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Chapter 1

Affine and projective algebraic
varieties

1.1 Affine varieties, Nullstellensatz
In this section we introduce affine algebraic varieties : the base objects of study in
algebraic geometry. The main theorem of this section is the famous Hilbert’s Null-
stellensatz on zero locus of a system of polynomial equations over an algebraically
closed field.

Let k be a field. The main cases of interest for this course is k = C, k alge-
braically closed, k = R, k = Q or a finite extension (a number field), k finite.

We identify the affine space An
k with the set kn.

An affine algebraic variety over k is the subset of kn defined as zero locus of a
system of polynomials in k[x1, . . . , xn]:

Definition 1.1.1. For I an ideal in k[x1, . . . , xn] we denote

V (I) = {x = (x1, . . . , xn) ∈ kn | f(x) = 0 ∀f ∈ I}

the affine algebraic variety defined by I.

If f1, . . . , fm ∈ k[x1, . . . , xn] is a finite family of polynomials, we write V (f1, . . . , fm)
instead of V ((f1, . . . , fm)) for the affine variety defined by the ideal generated by
f1, . . . , fm.

Recall that the ring k[x1, . . . , xn] is noetherian : any ideal I of this ring is gen-
erated by a finite number of elements, so that any algebraic variety is of the form
V (f1, . . . , fm) as above.

Example 1.1.2. In the affine plane A2
k we have V (x, y) = (0, 0), V (x− 1, y− 2) =

(1, 2), V (y2−x3 +x) is a curve (we will see that it is an example of an elliptic curve).
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Remark 1.1.3. In a more advanced course on algebraic geometry an affine variety
corresponds to an ideal in k[x1, . . . , xn]; saing that X = V (I) is an affine variety
means that we recall the data of X and I. Speaking about the set of rational points
X(k) ⊂ kn of X means that we consider the set X(k) = V (I) but we «forget»
the data of I. If K/k is an extension of k we denote X(K) = V (IK) ⊂ Kn for
IK ⊂ K[x1, . . . , xn] the idéal generated by I.

Note that if k is not algebraically closed, the set V (I) could be empty: for
example, for I = (x2 + y2 + 1) ⊂ R[x, y]. If k = C and I = (f) with f ∈ k[x]
a non constant polynomial, the fundamental theorem of algebra says that V (I) is
not empty. In the case of polynomials in many variables, we have an analogous
statement:

Theorem 1.1.4. [weak Nullstellensatz] Let k be an algebraically closed field
and let I be an ideal of k[x1, . . . , xn], I 6= (1). The set V (I) is nonempty.

Proof. This theorem follows from a theorem on the structure of maximal ideals
in k[x1, . . . , xn], that we give below, for the proof see the next section. In fact,
the ideal I is contained in a maximal ideal m (Krull’s theorem), and we can write
m = (x1 − a1, . . . , xn − an) by 1.1.5. As V (m) is nonempty, we see that V (I) is
nonempty as well.

Theorem 1.1.5. Let k be an algebraically closed field. Any maximal ideal m in
k[x1, . . . , xn] is of the form m = (x1 − a1, . . . , xn − an) with a1, . . . , an ∈ k.

Definition 1.1.6. If X is a subset of kn we denote

I(X) = {f ∈ k[x1, . . . , xn], f(x) = 0∀x ∈ X}

the ideal of X.

For example, if X = {0, 0} ⊂ A2
k, then I(X) is the ideal of polynomials in k[x, y]

with zero constant term.

Note that I(X) is indeed an ideal: if f ∈ I(X) and g ∈ k[x1, . . . , xn], then the
polynomial fg vanishes at every point of X.

Proposition 1.1.7. 1. Let I, J be the ideals of k[x1, . . . , xn].

(a) I ⊂ J ⇒ V (J) ⊂ V (I);

(b) V (I) ∩ V (J) = V (I + J);

(c) V (I) ∪ V (J) = V (I · J) = V (I ∩ J).

2. If X ⊂ Y are subsets of kn, then I(Y ) ⊂ I(X).
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3. If J is an ideal in k[x1, . . . , xn], then J ⊆ I(V (J)).

4. If X ⊂ kn is an algebraic variety, then X = V (I(X)).

Proof. We give a proof for 1(b) et 1(c), the other properties follow immediately
from the definitions.

1(b). Let x ∈ V (I) ∩ V (J). We then have f(x) = 0 and g(x) = 0 for all f ∈ I
and g ∈ J . We deduce h(x) = 0 for all h ∈ I+J . In the other direction, if h(x) = 0
for all h ∈ I + J , we have in particular that f(x) = 0 and g(x) = 0 for all f ∈ I
and g ∈ J , so that x ∈ V (I) ∩ V (J).

1(c). Let x ∈ V (I) ∪ V (J). We then have either f(x) = 0 for all f ∈ I, or
g(x) = 0 for all g ∈ J . We deduce h(x) = 0 for all h ∈ I ·J (resp. for all h ∈ I ∩J).
In the other direction, assume h(x) = 0 for all h ∈ I · J (resp. for all h ∈ I ∩ J).
If x /∈ V (I), there exists f ∈ V (I) such that f(x) 6= 0. Let g ∈ J . As fg ∈ I · J
(resp. in I ∩ J), we deduce g(x) = 0, so that x ∈ V (J).

The previous properties imply that the sets V (I) are the closed sets of some
topology, called Zariski topology on kn. If X ⊂ kn is an affine algebraic variety,
we call the induced topology on X Zariski topology on X as well.

Note that we do not necessarily have the equality J = I(V (J)). In fact, there
could be two types of problems:

1. for J = (x2) an ideal in k[x], we have I(V (J)) = (x);

2. if k is not algebraically closed : for example, for J = (x2 + y2) an ideal in
R[x, y], we have I(V (J)) = (x, y).

Hilbert theorem of zeros says that these two problems are essentially the only ones.

Recall the notion of a radical of an ideal:

Definition 1.1.8. If A is a (commutative) ring and I ⊂ A is an ideal, the radical
of I is √

I = {a ∈ A | am ∈ I for some m ≥ 1}.
One checks that

√
I is also an ideal of A. The ideal I is radical if I =

√
I.

Example 1.1.9. For J = (x2) an ideal in k[x], we have
√
J = (x).

Theorem 1.1.10. [Nullstellensatz] Let k be an algebraically closed field and let
J be an ideal in k[x1, . . . , xn]. Then I(V (J)) =

√
J .

Proof. We deduce the theorem from its weak version. This argument is due to Artin
and Tate. Let f ∈ I(V (J)), so that f vanishes at all common zeros of elements of
J . Consider the ideal J ′ of k[x1, . . . , xn+1]:

J ′ = (xn+1f − 1, J).
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By construction, V (J ′) = ∅. Using weak Nullstellensatz, 1 ∈ J ′, that is, we can
write in the quotient ring A = k[x1, . . . , xn+1]/(xn+1f − 1):

1 =
∑

biai

with bi ∈ J, ai ∈ A, so that (writing by degrees of xn+1)

1 = c0 + c1xn+1 + . . .+ cmx
m
n+1

with ci ∈ J . As xn+1f − 1 = 0 in A, we deduce

fm = c0f
m + c1f

m−1 + . . .+ cm,

that is, fm − c = 0 with c = c0f
m + c1f

m−1 + . . . + cm ∈ J . As the natural
map k[x1, . . . , xn] → A is injective, we deduce fm − c = 0 in k[x1, . . . , xn], so that
fm ∈ J .

Remark 1.1.11. Note that if J = I(X), then J =
√
J : in fact, if fm ∈ J , then

(f(x))m = 0 for all x ∈ X, so that f(x) = 0 for all x ∈ X, which implies that f ∈ J .

For the moment we introduced the objects of the category of affine algebraic
varieties over k. One is then also interested to understand the morphisms between
these objects.

Definition 1.1.12. Let X be an algebraic variety in kn. A polynomial function
on X is the restriction of a function in k[x1, . . . , xn] to X. If Y is another algebraic
variety in km, the function f : X → Y is polynomial if every coordinate function is.

Note that a polynomial function X → Y is continuous for Zariski topology: if
Z = V (I) ∩ Y ⊂ Y is closed, where I is an ideal in k[y1, . . . , ym] generated by
(h1, . . . hr), then f−1(Z) = X ∩ V (h1 ◦ f, . . . hr ◦ f) is closed in X.

Proposition 1.1.13. The algebra of polynomial functions on X is the algebra

k[X] := k[x1, . . . , xn]/I(X).

Proof. Let f, g ∈ k[x1, . . . , xn] be two polynomials inducing the same polynomial
function on X. We then have f−g = 0 at all points of X, so that f−g ∈ I(X).

Let f : X → Y be a polynomial map between two affine varieties defined over a
field k. We define the map f ∗ : k[Y ]→ k[X] by

f ∗(P̄ ) = P ◦ f

where P̄ (resp. P ◦ f) is the class of P (resp. P ◦f) in k[Y ] (resp. k[X]). This map
is well defined : if P1 − P2 ∈ I(Y ) then for all x ∈ X we have P1(f(x)) = P2(f(x))
as f(x) ∈ Y .
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Proposition 1.1.14. Let X, Y be two affine varieties. Let g : k[Y ] → k[X] be a
morphism of algebras. There exists a polynomial map f : X → Y such that g = f ∗.

Proof. We write k[X] = k[x1, . . . , xn]/I(X) and k[Y ] = k[y1, . . . , ym]/I(Y ) by the
previous proposition. Let G be the composition

k[y1, . . . , ym]→ k[y1, . . . , ym]/I(Y )
g→ k[x1, . . . , xn]/I(X).

Let fi = G(yi). Let Pi ∈ k[x1, . . . , xn] such that fi = P̄i. Write f = (P1, . . . , Pm).
As f ∗(ȳi) = P̄i = g(ȳi) by construction, it is enough to see that f has its values in
Y .

Let x = (a1, . . . , an) ∈ X and let h ∈ I(Y ). We have

h(f(x)) = h(P1(a1, . . . , an), . . . , Pm(a1, . . . an)).

For all i = 1, . . . ,m we see that the value Pi(a1, . . . , an) depends only on the values
P̄i of Pi in k[X]. As P̄i = G(yi) we get

h(f(x)) = h(G(y1), . . . , G(yn))(a1, . . . , an) =

= [G is a homomorphism of algebras ] = Gh(y1, . . . ym)(a1, . . . , an) = 0.

so that f(x) ∈ V (I(Y )) = Y.

Definition 1.1.15. Let X be an affine algebraic variety. We say that X is irre-
ductible if

X = X1 ∪X2, X1, X2 closed in X ⇒ X = X1 or X = X2.

A variety X is irreductible if and only if I(X) is a prime ideal (see the exercises).
We deduce that the ring k[X] is integral. Then we define the field of functions
of X as the field of fractions k(X) of the ring k[X] : the elements of k(X) are the
functions f/g with f, g ∈ k[X] and f/g = f1/g1 if and only if fg1 = f1g.

1.1.1 Finiteness properties

In this section we recall some properties of rings and modules.

Definition 1.1.16. Let A be a ring and B an A-algebra. We say that B is of fi-
nite type over A if B is generated, as an A-algebra, by a finite number of elements:
B ' A[x1, . . . , xn] (where the elements (xi)1≤i≤n are not necessarily algebraically
independent). We say that B is a finite A-algebra if B is of finite type as A-
module, that is, B is generated by a finite number of elements as an A-module :
B ' Ax1 + . . .+ Axn.
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Example 1.1.17. 1. If k is a field and K = k(x) is an algebraic extension of
k generated by x, then K is a k-module of finite type. In fact, if P (x) =
xn + an−1x

n−1 + . . . + a1x + a0 is a minimal polynomial of x, then K is
generated by 1, x, . . . xn−1.

2. Let A be a ring. If B is an A-algebra of finite type (resp. a finite A-algebra
) and C is a B-algebra of finite type (resp. finite), then C is an A-algebra of
finite type (resp. finite).

Definition 1.1.18. Let A be a ring and let M be an A-module. We say that M is
noetherien if any increasing sequence M1 ⊆ M2 ⊆ . . .Mn ⊆ . . . of submodules of
M is constant starting from some n = n0. A ring A is noetherian if A is noetherian
as an A-module, that is any increasing sequence I1 ⊆ I2 ⊆ . . . In ⊆ . . . is constant
starting from some n = n0.

Proposition 1.1.19. An A-module M is noetherian iff any submodule of M could
be generated by a finite number of elements. In particular, a ring A is noetherian
if and only if any ideal of A could be generated by a finite number of elements.

Example 1.1.20. 1. Let M be an A-module. If M is noetherian, then any
submodule of M is noetherian, any quotient of M is noetherian and any
module of finite type over M is noetherian.

2. IfA is noetherian, then the ringA[x] is also noetherian, in particuliar, k[x1, . . . , xn]
is noetherian. If B is an A-algebra of finite type, then B is a noetherian ring
: in fact, B is a quotient of A[x1, . . . xn].

