integral Hodge conjecture.

Let X∞ be a smooth, projective variety over C. The cycle class map
c : CHi(X∞)→ VZ := H2i(Xan

∞ ,Z(i))
for Z-singular cohomology fits into a canonical diagram analogue to (1)

CHi(X∞) //

c

''// //

��

V a
Z
� � //

����

ṼZ
� � //

����
�

VZ

����
V free,a
Z

� � //
� _

��

Ṽ free
Z
� � //
� _

��
�

V free
Z � _

��
CHi(X∞)Q // // V a

Q
� � // ṼQ

� � // VQ,

where, writing G ⊂ GL(VQ) for the Mumford-Tate group of the polarizable Q-Hodge structure VQ underlies,

ṼQ := (VQ)G

is the Q-vector space of Hodge classes. The (classical) rational Q-Hodge conjecture in codimension i for X
[H52]

HodgeQ(X∞, i) V a
Q = ṼQ

also admits integral variants:

Hodgefree
Z (X∞, i) V free,a

Z` = Ṽ free
Z (Integral Hodge conjecture modulo torsion);

HodgeZ(X∞, i) V a
Z = ṼZ (Integral Hodge conjecture).

Again, the implications
HodgeZ(X∞, i)⇒ Hodgefree

Z (X∞, i)⇒ HodgeQ(X∞, i)
are tautological and, in general, the converse implications are known to fail (see e.g. [AtH62, Ge19] for
examples of the failure of HodgeQ(X∞, i) and [Ko90, K21] for examples of the failure of Hodgefree

Z (X∞, i)).
By definition, the obstructions to HodgeQ(X∞, i), Hodgefree

Z (X∞, i), HodgeZ(X∞, i) are, respectively:

C̃Q := ṼQ/V
a
Q , C̃ free

Z := Ṽ free
Z /V free,a

Z , C̃Z := ṼZ/V
a
Z ,

with the properties that one has the short exact sequence
(9) 0→ (VZ)tors/(V a

Z )tors → C̃Z → C̃ free
Z → 0

and that
HodgeQ ⇔ (C̃ free

Z )tors = C̃ free
Z ⇔ (C̃Z)tors = C̃Z

in which case, (9) reads
0→ (VZ)tors/(V a

Z )tors → (C̃Z)tors → (C̃ free
Z )tors → 0.
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Furthermore,
(C̃ free

Z )tors = (C free
Z )tors := V free

Z /V free,a
Z .

Assume p = 0 and fix an embedding ∞ : k ↪→ C. Let X be a smooth projective variety over k. From the
observations in Subsection 3.1.2 and the flatness of Z ↪→ Z`, Artin’s comparison isomorphism induces the
following identifications

((VZ)tors/(V a
Z )tors)⊗Z Z`→̃(VZ`)tors/(V a

Z`)tors, (C free
Z )tors ⊗Z Z`→̃(C free

Z` )tors.

As VZ is a Z-module of finite type, this shows, in particular,

a) (C̃ free
Z` )tors = 0 - hence (C free

Z` )tors = 0, for `� 0.

b) The obstruction (C free
Z )tors to Hodgefree

Z (X∞, i) can be recovered from the obstructions (C free
Z` )tors to

Tatefree
Z` (X, i), when ` varies as

(C free
Z )tors = ⊕`(C free

Z` )tors.

As in Subsection 1.2, let now S be a smooth, geometrically connected variety over k and f : X → S a smooth
projective morphism. For s∞ ∈ S∞(C) above s ∈ S, denote by a subscript (−)s∞ the various modules
attached to Xs∞ = X∞,s∞ introduced above (e.g. VZ,s∞ := H2i(Xan

s∞ ,Z(i)), V a
Z,s∞ := im[CHi(Xs∞) → VZ]

etc.). Again, one may investigate how
ÕbZ,s := |(C̃Z,s∞)tors|

vary with s ∈ |S|. A direct consequence of Theorem A and the observations a), b) above is the following.

Corollary 9. Assume S is a curve and VSing(f∞, i) holds. Then, for every integer d ≥ 1, one has

Õb
≤d
Z := sup{ÕbZ,s∞ | s ∈ |S|≤d} < +∞.

When i = 2, (C̃Z,s∞)tors can again be described in terms of degree 3 unramified cohomology. More precisely,
set CZ,s∞ := VZ`/V

a
Z,s∞ . From the short exact sequence

0→ C̃Z,s∞ → CZ,s∞ → VZ,s∞/ṼZ,s∞ → 0

and the fact that VZ,s∞/ṼZ,s∞ is torsion-free, one has (C̃Z,s∞)tors = (CZ,s∞)tors. If i = 2, [CTV12, Thm. 3.7]
establishes that (CZ,s∞)tors is isomorphic to

H3
nr(Xan

∞,s∞ ,Q/Z(2))ndiv
def= coker[H3

nr(Xan
∞,s∞ ,Q/Z(2))div → H3

nr(Xan
∞,s∞ ,Q/Z(2))].

Hence Corollary 9 implies (see also [CTV12, Sec. 5.1]):

Corollary 10. Assume S is a curve and VSing(f∞, i) holds. Then, for every integer d ≥ 1,

sup{|H3
nr(Xan

∞,s∞Q/Z(2))ndiv| | s ∈ |S|≤d}| < +∞.