3. The ring A = k[xi]i∈N is not noetherian. The field of fractions K of A, being
a field, is noethérien. This shows that a subring of a noetherian ring is not
necessarily noetherian.

1.2 The structure of maximal ideals
Lemma 1.2.1. Let A ⊆ B ⊆ C be the inclusions of rings such that

(i) A is a noetherian ring,

(ii) C is an A-algebra of finite type,

(iii) C is a B-module of finite type.

Then B is an A-algebra of finite type.

Proof. Let x1, . . . , xn be the elements of C generating C as an A-algebra. Let
y1, . . . , ym ∈ C generating C as a B-module :

C = By1 + . . .+Bym.
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We can then write, for all 1 ≤ i, j ≤ n:

xi =
m∑
t=1

bityt

with bit ∈ B and

yi · yj =
m∑
t=1

cijtyt.

Let B′ ⊂ B be a subring generated over A by families (bit) and (cijt). As B′ is
of finite type over A and A is a noetherian ring, we have that B′ is noetherian. By
construction, C is generated by y1, . . . ym as a B′-module. We then have that C,
viewed as a B′-module, is noetherien. As B is a submodule of C, we deduce that B
is generated by a finite number of elements as a B′-module: B = B′d1 + . . .+B′ds.
We get that B is an A-algebra of finite type, generated by families (bit) and (cijt)
and (di).

Proof of theorem 1.1.5. Let K = k[x1, . . . , xn]/m. The statement of the theo-
rem is equivalent to

K = k[x1, . . . , xn]/m ' k.

In fact, it is enough to take ai the image of xi by the isomorphism above.
Next, as k is algebraically closed, it is enough to show that K is algebraic

over k. Up to renumbering, we may assume that x1, . . . xr ∈ K are algebraically
independent over k and that xr+1, . . . xn are algebraic over k(x1, . . . , xr), that is K
is a k(x1, . . . , xr)-module of finite type. If r = 0, there is nothing to prove. Assume
that r > 0.

We apply proposition 1.2.1, to B = k(x1, . . . xr), C = K and A = k, B is a
k-algebra of finite type. We write

B = k[z1, . . . , zs]

with
zi =

Pi(x1, . . . xr)

Qi(x1, . . . xr)
, Pi, Qi ∈ k[x1, . . . xr].

Let f ∈ k[x1, . . . , xr] be an irreducible polynomial. We have 1
f
∈ B. As B =

k[z1, . . . zs], we can write 1/f as a polynomial in zi, in particular, this implies that
f divides at least one Qi. But there is only a finite number of polynomials verifying
this property. As k is algebraically closed, it is in particular infinite. We then have
an infinite family (x− a)a∈k of irreducible polynomials over k, contradiction.
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1.3 Additional exercises 1
1. Show that the polynomial f(x, y) = y2−x(x−1)(x+1) ∈ k[x, y] is irreducible

over any field. Deduce thatX = V (f) is an irreducible variety. Draw a picture
in the case k = R.

2. (a) Let X = V (y−x2). Show that k[X] is isomorphic to the polynomial ring
in one variable.

(b) Let X = V (xy− 1). Show that k[X] is not isomorphic to the polynomial
ring in one variable.

3. Let k be a non algebraically closed field.

(a) Show that there exists a polynomial f ∈ k[x, y] such that V (f) = (0, 0).
Deduce that for any n > 0 there exists a polynomial F ∈ k[x1, . . . , xn]
such that V (F ) = (0, . . . , 0).

(b) If X is an affine variety over k, show that X could be defined by a single
equation.

4. Let k be an algebraically closed field.

(a) Let f, g ∈ k[x, y] with f an irreducible polynomial and g not divisible
byf .

i. Show that there exists u, v ∈ k[x, y] and h ∈ k[x] \ {0} such that
uf + vg = h.

ii. Deduce that the curves V (f) and V (g) intersect only in a finite
number of points.

(b) Let I ne a prime ideal in k[x, y]. Show that either I = (f) with f an
irreducible polynomial, or I is maximal.

5. (Algebraic groups) Let k be a field.

(a) Show that the determinant det(xij)1≤i≤n,1≤j≤n is an irreducible polyno-
mial in n2 variables.

(b) Show that GLn(k) is open in Mn(k) ' kn
2 for the Zariski topology.

(c) Show that for all 0 ≤ r ≤ n the set Mr od matrices of rank at most r is
irreducible closed subset of Mn

k .
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Chapter 2

Projective varieties and plane curves

2.1 Projective varieties
Let k be a field. One can view the projective space Pnk as the set of lines in kn+1

passing by 0. More precisely, let ∼ be an equivalence relation on kn+1 where we set

x ∼ y if and only if x = λy, λ ∈ k.

Definition 2.1.1. The projective space Pnk is defined as a quotient

Pnk = kn+1 − {0}/ ∼ .

For (x0, . . . xn) ∈ kn+1−{0} we denote (x0 : . . . : xn) the corresponding point of Pnk .

Example 2.1.2. We view P2
k as the set of triples (X : Y : Z) where at least one

coordinate is nonzero and we identify

(X : Y : Z) = (λX : λY : λZ), λ ∈ k∗.

If f ∈ k[x0, . . . , xn] is a homogeneous polynomial of degree d, we have by def-
inition f(λx0, . . . , λxn) = λdf(x0, . . . , xn). Projective varieties are then defined as
zero loci in Pnk of homogeneous polynomials in k[x0, . . . , xn].

Definition 2.1.3. An ideal I in k[x0, . . . , xn] is homogeneous if I = (f1, . . . , fm)
where fi, 1 ≤ i ≤ m are homogeneous polynomials.

One easily checks that I is homogeneous if and only if for any f ∈ I the homo-
geneous components of f are also in I.

Definition 2.1.4. For I a homogeneous ideal in k[x0, . . . , xn] we set

Vp(I) = {x = (x0 : . . . : xn) ∈ Pnk | f(x) = 0 ∀f ∈ I}

the projective algebraic variety defined by I.

11



Definition 2.1.5. For X a subset of Pnk we define Ip(X) a homogeneous ideal gener-
ated by the homogeneous polynomials f ∈ k[x0, . . . , xn] such that f(x) = 0∀x ∈ X,
we call Ip(X) the ideal of X.

Example 2.1.6. 1. A hyperplane H in Pnk is defined as zero locus of a linear
form in x0, . . . , xn:

H = Vp(a0x0 + . . .+ anxn),

where the coefficients ai ∈ k are not all zero.

2. More generally, a hypersurface of degree d in Pnk is defined as zero locus of
a homogeneous polynomial of degree d in x0, . . . , xn.

3. In P2
k we have :

• a line L ⊂ P2
k given by an equation aX + bY + cZ = 0.

• a conic C ⊂ P2
k given by a homogeneous equation of degree 2.

4. If V = Vp(I) is a projective variety in Pnk , we call the cone C(V ) of V the
affine variety in An+1

k defined by C(V ) = V (I).

Similarly as in the affine case, we have the following properties:

Proposition 2.1.7. 1. Let I, J be homogeneous ideals in k[x0, . . . , xn]. Then
I ⊂ J ⇒ Vp(J) ⊂ Vp(I).

2. If X ⊂ Y are the subsets of Pnk , then Ip(Y ) ⊂ Ip(X).

3. If X ⊂ Pnk is an algebraic variety, then X = Vp(Ip(X)).

4. If J is a homogeneous ideal in k[x0, . . . , xn], then J ⊆ Ip(Vp(J)).

5. If k is infinite and V = V (I) is a projective variety in Pnk , then Ip(V ) =
I(C(V )).

Proof. We give a proof for the last property, the others are similar to the affine
case. The inclusion Ip(V ) ⊆ I(C(V )) is straightforward. Let f ∈ I(C(V )). Write
f =

∑
fd ∈ k[x0, . . . , xn] where fd are the homogeneous components of f . Because

V is a projective variety, if (x0, . . . , xn) ∈ C(V ), then for any λ ∈ k one has
(λx0, . . . , λxn) ∈ C(V ), so that the polynomial

g(λ) = f(λx0, . . . , λxn) =
∑

λdfd(x0, . . . , xn)

vanishes at any λ ∈ k. As k is infinite, fd(x0, . . . , xn) = 0 for any d, i.e. the homo-
geneous components of f are in Ip(V ), so that I(C(V )) ⊆ Ip(V ).

The sets Vp(I) are the closed sets of a topology, called (as in the affine case)
Zariski topology on Pnk . If X ⊂ Pnk is a projective variety, one gets the induced

12



topology on X.

Affine charts of Pnk . Let φi : An
k → Pnk , i = 0, . . . , n be the morphism

(x1, . . . , xn) 7→ (x1 : . . . : xi−1 : 1 : xi : . . . xn). It is clear that the space Pnk is
covered by the images of these maps φi. Let Ui ⊂ Pnk be an open {xi 6= 0} : it is a
complement of the hyperplane xi = 0. Let

ψi : Ui → Ak
n, (x0 : . . . : xn) 7→ (

x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi
.)

One immediately sees that ψi is an isomorphism, its inverse is the map φi. We call
Ui the affine charts of Pnk .

In particular, we have the following affine charts for P2
k:

1. If Z 6= 0, we have (X : Y : Z) = (X
Z

: Y
Z

: 1), so that we have an isomorphism
ψZ between the open set UZ := {Z 6= 0} and A2

k

(X : Y : Z) 7→ (
X

Z
,
Y

Z
), (x : y : 1)← (x, y).

2. if Y 6= 0, one has (X : Y : Z) = (X
Y

: 1 : Z
Y

), so that we have an isomorphism
ψY between UY := {Y 6= 0} and A2

k

(X : Y : Z) 7→ (
X

Y
: 1 :

Z

Y
), (x : 1 : y)← (x, y).

3. if X 6= 0, one has (X : Y : Z) = (1 : Y
X

: Z
X

), so that we have an isomorphism
ψX between UX := {X 6= 0} and A2

k

(X : Y : Z) 7→ (1 :
Y

X
:
Z

X
), (1 : x : y)← (x, y).

Here is an example of changing the charts : ψY ◦ ψ−1
Z : (x, y) 7→ (x : y : 1) 7→ (x

y
, 1
y
)

(if y 6= 0).

A homogeneous polynomial f(x0, . . . , xn) of degree d induces a polynomial map
fi on Ui given by fi(x0, . . . , xi−1, 1, xi+1, xn). Conversely, if f ∈ k[x1, . . . xn] is
a polynomial of degree d, we call the homogenization of f the homogeneous
polynomial

f ∗(x0, . . . , xn) = xd0f(
x1

x0

, . . . ,
xn
x0

).

One can do a similar construction with xi instead of x0.

If I is a homogeneous ideal in k[x0, . . . xn], we are also interested to know if
Vp(I) is not empty. Of course, it does not hold for I = (x0, . . . , xn) or even if
I = (xr0, . . . , x

r
n). A projective version of the Hilbert theorem of zeros claims that

over an algebraically closed field these are the only such examples :
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Theorem 2.1.8 (Homogeneous Nullstellensatz ). Let k be an algebraically
closed field and let I be a homogeneous ideal in k[x0, . . . , xn].

(i) Vp(I) = ∅ ⇔ ∃r > 0, (x0, . . . , xn)r ⊂ I;

(ii) if Vp(I) 6= ∅, then Ip(Vp(I)) =
√
I.

Proof. (i) The implication ⇐ is straightforward. Let us show the implication
⇒. We have Vp(I) = ∅ ⇔ C(V ) = {(0, . . . , 0) ∈ kn+1}. Using the affine
Nullstellensatz, this is equivalent to

√
I = (x1, . . . , xn), which implies that

∃r > 0, (x0, . . . , xn)r ⊂ I.

(ii) If Vp(I) 6= ∅, one has Ip(V ) = I(C(V )) =
√
I by 2.1.7 and by the affine

Nullstellensatz theorem.

Examples of morphisms. Let (f0, . . . fm) be a family of homogeneous poly-
nomials of degree d in n variables x0, . . . , xn, with coefficients in a field k. If the
polynomials fi have no common zeros (x0, . . . , xn) 6= (0, . . . , 0) (if k is algebraically
closed, this means that the ideal (x0, . . . , xn)r is contained in the the ideal generated
by f1, . . . , fm), so that one can define a map

F : Pnk → Pmk , (x0 : . . . : xn) 7→ (f0(x0 : . . . xn), . . . : fm(x0, . . . xn)).

More generally, let X ⊂ Pnk and Y ⊂ Pmk be two projective varieties. If X ∩
V (f0, . . . fm) = ∅ and if for all x ∈ X we have (f0(x), . . . , fm(x)) ∈ Y , then one can
define a map

F : X → Y, (x0 : . . . : xn) 7→ (f0(x0, . . . xn) : . . . : fm(x0, . . . xn)).

Example 2.1.9. 1. A line in Pnk is the image of a morphism P1
k → Pnk given by

linear polynomials. As usual, there is a unique line passing through two given
distinct points of Pnk .

2. Let V ⊂ P2
k be a conic given by the equation x2 + y2 − z2 = 0. We have a

morphism P1 → V , (u : v) 7→ (u2 − v2, 2uv, u2 + v2).

3. Let k = Fq be a finite field and let V ⊂ Pnk be a projective variety. One defines
the Frobenious map by Fr : V → V, (x0 : . . . : xn) 7→ (xq0 : . . . : xqn).

In this lectures we will be interested in affine and projective varieties, as well as
in their products. A motivation to be interested in projective varieties (rather than
in affine varieties) is the following result, which gives an exact number of points of
intersection of two curves in the projective plane (for A2

k the statement is no longer
true as one can have for example two parallel lines).
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Theorem 2.1.10 (Bézout’s theorem). Let k be an algebraically closed field and let
C1, C2 be two projective curves defined in P2

k by homogeneous equations of degrees d1

and d2. The number of intersection points of C1 and C2 counted with multiplicities,
is d1d2.

We will now give a proof of this theorem if C1 is a line or a conic. These two
cases are very important in order to define a group law on the points of an elliptic
curve.

2.2 Some projective geometry
In this section k is an algebraically closed field. We start by two first cases of Bézout
theorem.

Lemma 2.2.1. Let C ⊂ P2
k be a curve defined by a homogeneous polynomial of

degree d and let L ⊂ P2
k be a line not contained in C (as a component). Then the

intersection C ∩ L consists of d points counted with multiplicities.

Proof. Let F (X, Y, Z) = 0 be the homogenious equation of degree d defining the
curve C and let aX + bY + cZ = 0 be the equation of the line L. Up to a per-
mutation of the coordinates, one may assume that a 6= 0 and that the equation of
the line is X = −b′Y − c′Z. The polynomial f(Y, Z) = F (−b′Y − c′Z, Y, Z) is a
nonzero homogeneous polynomial (as L is not contained in C) of degree d. As k is
algebraically closed, one has a factorisation

f(Y, Z) = α(Y − αiZ)mi (2.1)

with
∑
mi = d. The points of intersection of L and C are given by the condition

f(Y, Z) = 0, so that we have
∑
mi = d of these points.

Remark 2.2.2. Assume that k is not algebraically closed. If C, L and d−1 points
of intersection of L and C are defined over k, then the proof above shows that
f(Y, Z) has a direct factor of degree d − 1 defined over k. We then get that the
decomposition (2.1) exists over k and all d intersection points of L and C are defined
over k.

Lemma 2.2.3. Let C ⊂ P2
k be a curve defined by a homogeneous polynomial of

degree d and let D ⊂ P2
k be a conic not contained in C. Then C ∩D consists of 2d

points counted with multiplicities.

Proof. Let F (X, Y, Z) = 0 be a homogeneous equation of degree d defining the
curve C. If the conic D is reducible, D is a union of two lines, so that the state-
ment follows from the previous lemma. Up to a linear change of coordinates, one
can assume that the conic is given by an equation XY − Z2 = 0, i.e. that D is
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the image of the morphism P1 → P2, (u : v) 7→ (u2 : v2 : uv). The polynomial
f(u, v) = F (u2, v2, uv) is a nonzero homogeneous polynomial (as D is not con-
tained in C) of degree 2d. As k is algebraically closed, we have a factorization
f(Y, Z) = α(Y − αiZ)mi with

∑
mi = 2d. The intersection points of D and C are

given by the condition f(u, v) = 0, so that we have
∑
mi = 2d of such points.

In the next statements we will be interested to describe the plane curves passing
by some given points. In general, the set of hypersurfaces of degree d in PNk gives
also a projective space with coordinates corresponding to the coefficients. For exam-
ple, a conic in P2

k is given by a homogeneous equation q(X, Y, Z) =
∑
aijsX

iY jZs

with i + j + s = 2, so that one has 6 coefficients. One associates to a conic the
vector of its coefficients. The set of all the forms q(X, Y, Z) is then a vector space
of dimension 6. Two forms define the same conic if they differ by a multiplication
by a scalar. The set of the conics is then a projective space P5

k.

Lemma 2.2.4. Let P1, . . . , P5 be distinct points in P2
k. There exists a conic in P2

k

containing these points. If no four of these points are on a line, the conic is unique.

Proof. A conic C in P2
k is given by a homogeneous equation q(X, Y, Z) =

∑
aijsX

iY jZs

with i+j+s = 2. The k-vector space V of coefficients of conics is then of dimension
6. The condition that the conic C passes by a point gives a linear condition on this
space. The coefficients of a conic passing by 5 points are then the solutions of a
system of 5 linear equations in a space of dimension 6, so that there is always a
conic passing by 5 points.

Assume that 3 points, say, P1, P2, P3 are on a line. Let L be the line P1P2. The
equation q of the conic C is then divisible by the equation of L and q vanishes at
P4 and P5. As P4 and P5 are not on L, the conic C is a union of two lines L∪P4P5

.
Assume that no three points from P1, . . . , P5 are on a line. Let P6 be a point

on the line L = P1P2, distinct from P1 and P2. Assume that the dimension of
the k-vector space of the equations of conics passing by the points P1, . . . , P5 is at
least 2. Then there is a conic containing P1, . . . , P6 : in fact the condition that the
conic passes through a given point is a linear condition. As the points P1, P2, P6

are on a line, C is a union of L and another line, so that P3, . . . , P5 are on a line,
contradiction.

Lemma 2.2.5. Let P1, . . . , P8 be distinct points of P2
k, no four of these points on

a line, no seven on the same conic. Let V be a k-vector space of homogeneous
polynomials of degree 3 vanishing at P1, . . . , P8. Then dimV = 2.

Proof. The k-vector space W of coefficients of a cubic is of dimension 10, so that
dimV ≥ 10− 8 = 2. We have the following cases to consider :

1. Assume P1, P2, P3 are on a line, let L be a corresponding line. Let P9 be
a point (distinct from P1, P2, P3) on this line. The vector space of cubics
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passing by these nine points is of dimension dimV − 1. If a cubic C passes
by P1, . . . , P9, then the intersection of C and L contains at least 4 points, so
that C is the union L ∪ Q for Q a conic. Using the hypothesis, Q contains
P4, . . . , P8. Using lemma 2.2.4, there exists just one such conique. We get
dimV − 1 ≤ 1, and the result follows.

2. Assume that P1, P2, . . . , P6 are on a conic Q. Let P9 be another point on this
conic. We have again that any conic containing P1, . . . P9 should contain Q,
so that one gets C = Q ∪ L. Using the hypothesis, L = P7P8. We obtain
again dimV − 1 ≤ 1 and the claim follows.

3. General case : no three points among P1, . . . , P8 are on a line, no six are on
a conic. Let P9, P10 be on a line L = P1P2 different from P1 and P2. Assume
dimV > 2. There is a cubic C passing by P1, . . . , P10, so that this cubic
contains the line L, so that it is a union of L and another conic. We get a
contradiction with the hypothesis on P1, . . . , P8.

Lemma 2.2.6. Let C1 and C2 be two cubics in P2
k. Assume that C1 is irreducible.

Assume that we have 9 points P1, . . . P9 of intersection of C1 and C2, such that the
points P1, . . . , P8 are distinct. If a cubic C contains the points P1, . . . , P8, then it
contains the point P9.

Proof. The cubic C1 does not contain 4 points on a line: if not, using lemma 2.2.1,
we would get that C1 contains a line, which is not possible since C1 is irreducible.
Similarly, C1 does not contain 7 points on a conic. The points P1, . . . , P8 satisfy the
hypothesis of lemma 2.2.5 and the vector space over k of homogeneous polynomials
of degree 3 vanishing at P1, . . . , P8 is of dimension 2. We deduce that it is gener-
ated by C1 and C2. Then the equation of the cubic C is a linear combination of the
equations of C1 and C2, in particular, it vanishes at P .

2.3 Additional exercises 2
1. Let k be an algebraically closed field and let q(X, Y, Z) be a quadratic form

over k in three variables. Let Q = Vp(q) ⊂ P2
k. Show that Q is either a union

of two lines or Q is an irreducible conic which is defined by the equation
XY − Z2, up to a linear change of coordinates.

2. Let k be an infinite field, let Φ : P1
k → P3

k be the morphism

Φ(x, y) = (x3, x2y, xy2, y3)

and let X be the image of Φ.
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(a) Show that X = V (I) where I = (XT − Y Z, Y 2 −XZ,Z2 − Y T ) in the
homogeneous coordinates (X : Y : Z : T ) of P3

k.

(b) Show that I(X) = I (show first that any homogeneous f ∈ k[X, Y,X, T ]
could be written modulo I as f = a(X,T ) + b(X,T )Y + c(X,T )Z).

(c) Show that I can not be defined by two generators.

(d) Show that X could be written as X = V (Z2 − Y T, P ) where P is a
homogeneous polynomial of degree 3.
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Chapter 3

Elliptic curves : first properties

3.1 Eliiptic curves and the group law
An image. Assume we have a pyramide with n bowls. If the pyramide falls down,
could one arrange the bowls in a square?

Let x be the height of the pyramide. We are looking for the solutions of

y2 = x(x+ 1)(2x+ 1)/6.

This equation defines an elliptic curve. One can show (this is not at all obvious!)
that the only integral solutions are (1, 1) and (24, 70).

Let k be a field and C ⊂ P2
k be a plane curve defined by a homogeneous equation

F (X, Y, Z) = 0.

Definition 3.1.1. The curve C is smooth at a point P ∈ C if

(∂F/∂X(P ), ∂F/∂Y (P ), ∂F/∂Z(P )) 6= (0, 0, 0).

If this is the case, the tangent line to C at P is the line

∂F

∂X
(P )X +

∂F

∂Y
(P )Y +

∂F

∂Z
(P )Z = 0.

The curve C is smooth if it is smooth at all its points.

For the most general definition of an elliptic curve, one takes a smooth plane
curve E defined by a homogeneous equation of degree 3 with E(k) 6= ∅. One can
show, that one can define such curve by the following equation, called the Wier-
strass form of E, the definition that we will use for this course.

Definition 3.1.2. An elliptic curve E is a plane curve defined by the equation

Y 2Z = X3 + aXZ2 + bZ3, with 4a3 + 27b2 6= 0. (3.1)
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We have E(k) 6= ∅: the point OE = (0 : 1 : 0) is in E. We call ∆ = −(4a3 + 27b2)
the discriminant of E.
Following the context, we also call elliptic curve an affine curve defined by the
equation

y2 = x3 + ax+ b, (3.2)

with the same conditions for a and b: it is an open {Z 6= 0} of the curve defined by
the equation (3.1). The complement of this open contains only the point OE. The
conditions on a and b are justified by the following lemma:

Lemma 3.1.3. (i) The plane curve C defined by the quation Y 2Z = X3+aXZ2+
bZ3 is smooth if and only if ∆ = −(4a3 + 27b2) 6= 0.

(ii) Let e1, e2, e3 be the roots od f(x) = x3 + ax+ b in an algebraic closure k̄ of k:
f(x) = (x− e1)(x− e2)(x− e3). Then

∆ = [(e1 − e2)(e1 − e3)(e2 − e3)]2.

Proof. exercise.

If P is a point of an elliptic curve E, we write P = (XP : YP : ZP ) in the pro-
jective coordinates (3.1) or P = (xP , yP ) in the affine coordinates (3.2), if P 6= OE.
The fundamental result in the theory of elliptic curves, which is also the base of the
cryptographical applications, is that the points of an elliptic curve form an abelian
group.

The group law: definition. Let E be an elliptic curve given by an affine
equation (3.2). Let P 6= Q ∈ E(k). Since E is defined by an equation of degree 3,
the line L = PQ intersects E in the third point R (see lemma 2.2.1 and the remark
after the lemma), eventually R = OE. We define P +Q = −R where the point −R
is the point (XR : −YR : ZR). If P = Q we take for L the tangent line at P . We
define also P +OE = OE + P , OE +OE = OE.

Theorem 3.1.4. The composition law on E(k) as defined above is a group law.
This law is commutative, the neutral element is OE.

Proof. The commutativity follows easily from the definition, also it is straightfor-
ward that OE is the neutral element and that −P is the inverse of a point P . The
most difficult part is to establish the associativity, that we will do in the next sec-
tion using some results from the projective geometry.

There are also explicit formulas for the group law of an elliptic curve :

Proposition 3.1.5. Let P,Q ∈ E(k) be two points distinct from OE.

1. −P = (xP ,−yP );
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2. If P = Q let λ = (3x2
P + a)/2yP and µ = yP − λxP . Then

P +Q = (λ2 − xP − xQ,−λ3 + λ(xP + xQ)− µ).

3. If P 6= Q let λ =
yP−yQ
xP−xQ

and µ = yP − λxP . Then λ =
x2
P+xPxQ+x2

Q+a

yP+yQ
and

P +Q = (λ2 − xP − xQ,−λ3 + λ(xP + xQ)− µ).