Remark 11. a) Using [CTV12, Thm. 3.11] and Corollary 9 for cycles of dimension 1, one has an analogue
of Corollary 10 with uniform bounds for the groups Hn−3(Xan

∞,s∞ ,H
n
Xan
∞,s∞

(Q/Z(n− 1)))ndiv, where n is
the relative dimension of f : Y → X.

b) More generally, Corollary 10 holds with H3
nr(X∞,s,Q/Z(2))ndiv replaced by Schreieder’s refined unram-

ified cohomology [S23, §1.2, Thm. 1.6]:

H2i−1
i−2,nr(X

an
∞,s∞ ,Q/Z(i))ndiv

def= coker[H2i−1
i−2,nr(X

an
∞,s∞ ,Q/Z(i))div→ H2i−1

i−2,nr(X
an
∞,s∞ ,Q/Z(i))].

3.2. Crystalline cohomology. We now turn to the setting and retain the notation and conventions of
Subsection 1.2.2.

3.2.1. "Comparison" with crystalline cohomology. A delicate issue when p > 0 is to find a suitable analogue
of Artin’s comparison isomorphism. Following the strategy of [A23], this will be achieved by combining Fact
12 below, which relies - via a L-function argument - on the Katz-Messing theorem [KM74] and comparison
of various categories of isocrystals, with7 the conjectural statement CrysEtQ`(f, i).

7Note that [A23] was focussed on divisors, for which the fact that homological and numerical equivalence coincide is known.
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Let S be a smooth, geometrically connected variety over F and consider a Cartesian square

XS

fS

��
�

// X

f
��

S // S.

Fact 12. [A23, Proof of Thm. 1.6.3.1 - esp. (2.1.2.1), Rem. 1.6.3.2] Assume the canonical restriction mor-
phism in étale Q`-cohomology

H0(SF̄ , R
2if∗Q`(i))→̃H0(SF̄ , R

2if∗Q`(i))

is an isomorphism. Then the canonical restriction morphism in crystalline cohomology

H0(S, R2ifcrys,∗OX/K)→̃H0(S , R2ifS ,crys,∗OXS /K)

is an isomorphism.

3.2.2. Proof of Lemma B (ii). Let s ∈ |S|gen
V`,Q`

. Recall we are to prove V a
Q`,s = ΛQ` . Replacing k, F by finite

field extensions, one may assume there exists a smooth, separated and geometrically connected scheme S
over F with generic point ηS : Spec(k(s))→ S and such that S (F ) 6= ∅, and a Cartesian diagram

(10) Xt
ft
��

//

�

XS

fS

��
�

// X

f

��

Xoo

f

��
�

Xs

fs
��

�

oo
xx

F
t //

!!

S //

�� !!

S

��

Soo

��

k(s)soo

}}

ηS

ee

F Koo k
ηKoo

Replacing further k, F by finite field extensions, one may assume that

(11) V a
Q`,s = im[CHi(Xs)→ CHi(Xs̄)

c`,s→ VQ` ].

From (11), it is enough to show that for every α̃s ∈ CHi(Xs)Q with image α`,s := c`,s(α̃s) ∈ VQ` , there
exists α̃ ∈ CHi(X)Q such that c`,s(α̃|Xs) = α`,s. We retain the notation and conventions in Diagram
(10). Up to shrinking S , one may assume there exists α̃S ∈ CHi(XS )Q such that α̃S |Xs = α̃s; write
α̃t := α̃S |Xt ∈ CHi(Xt)Q. Consider now the canonical commutative diagram

CHi(X )Q
ccrys

��

|Xt

((

|XS // CHi(XS )Q
ccrys,S
��

|Xt

uu
H2i

crys(X )

ε

��

|Xt

((

CHi(Xt)Q
ccrys,t

��

H2i
crys(XS )

ε

��

|Xt

uu
H0(S, R2ifcrys,∗OX/K)

'
44

// H2i
crys(Xt) H0(S , R2ifS ,crys,∗OXS /K).oo

As s ∈ Sgen
V`,Q`

, the canonical restriction morphism

H0(SF̄ , R
2if∗Q`(i))→̃H0(SF̄ , R

2if∗Q`(i))

is an isomorphism - see [A23, §2.2.2]. Here, we implicity use the reduction 2.2.3 a), b). Hence, by Fact 12, the
bottom horizontal arrow is an isomorphism. This implies that αt := ccrys,t(α̃t) lies in H0(S, R2ifcrys,∗OX/K).
But then, by implication 2) =⇒ 1) in VCrys(f, i), there exists α̃X ∈ CHi(X )Q such that ccrys,t(α̃X |Xt) =
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ccrys(α̃X )|Xt = αt = ccrys,t(α̃t). By CrysEtQ`(f, i), this implies c`,t(α̃X |Xt) = c`,t(α̃t). The assertion thus
follows, with α̃ = α̃X |X , from the canonical commutative specialization diagram of cycle class maps

CHi(X )Q

|Xs
��

|Xt

vv

|X

''
CHi(Xt)Q
c`,t
��

CHi(Xs)Q
c`,s
��

sps,too CHi(X)Q
|Xsoo

H2i(Xt̄,Q`(i)) H2i(Xs̄,Q`(i)).
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