Proof. The formula for −P follows from the definition. Let L be the line PQ if
P 6= Q and the tangent line to E at P , if P = Q. It follows from the definition of
λ and µ that the line L is given by the equation y = λx + µ. Let R be the third
point of intersection of the line L with the curve E. We have P + Q = (xR,−yR).
The x-coordinate of the point R is the solution of

0 = x3 + ax+ b− (λx+ µ)2 = x3 − λ2x2 + (a− 2λµ)x+ (b− µ2).

Since xP and xQ satisfy this equation, one deduces the expressions of the third
solution as claimed.

The following formulas are also useful:

Proposition 3.1.6. 1. xP+Q + xP−Q =
2(xP+xQ)(a+xPxQ)+4b

(xP−xQ)2
.

2. xP+QxP−Q =
(xPxQ−a)2−4b(xP+xQ)

(xP−xQ)2
.

3. x2P =
x4
P−2ax2

P−8bxP+a2

4(x3
P+axP+b)

.

Proof. One verifies the identities of the proposition using the explicit group law
3.1.5.

3.2 The associativity of the group law
General case

We take P,Q,R ∈ E(k) three distinct points. We set
L1 is the line PQ, T is the third intersection point with E;
L2 is the line TOE, T ′ = −T is the third intersection point with E;
L3 is the line RT ′, U is the third intersection point with E;
M1 is the line QR, S is the third intersection point with E;
M2 is the line SOE, S ′ = −S is the third intersection point with E;
M3 is the line PS ′, V is the third intersection point with E;
From this construction, (P +Q) +R = −U et P + (Q+R) = −V we want to show
that U = V.
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Let C1 = L1 + M2 + L3 and C2 = M1 + L2 + M3 be two cubics. We have
E ∩ C1 = {P,Q,R,OE, T, T

′, S, S ′, U} and E ∩ C2 = {P,Q,R,OE, T, T
′, S, S ′, V }.

Assume that the points P,Q,R,OE, T, T
′, S, S ′, U are all distinct. Using lemma

2.2.6 for E and C1, we then have U = V . We establish the remaining cases below,
using the explicit group law.

Associativity of the group law : end of proof.
In the notation of the general case, we established the associativity if the points

P,Q,R,OE, T, T
′, S, S ′ are all distinct. The remaining cases are :

1. At least one of the points P,Q,R, T, T ′, S, S ′, U, V is the point OE.

(a) If OE ∈ {P,Q,R}, we have (P + Q) + R = P + (Q + R) using the
definition of the sum with OE.

(b) Assume that no point from P,Q,R is the point OE. Using the construc-
tion, T = OE iff T ′ = OE. Assume this is the case. We then have
Q = −P . We want to show that R = (P +(−P ))+R = P +((−P )+R),
which is clear from the definition and the following argument using the
symmetry with respect to the line y = 0. In fact, let D be the line
passing by −P and R and K be the thrd intersection point of D with
E. We then have −P + R = −K. The line D′ passing by P and −K
is symmetric to D. The third intersection point of D′ eand E is then
the point −R, so that P + (−K) = R, as claimed. The case S = OE is
similar. Note that this case also implies that for two points W and W1

of E we have

W = W1 ⇔ (−P ) +W = (−P ) +W1.

In fact, the implication ⇒ is straightforward and fo the implication ⇐
we observe that P + ((−P ) +W ) = (P + (−P )) +W = W , similarly for
W1.

(c) Assume that U = OE, i.e. that R = −(P +Q). We want to show that

(P +Q) + (−(P +Q)) = P + (Q+ (−(P +Q))).

The left side is OE. We have

OE = P+(Q+(−(P+Q)))⇔ −P = Q+(−(P+Q))⇔ −P+(−Q) = −(P+Q),

which follows by a symmetry argument. The case V = OE is similar.

2. Assume that

(*)OE /∈ {P,Q,R, T, T ′, S, S ′, U, V } and no couple (P,Q), (Q,R), (P+
Q,R), (P,Q+R) contains two same points.
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Let E0 be the affine open E \ {OE} of the curve E and let A be the affine
variety E0 × E0 × E0. One checks that the variety A is irreducible, so that
any open of A is irreducible as well. Let A′ ⊂ A be the open {P 6= Q,P 6=
−Q,Q 6= R,Q 6= −R}. Using the explicit group law, for any (P,Q,R) ∈ A′,
the coordinates of the points P + Q and Q + R are given by the formulas
3.1.5.3, in particular xP+Q = f(xP , xQ, yP , yQ) where f = f1/f2 is the rational
fraction with non zero denominator, similarly for yP+Q = g1/g2. The condition
P +Q = R is given by the polynomial conditions f1 − xRf2 = 0, g1 − yRg2 =
0. Similarly for the condition P = Q + R. We deduce that the locus of
points (P,Q,R) ∈ A′ where the condition (∗) is satisfied is an open A′′ of
A′. By the the argument as above, for any (P,Q,R) ∈ A′′, we express the
coordinates of the points P + Q, (P + Q) + R,Q + R,P + (Q + R) via the
formulas 3.1.5.3, in particular, the locus of the points (P,Q,R) ∈ A′′ such that
(P+Q)+R = P+(Q+R) is a closed set B of A′′. But this closed set contains
an open corresponding to the general case, where all the points P,Q,R, T =
−(P+Q), T ′ = (P+Q), S = −(Q+R), S ′ = (Q+R), OE, U = −((P+Q)+R)
are distincts. As A′′ is irreducible, any open set is dense, so that B = A′′ and
we get that for all (P,Q,R) satisfying (∗) we have (P +Q)+R = P +(Q+R).

3. The case where the points P,Q,R, P + Q,Q + R are not all distinct and no
point among P,Q,R, T, T ′, S, S ′, U, V is OE is left as an exercise.
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Chapter 4

Elliptic curves over finite fields

Let E be an elliptic curve defined over a finite field Fq with q = pn and p prime.
The famous Hasse theorem allows to estimate the (finite) number of points E(Fq):

Theorem 4.0.1. [Hasse] Let E be an elliptic curve defined over a finite field Fq.
Then

|#E(Fq)− q − 1| < 2
√
q.

It is also known1 that for any integer a prime to p and such that |a| < 2
√
q

there exists an elliptic curve E over Fq with #E(Fq) = q + 1− a.
We start by an approach coming from the analytic number theory, This method

allows to establish the Hasse theorem in two particular cases : q = p and E given
by y2 = x3 +D or y2 = x3 −Dx, where D is a nonzero integer.

4.1 Characters, Gauss and Jacobi sums.
Definition 4.1.1. A multiplicative character on Fp is a map χ : F∗p → C∗ such
that χ(ab) = χ(a)χ(b).

Proposition 4.1.2. Let χ be a multiplicative character and let a ∈ F∗p. Then

(i) χ(1) = 1;

(ii) χ(a)p−1 = 1, i.e. χ(a) is a (p− 1)-th root of unity;

(iii) χ(a−1) = χ(a)−1 = χ(a).

Proof. (i) We use that χ(1) = χ(1) · χ(1) and that χ(1) 6= 0 by definition.

(ii) For a ∈ F∗p, we have ap−1 = 1. Hence (χ(a))p−1 = χ(ap−1) = χ(1) = 1 by (i).

(iii) We have χ(a)χ(a−1) = χ(aa−1) = 1, so that χ(a−1) = χ(a)−1. By (ii),
|χ(a)|2 = χ(a)χ(a) = 1.

Exemples :
1this result uses more difficult techniques and can not be considered for this course.
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1. the Legendre symbol (a/p) is a character;

2. the trivial character : ε(a) = 1 for all a ∈ F∗p.

3. Recall that F∗p is a cyclic group of order p−1. Let g be a generator of this group.
In order to definie a multiplicative character on Fp it is enough to give its value
at g. We define the character λ : F∗p → C by λ(g) = e2πi/(p−1) (so that we
have λ(gk) = e2πik/(p−1)). We have λp−1 = 1 : λ(g)p−1 = λ(gp−1) = λ(1) = 1.
In addition, if n is such that λn = 1, we have λ(g)n = λ(gn) = e2πin/(p−1) = 1,
so that we should have p− 1 |n.

4. One could extend the character χ to Fp by : χ(0) = 0 if χ 6= ε and χ(0) = 1
if χ 6= ε.

The set of characters is a group: if χ, λ are two characters, we set (χλ)(a) =
χ(a)λ(a) et χ−1(a) = (χ(a))−1.

Proposition 4.1.3. The group of characters is a cyclic group of order p − 1. If
a ∈ F∗p, a 6= 1, then there exists a character χ such that χ(a) 6= 1.

Proof. Using the example 3 above, a character χ is determined by the value χ(g)
and, by proposition 4.1.2, χ(g) is the (p−1)-th root of unity. We then have at most
p − 1 characters. Again using example 3, the characters ε, λ, λ2, . . . , λp−1 are all
distinct, so that we get exactly p− 1 characters over Fp and the group of characters
is cyclic. If a ∈ F∗p, a 6= 1, then λ(a) 6= 1.

Proposition 4.1.4. (i) For χ 6= ε a multiplicative character we have
∑

a∈Fp
χ(a) =

0.

(ii) For a ∈ F∗p, a 6= 1 we have
∑

χ χ(a) = 0.

Proof. (i) Since χ 6= ε, there exists b ∈ Fp such that χ(b) 6= 1. One checks that
χ(b)

∑
a∈Fp

χ(a) =
∑

a∈Fp
χ(a), so that

∑
a∈Fp

χ(a) = 0.

(ii) Using the previous proposition, there exists a character λ such that λ(a) 6= 1.
We then get λ(a)

∑
χ χ(a) =

∑
χ χ(a) = 0.

The next two statements show how one can use the characters to solve the
equations over Fp.

Lemma 4.1.5. Let a ∈ F∗p.

1. The equation xn = a has a solution iff ap−1/d = 1 where d = (n, p− 1).

2. Assume that n | p − 1. If the equation xn = a has no solution, there exists a
caracter χ such that χ(a) 6= 1 and χn = ε.
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Proof. 1. Follows from the fact that the group F∗p is cyclic of order (p− 1).

2. Let g and λ be as in example 3 above. Let n′ = p − 1/n. Let χ = λn
′
. We

then have χn = ε. Let us write a = gs, we have that n does not divide s
under the assumption that the equation xn = a has no solution. We deduce
χ(a) = χ(g)s = e2πi(s/n) 6= 1.

Proposition 4.1.6. Let a ∈ F∗p. Let n be an integer such that n|p− 1. Let N(xn =
a) be the number of solutions in F∗p of the equation xn = a. We have

N(xn = a) =
∑
χ,χn=ε

χ(a).

Proof. 1. If a = 0 then N(xn = a) = 1 and
∑

χ,χn=ε χ(0) = 1 as for any character
χ 6= ε, χ(0) = 0.

2. Assume that the equation xn = a has a solution : a = bn. Note that, as the
group of characters is cyclic, one has exactly n characters such that χn = ε.
For such character χ we have χ(a) = χ(bn) = χ(b)n = χn(b) = ε(b) = 1. We
get

∑
χ,χn=ε χ(a) = n = N(xn = a).

3. Assume that the equation xn = a has no solution. Let χ as in the part 2 of
the proposition above. We have χ(a)

∑
χ′,χ′n=ε χ

′(a) =
∑

χ′,χ′n=ε χ
′(a), so that∑

χ′,χ′n=ε χ
′(a) = 0 as χ(a) 6= 1.

Definition 4.1.7. Let χ be a character of Fp and let a ∈ Fp. Let ζ = e2πi/p. We
define

ga(χ) =
∑
t∈Fp

χ(t)ζat

the Gauss sum of the character χ. One defines g(χ) = g1(χ).

Lemma 4.1.8. ga(χ) =


χ(a−1)g1(χ) a 6= 0, χ 6= ε

0 a 6= 0, χ = ε

0 a = 0, χ 6= ε

p a = 0, χ = ε.

Proof. 1. Assume a 6= 0, χ 6= ε. Then χ(a)ga(χ) =
∑

t∈Fp
χ(at)ζat = g1χ.

2. Assume a 6= 0, χ = ε. Then ga(χ) =
∑

t∈Fp
ζat = 1−ζap

1−ζa = 0.

3. Assume a = 0, χ 6= ε. Then ga(χ) =
∑

t∈Fp
χ(t) = 0 by proposition 4.1.4.
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4. Assume a = 0, χ = ε. Then ga(χ) =
∑

t∈Fp
1 = p.

Proposition 4.1.9. If χ 6= ε, |g(χ)| = √p.

Proof. We write S(χ) =
∑

a ga(χ)ga(χ). By the lemma above, for a 6= 0 one has

ga(χ)ga(χ) = χ(a−1)χ(a)g(χ)g(χ) = |g(χ)|2.

Since g0(χ) = 0 by the lemma above, one has S(χ) = (p− 1)|g(χ)|2. We also have

S(χ) =
∑
a

(
∑
u

∑
v

χ(u)χ(v))ζa(u−v).

But
∑

t ζ
ct = p if c = 0 and

∑
t ζ

ct = 1−ζcp
1−ζc = 0 if c 6= 0. We get

S(χ) =
∑
u

∑
v

χ(u)χ(v)δ(u, v)p = (p− 1)p.

We then get (p− 1)|g(χ)|2 = (p− 1)p, and result follows.

Definition 4.1.10. Let χ and λ be two characters in Fp. The Jacobi sum J(χ, λ)
is defined by J(χ, λ) =

∑
a+b=1 χ(a)λ(b).

Proposition 4.1.11. Let χ and λ be two characters in Fp.

(i) J(ε, ε) = p;

(ii) for χ 6= ε, one has J(ε, χ) = 0;

(iii) for χ 6= ε, one has J(χ, χ−1) = −χ(−1);

(iv) if χλ 6= ε then J(χ, λ) = g(χ)g(λ)
g(χλ)

;

(v) if χλ 6= ε then |J(χ, λ)| = √p.

Proof. The statement (i) us straightforward, the statement (ii) follows from propo-
sition 4.1.4, the statement (v) follows from (iv). Let us show (iii). We have

J(χ, χ−1) =
∑
a+b=1

χ(a)χ−1(b) =
∑

a+b=1,b 6=0

χ(a/b) =
∑
a6=1

χ(a/1−a) = [c = 1/1−a] =∑
c 6=−1

χ(c) = [par 4.1.4] = −χ(−1).
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Let us show (iv). We have

g(χ)g(λ) = (
∑
a

χ(a)ζa)(
∑
b

λ(b)ζb) =

=
∑
a,b

χ(a)λ(b)ζa+b =
∑
t

(
∑
a+b=t

χ(a)λ(b))ζt.

If t = 0, we get
∑

a χ(a)λ(−a) = λ(−1)
∑

a(χλ)(a) = 0 par la proposition 4.1.4. If
t 6= 0, we get

∑
a+b=t χ(a)λ(b) =

∑
a′+b′=1 χ(a′t)λ(b′t) = (χλ(t))J(χ, λ). We then

get g(χ)g(λ) =
∑

t(χλ(t))ζtJ(χ, λ) = J(χ, λ)g(χλ).

4.2 Hasse theorem : particular cases

4.2.1 Case E : y2 = x3 +D

Let p ≥ 5 be a prime and let E be an elliptic curve over Fp defined by a homogeneous
equation y2z = x3 + Dz3, D 6= 0. Let Np be the set of points E(Fp). As E has a
point at infinity, one has

Np = 1 +N(y2 = x3 +D).

We have two cases to consider:

1. Assume p ≡ 2(mod 3). Then (p − 1, 3) = 1 and the map x 7→ x3 is an
automorphism of F∗p. For a fixed a = y2 the equation x3 = a2 − D has a
unique solution. We get N(y2 = x3 +D) = p and Np = 1 + p.

2. p ≡ 1(mod 3). Let χ be a primitive multiplicative character of order 3 and ρ
the multiplicative character of order 2 over F∗p. We have

N(y2 = x3 +D) =
∑

a+b=D

N(y2 = a)N(x3 = −b) = [par 4.1.6]

=
∑

a+b=D

(1 + ρ(a))(1 + χ(−b) + χ2(−b)) =

= p+
∑

a+b=D

ρ(a)χ(b) +
∑

a+b=D

ρ(a)χ2(b) = [a = Da′, b = Db′]

= p+ ρχ(D)J(ρ, χ) + ρχ(D)J(ρ, χ).

As |J(ρ, χ)| = √p by proposition 4.1.11, we deduce |Np − 1− p| < 2
√
p.

4.2.2 Case E : y2 = x3 −Dx
Let E be an elliptic curve over Fp, p ≥ 2, defined by a homogeneous equation
y2z = x3 − Dxz2, with D 6= 0. Let Np be the set of points E(Fp). As in the
previous case, we have

Np = 1 +N(y2 = x3 −Dx).
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Lemma 4.2.1. Let C be an affine curve y2 = x3−Dx and let C ′ be an affine curve
u2 = v4 + 4D. Let

T : A2 → A2

u, v 7→ u+ v2

2
,
v(u+ v2)

2

and let

S : A2 → A2

x, y 7→ 2x− y2

x2
,
y

x
.

Then T maps C ′ to C and S maps C \ {0, 0} to C ′. In addition, the restriction
T ◦S|C \ {0, 0} is the identity on C ′ and the restriction of S ◦T to C ′ is the identity
on C.

Proof. Straightforward verification using definitions of the applications T and S.

Let N ′ = N(u2 = v4 + 4D). Using the lemma above, Np = 2 +N ′. We have two
cases to consider:

1. Assume p ≡ 3(mod 4). Then −1 is not a square, i.e. any element a ∈ Fp
could be written as a = ±b2. In particular, a2 = b4, i.e. any square is a
4th power. Hence N ′ = N(y2 = v4 + 4D) = N(u2 = v2 + 4D) = p − 1 and
Np = 2 +N ′ = 1 + p.

2. p ≡ 1(mod 4). Let λ be multiplicative character of order 4 and ρ = λ2. We
have

N(u2 = v4 + 4D) =
∑

a+b=4D

N(u2 = a)N(v4 = −b) = [car J(ρ, ρ) = −1] =

= p− 1 + λ(−4D)J(ρ, λ) + λ(−4D)J(ρ, λ).

As |J(ρ, λ)| = √p by proposition 4.1.11, we deduce |Np − 1− p| < 2
√
p.

4.3 Endomorphisms
In this section k is an algebraically closed field.

Definition 4.3.1. Let E be an elliptic curve defined over k. We define an endo-
morphism of E as a map α : E → E given by rational functions and verifying

α(P +Q) = α(P ) + α(Q).
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If E is given by affine equation (3.2), one can write

α(x, y) = (R1(x, y), R2(x, y)).

In what follows, we will express α in a easier way and in particular definie α at the
points where the denominator of R1 or R2 vanishes (in projective coordinates. )

Since (x, y) ∈ E, we may assume that the fractions R1, R2 do not have terms in
y2 and write

Ri(x) =
pi1(x) + pi2(x)y

qi1(x) + qi2(x)y
=

(pi1(x) + pi2(x)y)(qi1(x)− qi2(x)y)

(qi1(x))2 − (qi2(x))2(x3 + ax+ b)
=
ri1(x) + ri2(x)y

qi(x)

for some polynomials ri1, ri2, qi.
Next, since α is an endomorphism, we have α(x,−y) = −α(x, y) whereR1(x,−y) =

R1(x, y) and R2(x,−y) = −R2(x, y). We deduce that one can write

α(x, y) = (
p(x)

q(x)
,
s(x)y

t(x)
) (4.1)

with p, q, r, t ∈ k[x] such that p, q have no common roots and s, t have no common
roots.

Definition 4.3.2. We define the degree of α as

degα = max{deg p(x), deg q(x).}

We say that α is separable if the derivative of the fraction p(x)/q(x) is not iden-
tically zero.

We will now define α at the points where the denominators q(x) or t(x) vanish.
Since α(x, y) ∈ E we have

(x3 + ax+ b)s(x)2

t(x)2
=
p(x)3 + ap(x)q(x)2 + bq(x)3

q(x)3
.

We have in particular the equality

(x3 + ax+ b)s(x)2q(x)3 = (p(x)3 + ap(x)q(x)2 + bq(x)3)t(x)2

at any point x such that q(x)t(x) 6= 0. Since the set of roots of t and q is finite and
k is algebraically closed, the equality above is true for any x ∈ k. Write

f(x) = x3 + ax2 + b = (x− e1)(x− e2)(x− e3).

Let S ⊂ {e1, e2, e3} be the set of common roots of t(x) and x3 + ax+ b. Since t(x)
and s(x) have no common roots and the polynomial x3 + ax + b has only simple
roots, we deduce that q(x) = u(x)2

∏
S(x− ei) and t(x) = u(x)3

∏
S(x− ei)2.

We could write α in the projective coordinates:

α(x, y) = (p(x)u(x)
∏
S

(x− ei) : s(x)y : u(x)3
∏
S

(x− ei)2). (4.2)
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If q(x) 6= 0 we have u(x)3
∏

S(x − ei)2 6= 0, so that α(x, y) is well defined. If
q(x) = 0, we set α(x, y) = OE. One could justify it as follows. If q(x) = 0, we have
s(x) 6= 0. If y 6= 0, then α(x, y) = OE using the formula above. If y = 0, we then
have x = ei, i ∈ S. Then we use y2 =

∏
(x− ei) to write

α(x, y) = (p(x)u(x)y : s(x)
∏
i/∈S

(x− ei) : u(x)3y
∏
S

(x− ei)),

so that we see α(x, y) = OE.

The next two statements are very useful for the applications :

Proposition 4.3.3. Let α be a nonzero endomorphism of an elliptic curve E. We
then have

(i) if α is separable, then deg α is equal to the cardinal of ker(α);

(ii) if α is not separable, then deg α > #ker(α);

Proof. We write α in the form (4.1). Let r1(x) = p(x)
q(x)

, r2(x) = s(x)
t(x)

.

(i) If α is separable, the function r′1(x) is not identically zero, in particular p′q−pq′
is not a zero polynomial. Let

S = {x ∈ k, (p′q − pq′)q(x) = 0.}

Note that S is a finite set. Observe that the function r1(x) has an infinite
number of values, in particular, there exists P = (c, d) ∈ E(k) a point distinct
from OE such that

1. c 6= 0, d 6= 0, c /∈ r1(S), (c, d) ∈ α(E(k))

2. deg (p(x)− cq(x)) = deg (α).

Let
S ′ = {(x0, y0) ∈ E(k) |α(x0, y0) = (c, d).}

We will show that the set S ′ contains exactly deg(α) elements. In fact, if
(x0, y0) ∈ S ′, we have p(x0)

q(x0)
= c and y0r2(x0) = d. Since (c, d) 6= OE and

d 6= 0, we have that r2(x0) 6= 0 is well defined and y0 = d
r2(x0)

. We then have
that the cardinal of S ′ equals to the number of elements x0 ∈ k such that
p(x0) = cq(x0). Since deg (p(x)− cq(x)) = deg (α), it is enough to show that
the polynomial p(x)− cq(x) has simple roots. If not, there exists x1 ∈ k such
that p(x1) = cq(x1), p′(x1) = cq′(x1), so x1 is a root of polynomial p′q − pq′
(since c 6= 0), so that c ∈ r1(S), contradiction with the choice of c. We then
have that #S ′ = #ker(α) = deg α.

(ii) This case is similar to (i), the difference is that the polynomial p(x) − cq(x)
could have multiple roots, so that #ker(α) < deg α.
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Proposition 4.3.4. Let α be a nonzero endomorphism of an elliptic curve E. Then
α : E → E is a surjective map.

Proof. The point P = OE is the image of OE. Let P = (c, d) be a point of E
different from OE. We are looking for (x, y) such that α(x, y) = (c, d). We write α
in the form (4.1). Let h(x) = p(x)− cq(x). We have two cases:

1. If h(x) is not a constant polynomial, let x0 be a root of h. If q(x0) = 0,
then p(x0) = 0 and we get a contradiction with the fact that p and q have no
common roots. We then have q(x0) 6= 0. Let y0 be a root of x3

0 + ax0 + b.
Using (4.2), we get α(x0, y0) = (c, d′) for d′ ∈ k. Since (c, d′) is a point of E,
we have d = ±d′, so that (c, d) = α(x0,±y0).

2. Assume that h(x) is a constant polynomial. The fraction p(x)
q(x)

is not constant
(in fact, ker(α) is finite by previous proposition, E(k) is infinite, we then
have a finite number of points with image by α a fixed point). We deduce
that there is at most one element c ∈ k such that p(x) − cq(x) is a constant
polynomial. By the previous case, we then have at most two points (c, d) and
(c,−d) not in the image of α (with d2 = c3 + ac+ b). Let (c1, d1) ∈ E(k) such
that (c1, d1) + (c, d) 6= (c,±d′). We get that (c1, d1) and (c1, d1) + (c, d) are in
the image of α, so that (c, d) as well since α is an endomorphism.

Note that given an endomorphism α : E → E, it could be quite difficult to
determine the degree of α, and also if α is separable. If α, β : E → E are two endo-
morphisms, then one defines their sum by the formula (α + β)(P ) = α(P ) + β(P ).
Since addition of points on an elliptic curve is given by rational fractions, we see
that α + β is indeed an endomorphism of E. Similarly, one defines a linear combi-
nation of d’endomorphisms. We have the following formula to determine the degree
(see exercises for the proof) :

Proposition 4.3.5. Let α, β be two nonzero endomorphisms of an elliptic curve
E. Let r, s be two integers. Then

deg rα + sβ = r2deg α + s2deg β + rs(deg α + β − deg α− deg β).

In the following examples we discuss some applications, admitting the facts on
separability and the computations of the degree.
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4.3.1 Frobenius endomorphism and Hasse theorem

Let k be an algebraic closure of a finite field Fq with q = pn elements. The
Frobenius morphism φq on k is the map x 7→ xq. For x, y ∈ k we have (x+y)q =
xq + yq, so that φq ia indeed a homomorphism (of additive groups). In addition, by
construction, the field Fq is the field of decomposition of the polynomial xq − x, so
that

x ∈ Fq ⇔ φq(x) = x. (4.3)

Let E : y2 = x3 + ax + b be an elliptic curve defined over Fq. Since aq = a and
bq = b, we have for all P = (x, y) ∈ E(k),

y2q = (x3 + ax+ b)q = x3q + axq + b, i.e. (xq, yq) ∈ E(k).

Using the formulas of the explicit group law (Proposition 3.1.5), one can show
that φq induces an endomorphism of E

φq(x, y) = (xq, yq)

that we also call Frobenius endomorphism. Condition (4.3) gives

P ∈ E(Fq)⇔ φq(P ) = P.

We then see that
E(Fq) = ker(φq − 1). (4.4)

By definition, the Frobenious endormorphism φq is not separable and deg φq = q.
More generally, let r, s be two nonzero integers. One can show that the endomor-
phism rφq − s est separable if and only if p does not divide s.

Using the results on the endomorphisms above, one can now give a proof of
Hasse theorem.

Proof of theorem 4.0.1.
We have E(Fq) = ker(φq − 1) by (4.4). Since the morphism φq − 1 is separable,

proposition 4.3.3 gives deg(φq − 1) = #ker(φq − 1) Let

aq = q + 1−#E(Fq) = q + 1− deg(φq − 1).

Let r, s be two integers with (s, q) = 1. We have that the endomorphism rφq − s is
separable of degree (see proposition 4.3.5)

deg rφq − s = r2q + s2 + rs(deg (φq − 1)− q − 1) = r2q + s2 − rsaq.

Since deg rφq − s ≥ 0 for all r, s, we have

q(
r

s
)2 − aq

r

s
+ 1 ≥ 0.

But the rational numbers r
s
with (s, q) = 1 are dense in R. We then have qx2 −

aqx+ 1 ≥ 0 for all x ∈ R. We get for the discriminant :

a2
q − 4q ≤ 0,
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so that |aq| ≤ 2
√
q, which finishes the proof of Hasse theorem.

Let E : y2 = x3 + ax + b be an elliptic curve over Fq. By investigating the
properties of the Frobenius map, one manages to estimate the number of points
E(Fqn) for any extension of Fq. We have the following result (for the proof see
exercise 6) :

Theorem 4.3.6. Let E be an elliptic curve defined over a finite field Fq and let
aq = q + 1−#E(Fq).

1. We have φ2
q − aqφq + q = 0.

2. Let α, β be the roots of the polynomial x2 − aqx+ q. Then α, β are conjugate
complex numbers with absolute value √q. For any n > 0 one has

#E(Fqn) = qn + 1− (αn + βn).

3. The zeta function of the curve E

Z(E/Fq, T ) = exp(
∞∑
n=1

#E(Fqn)
T n

n
).

is a rational function 1−aqT+qT 2

(1−T )(1−qT )
.

Complement. Let X be a projective variety defined over a finite field Fq. As
for plane curves, one can give a definition if the variety X is smooth. Similarly,
there is a notion of dimension (for plane curves, the dimension is 1.) Assume that
X est smooth, of dimension n. One defines the zeta function of X by

Z(X/Fq, T ) = exp(
∞∑
n=1

#X(Fqn)
T n

n
).

The Weil conjecture claims that the function above is a rational function :
Z(X/Fq, T ) ∈ Q(T ) verifying:

1. (functional equation) Z(X/Fq, 1/qNT ) = ±qNε/2T εZ(X/Fq, T ) for some inte-
ger ε;

2. (Riemann hypothesis) Z(X/Fq, T ) = P1(T )...P2N−1(T )

P0(T )P2(T )...P2N (T )
with P0(T ) = 1 −

T, P2N(T ) = 1− qNT et Pi(T ) =
bi∏
j=1

(1−αijT ), 0 < i < 2N , with |αij| = q1/2.

These conjectures have been established by Deligne in the 1970th.
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4.3.2 Torsion points

Let E be an elliptic curves over a filed k (we still assume that the field k is al-
gebraically closed). Let n ≥ 2 be an integer. The multiplication by n gives an
endomorphism ·n : E → E. Similarly as for the multiplication by 2, one can give
the explicit recursive formulas expressing nP = (xnP , ynP ) in terms of P = (xP , yP ).
More precisely, one has the following statement (see exercise 8):

Proposition 4.3.7. (i) There exists polynomials φn, ψn, ωn with (φn, ψn) = 1
such that

nP = (
φn(x)

ψn(x)2
,
ωn(x, y)

ψn(x)3
).

(ii) The highest order term of φn(x) is xn2, the highest order term of ψn(x) is
n2xn

2−1.

(iii) One has nP = OE ⇔ ψn(x) = 0.

We then see that the degree of the endomorphism of multiplication by n on E is
n2 and that this morphism is separable if and only if n is prime to the characteristic
of k. One defines the group of points of n-torsion of E:

E[n] = {P ∈ E, nP = OE}.

It is a remarkable fact, that one can determine the group structure of E[n] for
any elliptic curve, independently of the (algebraically closed) field :

Theorem 4.3.8. (i) If (n, car.k) = 1, then E[n] = Z/n⊕ Z/n.

(ii) If p = car.k |n, then E[n] = Z/n′⊕Z/n′ or E[n] = Z/n⊕Z/n′, where n = prn′

and (n′, p) = 1.

Proof. (i) Using the properties above and proposition 4.3.3, E[n] = deg (·n) = n2.
The group E[n] is a finite abelian group of order n2. Using the structure
theorem of the finite abelian groups, one gets

E[n] = Z/n1 ⊕ Z/n2 ⊕ . . .⊕ Z/ns

with ni|ni+1, 1 ≤ i ≤ s− 1. Let l be a prime dividing n1. Then ls divides the
order of E[n]. But #E[l] = l2. One gets s = 2 and

E[n] = Z/n1 ⊕ Z/n2, n1|n2.

This group is also killed by n, so that n2|n. Since #E[n] = n2 = n1n2, we
deduce that n1 = n2 = n.

(ii) We will first determine the group structure of E[ps] for all s > 0. Since the
multiplication by p map is not separable, #E[p] < p2. Any element of E[p]
is of order 1 or p, we then have that #E[p] is a power of p, so that it is 1 or
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p. If #E[p] = 1, then #E[ps] = 1 for all s > 0 (one uses that if Q ∈ E[ps],
then ps−1Q ∈ E[p]). Assume #E[p] = p. Let Q ∈ E[ps]. One then have
pQ ∈ E[ps−1]. By induction, E[ps] is cyclic of order ps.

Let us write n = prn′. We then have E[n] = E[n′] ⊕ E[pr]. Since E[n′] =
Z/n′ ⊕ Z/n′, E[pr] = 1 or Z/pr and Z/n′ ⊕ Z/pr ' Z/n′pr = Z/n, the result
follows.

Similarly, one can show the structure theorem on points of an elliptic curve over
a finite field :

Theorem 4.3.9. Let E be an elliptic curve over a finite field Fq. One has

E(Fq) = Z/n or Z/n1 ⊕ Z/n2

where n ≥ 1 and n1, n2 ≥ 1 are integers with n1 |n2.

The following statement is very useful for the study of elliptic curves :

Theorem 4.3.10. Let k be an algebraically closed field and let n be an integer
prime to the characteristic of k. Let E be an elliptic curve over k. There exists a
pairing

en : E[n]× E[n]→ µn

that we call Weil pairing, such that

1. en is a bilinear:

en(S1 + S2, T ) = en(S1, T )en(S2, T ), en(S, T1 + T2) = en(S, T1)en(S, T2)

and non degenerate map :

en(S, T ) = 1∀T ∈ E[n]⇒ S = OE, and en(S, T ) = 1∀S ∈ E[n]⇒ T = OE;

2. en(T, T ) = 1 and en(T, S) = en(S, T )−1 ∀S, T ∈ E[n];

3. if σ ∈ Aut k fixes the coefficients a and b of the curve E, then en(σS, σT ) =
σ(en(S, T ));

4. if α : E → E is an endomorphism, then

en(α(S), α(T )) = (en(S, T ))deg α.

The proof of this statement needs more developed algebraic geometry tools.

Remarks.

1. If S = (x, y) ∈ E(k) and if σ ∈ Aut k, the point σS is defined by σS =
(σx, σy).
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2. Let E be an elliptic curve defined over a non algebraically closed field k and
let k̄ be an algebraic closure of k. We denote E[n] = E(k̄)[n]. We then get
the Weil pairing on E[n]. If now P,Q ∈ E(k), then for any σ ∈ Autk k̄ one
has σP = P and σT = T . Using the property 3 above, en(S, T ) is fixed by
any such automorphism σ and in particular en(S, T ) ∈ k.

Proposition 4.3.11. Let k be an algebraically closed field, let n be an integer
(n, car.k) = 1. Let E be an elliptic curve k. Let {T1, T2} be the base of E[n] =
Z/n⊕ Z/n. Then en(T1, T2) is a primitive nth root of unity

Proof. exercise.

Corollary 4.3.12. Let E be an elliptic curve defined over Q. We write E[n] for the
group of n-torsion points of E over an algebraic closure Q of Q. Then E[n] * E(Q)
if n ≥ 3.

Proof. By theorem 4.3.10.3 and proposition 4.3.11 above, if E[n] ⊆ E(Q), then
µn ⊂ Q, which is not possible if n ≥ 3.

4.3.3 Automorphisms

Let E : y2 = x3 +ax+b be an elliptic curve defined over an algebraically closed field
k (we always assume that car(k) 6= 2, 3). One can show that any automorphism
θ of E is given by the changing of variables x = u2x′, y = u3y′ with u ∈ k∗ and
u−4a = a, u−6b = b. Recall that the j-invariant of E is defined as

j = j(E) = 1728
4a3

4a3 + 27b2
.

We then have

1. if j 6= 0, 1728, the group of automorphisms Aut(E) of E is the finite group
Z/2 = (id, P 7→ −P );

2. if j = 1728, Aut(E) ' Z/4;

3. if j = 0, Aut(E) ' Z/6.

4.4 Additional exercises 3
1. (a) Let α be an endomorphism of E.

i. Show that α induces an endomorphism αn of E[n].
ii. Let

(
a b
c d

)
the matrix of αn in the base {T1, T2}. Show that

deg α ≡ det(αn)(mod n)

(one could express ζdeg α in terms of a, b, c, d.)
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(b) Let α, β be two endomorphisms of E and r, s two integers.

i. Show that

det(rαn+sβn)−r2detαn−s2detβn = rs(det(αn+βn)−detαn−detβn)

(one can start by showing that det(αn + βn) − detαn − detβn =
Trace(αnβ

∗
n), where β∗n is the adjoint matrix : if βn =

(
x y
z t

)
, then

β∗n =
(

t −y
−z x

)
).

ii. Deduce that

deg rα + sβ = r2deg α + s2deg β + rs(deg (α + β)− deg α− deg β).

2. (a) Let E be an elliptic curve defined over a finite field Fq, q = pr, and let
aq = q+1−#E(Fq). As before, we denote φq the Frobenius morphism on
E and for any integer m prime to q one denote (φq)m the endomorphism
induced by φq on E(Fq)[m]. Show that

det(φq)m ≡ q (mod m) and Trace(φq)m ≡ aq (mod m)

(One could use that #Ker(φq − 1) = deg (φq − 1) = q + 1− aq, see the
proof of Hasse theorem)

(b) Deduce that the endomorphism φ2
q − aqφq + q is identically zero on

E(Fq)[m].

(c) Show that the kernel of the map φ2
q − aqφq + q is infinite; deduce that

the polynomial g(x) = x2 − aqx+ q annihilates φq.

(d) Assume that b is an integer such that the polynomial x2 − bx + q an-
nihilates φq. Deduce that (aq − b) annihilates E(Fq) and finally that
aq = b.

(e) Let α, β be the roots of the polynomial g(x) and let gn(x) be the poly-
nomial

gn(x) = x2n − (αn + βn)xn + qn.

Show that g(x) divides gn(x) for all n. Deduce that

(φnq )2 − (αn + βn)φnq + qn = 0.

(f) Deduce that E(Fqn) has cardinality qn + 1− (αn + βn).

(g) We define the sets function of the curve E by

Z(E/Fq, T ) = exp(
∞∑
n=1

#E(Fqn)
T n

n
).

Show that Z(E/Fq, T ) is a rational function

1− aqT + qT 2

(1− T )(1− qT )
.
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3. Let E be an elliptic curve y2 = x3+ax+b defined over a field k, char(k) 6= 2, 3.
One defines the division polynomials ψm(x, y) in a recursive way : ψ0 = 0,
φ1 = 1, ψ2 = 2y
ψ3 = 3x4 + 6ax2 + 12bx− a2

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1, m ≥ 2

ψ2m = [ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)]/2y, m ≥ 3.

(a) Show that ψn is a polynomial in x, y2 if n is odd and that yψn is poly-
nomial in x, y2, if n is even.

(b) One defines φm = xψ2
m − ψm+1ψm−1

ωm = [ψm+2ψ
2
m−1−ψm−2ψ

2
m+1]/4y. Show that φn is a polynomial in x, y2,

that ωn is a polynomial in x, y2 if n is odd, and that yωn is a polynomial
in x, y2 if n is even.

(c) By the previous question, on can define the polynomials φn(x) and ψ2
n(x)

by replacing y2 by x3 + ax+ b in the polynomials φn(x, y) and ψ2
n(x, y).

Show that φn(x) is the sum of xn2 and the terms of lower degree, and
that ψn(x)2 is the sum of n2xn

2−1 and the terms of lower degree.

(d) Show that for P = (x, y) a point of E, one has

nP = (
φn(x)

ψn(x)2
,
ωn(x, y)

ψn(x)3
)

(e) Show that the polynomials φn(x) and ψn(x)2 are relatively prime. De-
duce the the multiplication by n map is of degree n2.
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Chapter 5

Elliptic curves algorithms

5.1 Factorisation
For N an integer we are interested in factorizing N into prime factors. This problem
is still technically very difficult in practice (when N is large), which is fundamental
for many modern cryptosystems. In this section we will discuss an approach that
uses the elliptic curves : the algorithm ECM ("Elliptic Curve Method"), introduced
by H. Lenstra in 1980th and developped by R. Brent, P. Montgomery and others.
This algorithm is the most efficient one, in terms of the size of the factors of N (and
not N itself) : its running time is exp(c

√
log p(loglog p)), where p is the smallest

factor of N . One of the latest examples is a factor with 74 digits : it is the following
factor of 12284 + 1 found on October, 26, 2014 by B. Dodson :

26721194531973848954767772351114152203083577206813943149484875628623309473

5.1.1 Pollard’s p− 1 algorithm

To start with, we recall the (p−1) Pollard’s algorithm, the same ideas are also used
for the ECM algorithm. Assume that N has a prime factor p such that

p− 1 = qe11 q
e2
2 . . . qerr .

If the factors qi verify
qi ≤ B, 1 ≤ i ≤ r

we say that p − 1 is B-smooth. The following algorithm allows to find a factor p
if p− 1 is B-smooth.

1. We take 2 ≤ a < N and we set x = a.

2. For i = 1, 2, . . . s:

(a) x→ xi mod N (here we compute ai! mod N)

(b) d := (x− 1, N)

40



(c) if 1 < d < N , we found a factor d of N

3. go back to the first step.

Let s = max ejqj. Then q
ej
j divides s!, that is (p − 1)|s!. We then have as! ≡

1 mod p. It is not very likely that as! ≡ 1 mod N , so that we hope to find a factor
of N .

5.1.2 Algorithm ECM

Elliptic curves modulo N

Let E be an elliptic curve given by a homogeneous equation Y 2Z = X3+aXZ2+
bZ3 where the coefficients coefficients a, b ∈ Z/N and the determinant ∆(E) are
invertibles. We define

E(Z/N) = {(X : Y : Z), X, Y, Z ∈ Z/N, pgcd(N,X, Y, Z) = 1, Y 2Z = X3+aXZ2+bZ3}.

If N were prime, on could always find a sum P+Q for two points P,Q ∈ E(Z/N)
using the formulas of the explicit group law (Proposition 3.1.5). In these formulas
we need to invert xP − xQ. If this is not possible, and if xP 6= xQ, we necessarily
have that (xP − xQ, N) > 1 i.e. we found a factor of N . We then obtain the fol-
lowing algorithm. For more efficience, one often uses many curves at the same time.

The algorithm

1. We fix an integer m (often 10 < m < 20) and an integer B (for example, of
order 108).

2. We choose m random elliptic curves Ei modulo N :

Ei : Y 2Z = X3 + aiXZ
2 + biZ

3

and a point Pi ∈ Ei. In order to do this, we randomly choose ai, Pi = (xi,0, yi,0)
and we set bi = y2

i,0 − x3
i,0 − axi,0.

3. For all i we successively compute (B!)Pi on Ei. If one of the inversion opera-
tions is impossible, we found a factor of N .

4. If not, we change B or the curves Ei and we come back to the first step.

The inversion operation fails if B!Pi = O in Ei(Fp) where p is a prime factor of
N . It is the case if the order #Ei(Fp) divides B!. But #Ei(Fp) varies in the interval
]p+ 1−2

√
p, p+ 1 + 2

√
p[, which is better than in the Pollard’s method where p−1

is fixed. So that we expect that the algorithm is more efficient.
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5.2 Schoof’s algorithm
Let E be an elliptic curve defined over a finite field Fq. By the 4.0.1 theorem, the
number #E(Fq) satisfies the inequality

|#E(Fq)− q − 1| ≤ 2
√
q.

In this section we will describe an algorithm by Schoof, that allows to compute
#E(Fq) with the running time O((loq q)c), for c some constant. Let

aq = q + 1−#E(Fq).

To determine aq we will determine aq modulo ` for many primes `.
We take ` a prime. Let P ∈ E(Fq)[`]. Using the theorem 4.3.6, we have

aqφq(P ) = φ2
q(P ) + qP,

where φq is the Frobenius morphism. Since `P = OE, we have

[aq]` φq(P ) = φ2
q(P ) + [q]`P, (5.1)

where [aq]` and [q]` are the rests modulo `. In addition, the equality 5.1 determines
[aq]` in a unique way.

Using the proposition 4.3.7, we have P ∈ E(Fq)[`]⇔ ψ`(P ) = OE for a polyno-
mial ψ` defined in a recursive way. This polynomial is of degree `2−1

2
. In order to

find the multiples of P , we need to work in the ring

R` = Fq[x, y]/(ψl(x), y2 − x3 − ax− b)

so that we never have powers of yr for r > 1 and of xr for r > `2−3
2

.
We can now describe Schoof’s algorithm.

The algorithm

1. Let A = 1, ` = 3.

2. if A < 4
√
q:

(a) for n = 0, . . . `− 1 one verifies the equality (in the ring R`) :

(xq
2

, yq
2

) + [q]`(x, y) = n(xq, yq)

If the equality is satisied, we save n` = n and we go to the next step.
(b) We change A→ `A, and we change ` by the next prime number.

3. We find aq as a unique integer |aq| ≤ 2q such that aq ≡ n` pour tout `.

Remark. At the last step of the algorithm we use the theorem on chinese rests
in order to find a satisfying the conditions aq ≡ n`. Since A =

∏
` > 4

√
q and

aq ∈]− 2
√
q,+2

√
q[ by the Hasse theorem, such integer is unique.
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5.3 Primality
The elliptic curves are also used in order to test (and prove) that some big integers
(more than 20000 digits) are prime. One of the most recent records is the number

(283339 + 1)/3

which is prime and has 25088 digits. This algorithm runs in time O((log N)4).

We discuss here the primality test of Goldwasser-Kilian. We will need the fol-
lowing two statements.

Proposition 5.3.1. Let N be an integer prime to 6 and let E be a curve with
coefficients in Z/N . Assume that there exists

(i) an integer m and a prime q, q|m and q > ( 4
√
N + 1)2;

(ii) a point P ∈ E(Z/N) such that mP = OE and (m/q)P = (x : y : z) with z
invertible in Z/N .

Then N is prime.

Proof. Assume that N is not prime : we then have a prime factor l of N such that
l ≤
√
N . We denote Ē the curve obtained by reducing the coefficients a, b of E

modulo l. The reduction modulo l of the point P gives a point P̄ of Ē of order
divisible by q (using the condition (ii)). We then have q ≤ #Ē(Fl) ≤ (

√
l + 1)2

by the Hasse theorem. But l ≤
√
N . We then obtain a contradiction with the

condition (i).

Proposition 5.3.2. Let N be a prime, (N, 6) = 1 and let E be an elliptic curve
given by the equation Y 2Z = X3 + aXZ2 + bZ3 where the coefficients a, b ∈ Z/N
and the derminant ∆(E) are invertible. Let m = #E(Z/N). Assume there exists
a prime number q such that q|m and q > ( 4

√
N + 1)2. Then there exists a point

P ∈ E(Z/N) such that mP = OE and (m/q)P = (x : y : z) with z invertible in
Z/N .

Proof. Assume that for any point P of E(Z/N) we have (m/q)P = OE. Hence
the order of E(Z/N) divides m/q. Using the theorem 4.3.9 we have E(Z/N) =
Z/d1 ⊕ Z/d2, d1|d2, so that d2|(m/q). Since m ≤ d2

2, we get m ≤ (m/q)2. Since
m ≤ (

√
N + 1)2 by Hasse theorem, we get the contradiction with the hypothesis on

q.

As a consequence of the properties above, we get that if we find an elliptic curve
E such that the order m of E(Z/N) has a big prime factor q (i.e. q > ( 4

√
N + 1)2),

then N is prime iff there exists a point P ∈ E(Z/N) such that mP = OE and
(m/q)P = (x : y : z) with z invertible in Z/N . For a given elliptic curve, one can
use Schoof’s algorithm to determine its order m. Then, in order to test if q is prime,
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we do reiterate the procedure again. We then get the following algorithm.

The algorithm

1. We choose an elliptic curve E and we compute m = #E(Z/N).

2. We devide m by the small prime numbers, that we denote m0 the product
and we are looking for q = m/m0 verifying q > ( 4

√
N + 1)2 and that passes

the classical primality tests. If it is not the case, we go back to the first step.

3. We choose x ∈ Z/N such that x3 + ax+ b is a square in Z/N . So that we get
a point P on a curve E. We check if mP = 0E and (m/q)P = (x : y : z) with
z invertible in Z/N . If it is the case we know that N is prime if q is prime.
We then go back to the first step with q at the place of N . If not, we change
the point P and we continue.

5.4 Cryptography with elliptic curves
One generally considers the following context for the public keys cryptographical
systems: two persons, Alice and Bob, want to exchange some messages in a secured
way. Eva wants to read their messages, she has an access to a public transmission
channel for the messages of Alice and Bob. In this system, one distinguishes three
basic algorithms: keys exchange, the coding and the numerical signature. At the
step of keys exchange, Alice and Bob produce a common key (known just by them-
selves), that they willl use later. The numerical signature allows Bob to check that
the message he gets comes indeed from Alice. The methods we describe here could
actually be used in any group, but we describe special aspects related to the elliptic
curves.

5.4.1 Keys exchange: Diffie-Hellman’s protocol

1. Public data: E an elliptic curve over a finite field Fq and a point P ∈ E(Fq)
of a sufficiently big order.

2. Secret choice of Alice: an integer a.

3. Secret choice of Bob: an integer b.

4. Alice sends Pa = aP to Bob.

5. Bob computes Pb = bP and sends to Alice;

6. Alice computes aPb = abP and Bob computes bPa = abP . The common key
is some function of the point abP .

Definition 5.4.1. The Diffie-Hellman problem is the following question:
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Given P, aP and bP in E(Fq), find abP .

This problem is (technically) very difficult to solve, which garantees the security
of the Diffie-Hellman’s protocol.

5.4.2 ElGamal cryptosystem

To receive a message from Alice, Bob takes an elliptic curve E over a finite fieldi Fq
and a point P ∈ E. He chooses also a secret integer s and he computes B = sP .
The public data is

E,P,B.

The secret Bob’s key is the integer s.
To encode the message, Alice uses the following algorithm :

1. She represents her message as a point M ∈ E(Fq).

2. She chooses a random secret integer k and she computes M1 = kP , M2 =
M + kB.

3. Alice sends the points M1,M2 to Bob.

To decode the message, Bob computes

M2 − sM1 = (M + kB)− s(kP ) = M + k(sP )− skP = M.

5.4.3 Numerical signature

The numerical signature principle is somehow inverse to the coding : everybody
could verify that the signature is correct, but only Alice could sign the document.
We give here an algorithm that is used in the ECDSA standard.

In order to sign her document, Alice chooses an elliptic curve E over a finite
field Fq, such that #E(Fq) = fr, where r is a big prime number and f is an integer,
in general, f = 1, 2 or 4. She chooses a point P ∈ E of order r. She also chooses a
secret integer s and she computes Q = sP . The data of

E, r, P,Q

is public.
In order to sign the message m (that one views as an integer this time), Alice

chooses a random integer k and she computes R = kP = (x, y) and z = k−1(m +
sx) mod r. Then Alice signes her document by

m,R, z.

In order to verify the signature, Bob does the following:
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1. He computes u1 = z−1m mod r and u2 = z−1x mod r.

2. He computes V = u1P + u2Q.

3. He decides that the signature is correct if V = R.

It is an exercice to check that V = R if the document is signed by Alice.

5.5 Discret logarithm
Definition 5.5.1. Let G be a group. In the discret logarithm problem in G, for
given x, y ∈ G we are looking for an integer m such that xm = y (if it exists).

The fact that technically this problem is very difficult to resove for G = E(Fq) is
the base of the security of the algoritms above. In general, if G is a group of order
n, all known algorithms to resolve this problem have O(

√
N) running time (which

is a lot!).
We briefly discuss two general algorithms for the discrete logarithm problem, as

well as an algorithm, due to Menezes, Okamoto and Vanstone, that one could apply
to some elliptic curves, it uses the Weil pairing.

5.5.1 Babystep-Giantstep

Let G be a group, x, y ∈ G and let n be the order of x. Let N be the integer
N = d

√
n e.

The algorithm

1. we save the following list of elements of G: x, x2, x3, . . . xN ;

2. we set z = (xN)−1 and we save yz, yz2, yz3, . . . yzN .

3. we check for collisions: if xi = yzj, we found y = xi+jN .

The problem with this algorithm is that one has to save the two lists. Pollard’s
method allows to solve this problem.

5.5.2 Pollard’s ρ-method

Let G be a group, x, y ∈ G and let n be the order of x. We search for m such that
xm = y. We will find the integers i, j, i1, j1 such that

xiyj = xi1yj1 . (5.2)

We will then have xi−i1 = yj1−j, that allows us to find m if j − j1 is prime to the
order of x in G (we always can assume it up to restricting to the case when x has
prime order).
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Let G = A ∪ B ∪ C be a partition, where A,B,C are of the same cardinal (up
to few elements). Let f : G→ G be the function

f(z) =


xz z ∈ A
z2 z ∈ B
yz z ∈ C.

Let x0 = x ∈ G. For any i > 1 we define xi = f(xi−1). Let t be the biggest
integer such that xt−1 appears only once in the sequence (xi)i≥0 and let l be the
smallest integer such that xt+l = xt. Then, one can show that t + l is of order
O(
√
n) and that there exists 1 ≤ i < t + l such that x2i = xi, so that we can find

the collision 5.2.

5.5.3 The MOV attack

In the algorithm of Menezes, Okamoto and Vanstone one reduces to the discret
logarithm problem in E(Fq) to the discrete logarithm problem in Fqd for some d.

Definition 5.5.2. Let m be an integer. The embedding degree of m in the finite
field Fq is the smallest integer d such that

qd ≡ 1( mod m).

Remark. The condition above is equivalent to the condition µm ⊂ Fqd .

Lemma 5.5.3. Let E be an elliptic curve other a finite field Fq and let m ≥ 1 be
an integer prime to q and to q − 1. Let d be the embedding degree of m in Fq. If
E(Fq) contains a point of exact order m, then E[m] ⊂ E(Fqd).

Proof. Let P be a point of exact order m and let T ∈ E(Fq)[m] such that {P, T}
is a base of E(Fq)[m] = Z/m⊕Z/m. Let φq be the Frobenius endomorphism. One
has

φq(P ) = P, φq(T ) = uP + vT, u, v ∈ Z/m.

Using the properties of the Weil pairing, we have

em(P, T )q = em(φq(P ), φq(T )) = em(P, P )uem(P, T )v = em(P, T )v.

Since em(P, T ) is `-th primitive root of unity (proposition 4.3.11), we deduce that
v ≡ q (mod m), i.e.

φq(T ) = uP + qT.

We then get
φqd(T ) = u(1 + q + q2 + . . .+ qd−1)P + qdT.

By definition of d, one has qd ≡ 1 (mod m), so that qdT = T and (1 + q+ q2 + . . .+
qd−1)P = OE. We deduce φqd(T ) = T , so that T ∈ E(Fqd).
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The algorithm
Let E be an elliptic curve over a finite field Fq and let m be an integer, (m, q) = 1.
Let P,Q be two points of order m and let d be the embedding degree of m in Fq.

1. Let T ∈ E(Fq)[m] such that P, T generate E[m] (see 4.3.8 ). Using the Lemma
above, T ∈ E(Fqd).

2. By proposition 4.3.11, em(P, T ) is m-th primitive root of unity. Using the
definition of d, we get em(P, T ) ∈ Fqd . There exists algorithms to compute the
Weil pairing (in E(Fqd) ) : so that we find em(Q, T ). Since em(P, T ) is n-th
primitive root of unity , we get

Q = rP ⇔ em(Q, T ) = em(P, T )r.

So that the problem is reduced to the discrete logarithm problem in Fqd .

5.5.4 Supersingular curves

Let E be an elliptic curve over a finite field Fq of characteristic p ≥ 5. Recall (see
theorem 4.3.8) that the group E(F̄p)[p] is either reduced to OE, or E(F̄p)[p] ' Z/p.

Definition 5.5.4. We say that E is supersingular if E(F̄p)[p] = {OE}.

Proposition 5.5.5. Let a = q + 1−#E(Fq). The following are equvalent :

(i) E is supersingular;

(ii) a ≡ 0 (mod p);

(iii) #E(Fq) ≡ 1 (mod p).

Proof. Let α, β be the roots of tha polynomial x2 − ax+ q = 0. Let sn = αn + βn.
We have s0 = 2, s1 = a and we check by induction:

sn+1 = asn − qsn−1.

Using the definition of a, we have (ii)⇔ (iii).
Assume (ii). We then have sn ≡ 0 (mod p), so that #E(Fqn) ≡ 1 (mod p) for

any n (see theorem 4.3.6). So that we do not have a point of order p in the group
E(Fqn), and we get (i).

Assume E is supersingular. Assume that a 6= 0 (mod p). We have sn+1 ≡
asn(mod p) and

#E(Fq) = qn + 1− sn ≡ 1− an (mod p).

For n = p − 1 we then get that p|#E(Fq) so that E is not supersingular. Contra-
diction.
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Corollary 5.5.6. An elliptic curve E over Fp is supersingular iff #E(Fp) = p+ 1.

Proof. By the Hasse theorem, |a| ≤ 2
√
p. In the previous proposition we then have

a = 0⇔ a ≡ 0 (mod p)⇔ #E(Fp) = p+ 1.

Corollary 5.5.7. Assume that p ≡ 2 (mod 3). Let b ∈ Fp non zero. The elliptic
curve y2 = x3 + b over Fp is supersingular.

Proof. By the results in section 4.2.1, the condition (iii) in the proposition above is
satisfied.

There are very efficient algorithms for the arithmetic operations on a supersin-
gular elliptic curve. Assume a = 0. We then have for any P = (x, y) ∈ E(F̄p):

q(x, y) = −φq(x, y) = (xq
2

,−yq2).

Let m be an integer. In order to compute mP , we proceed as follows:

1. we decompose m = m0 +m1q +m2q
2 + . . .+mrq

r with 0 ≤ mi < q;

2. we compute miP = (xi, yi), and then qimiP = (xq
2i

i , (−1)iyq
2i

i ), and finally we
compute the sum of all these points.

On the other hand, the proposition above shows that the attack MOV could be
applied to E, so that the discret algorithm problem for E could be reduced to the
descret logarithm problem for Fq2 , which is much more easy.

Proposition 5.5.8. Let E be a supersingular elliptic curve over Fq and let N > 0
be an integer. Assume a = q + 1−#E(Fq) = 0. If there exists a point P ∈ E(Fq)
of order N , then E(F̄q)[N ] ⊂ E(Fq2).

Proof. Let Q ∈ E(F̄q)[N ]. Since #E(Fq) = q + 1, we have N |q + 1. Since E is
supersingular and a = 0, we have φ2

q(S) = −qS = S. Hence Q is fixed by φq2 , so
that Q ∈ E(Fq2).
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Chapter 6

Elliptic curves over number fields

6.1 Generalities on the number fields

6.1.1 Some facts on the number fields and its ring of integers

Definition 6.1.1. A number field is a finite algebraic extension of the field of
rational numbers Q.

In this section we fix a number field K.

By the primitif element theorem one can write K = Q(α) with [K : Q] = n =
degP , where P is the minimal polynomial of α. Assume that P has r1 real roots
α1, . . . αr1 and r2 pairs of complex roots αr1+1, ᾱr1+1, . . . , αr1+r2 , ᾱr1+r2 . We then
have r1 embeddings of K in R defined by σi(α) = αi and r2 pairs of embeddings of
K in C: σj(α) = αr1+j and σ̄j(α) = ᾱr1+j. We say that K has r1 real embeddings
and r2 pairs of complex embeddings. We then define a canonical embedding

τK : K → Rr1 × Cr2

τK(x) = (σi(x))i=1,...,r1+r2 .

Definition 6.1.2. The ring of integers of K is the ring

OK = {x ∈ K is a root of a unitary polynomial with integer coefficients}.

Examples.

1. IfK = Q(
√
d), where d has no square factors, thenOK =

{
Z[
√
d] if d ≡ 2, 3 mod 4

Z[1+
√
d

2
] if d ≡ 1 mod 4.

2. More generally, if [K : Q] = n, then one can find e1, . . . en ∈ OK such that

OK = Ze1 ⊕ . . .⊕ Zen.
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3. Assume thatK has r1 real embeddings and r2 pairs of complex embeddings. If
α ∈ OK , then the polynomial χα,K =

∏r1
i=1(x−σi(α))

∏r2
j=1(x−σr1+j(α))(x−

σ̄r1+j(α)) has integral coefficients: χα,K ∈ Z[x].

We have the following fundamental result:

Theorem 6.1.3. The image τK(OK) is a lattice in Rr1 × Cr2.

In other words, D := τK(OK) is a discret subgroup of V = Rr1 × Cr2 (i.e. for
any real r > 0 the set {v ∈ D, |v| ≤ r} is finite) and generates V as an R-vector
space.

Definition 6.1.4. Let I, J be two ideals inOK . We say that I and J are equivalent
if there exist α, β ∈ OK non zero, such that

αI = βJ.

Theorem 6.1.5. Any ideal I of OK is invertible: there exists α ∈ OK and an ideal
J ⊂ OK such that IJ = αOK. The set of ideal classes is a group ClK. This group
is finite.

Theorem 6.1.6. (i) Any nonzero prime ideal of OK is maximal.

(ii) Any ideal I of OK could be decomposed in a unique way (up to a permutation)
as a product of prime ideals.

Remark.

1. One shows that the ring OK is a Dedekind ring: it is a noetherian integrally
closed ring, such that any nonzero prime ideal is maximal.

2. Let p be a prime ideal of OK . The unicity of the decomposition in (ii) implies
in particular that the inclusions pm+1 ⊂ pm are strict.

In particular, if p is a prime, one could write

pOK = pe11 . . . pemm

with pi, i = 1, . . . ,m distinct prime ideals and ei ≥ 1. The field OK/pi is a finite
extension of the field Fp, we set fpi = [OK/pi : Fp]. In particuliar,

Npi := card(OK/pi) = pfpi .
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Recall that if n = [K : Q], then

n =
m∑
i=1

eifpi .

In fact, this follows from the identity

pn = N(pOK) = Npe11 · . . . ·Npemm = p
∑
eifpi .

Let I be an ideal of OK and let p a prime ideal of OK . Theorem 6.1.6 allows to
define

ordp(I) = max{n ≥ 0 | I ⊂ pn.}

If x ∈ OK , one defines ordp(x) as an oder at p of the ideal (x) and one extends this
notion to any x ∈ K.

6.1.2 Absolute values

Definition 6.1.7. Let K be a field. An absolute value v on K is a map

| · |v : K → R+

such that

(i) |x|v = 0 iff x = 0;

(ii) |xy|v = |x|v|y|v for any x, y ∈ K;

(iii) there exists a constant C > 0 such that |x + y|v ≤ C max{|x|v, |y|v} for any
x, y ∈ K. If C = 1, we say that the absolute value is ultrametric.

Remark. One easily verifies that if | · |v is an absolute value on a field F , then
| · |αv is also an absolute value on F for any α > 0.

Finite places. For any prime ideal p of the number field K one defines an
absolute value on K by

|x|p = Np−ordp(x)

We denote Σfini(K) the set of these absolute values. One verifies that these abso-
lute values are ultrametric.

Places of K. Assume that K has r1 real embeddings and r2 pairs of complex
embeddings. For σi : K ↪→ R, i = 1, . . . r1, one defines an absolut value by

|x|σi = |σi(x)|
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and for σj : K ↪→ C, j = 1, . . . r2 one defines an absolute value

|x|σj = |σj(x)|2.

We denote Σ∞(K) the set of these r1 + r2 absolute values.
We set Σ(K) = Σfini(K) ∪ Σ∞(K) the set of places of K.

Theorem 6.1.8. [Product formula] Let x ∈ K∗. Then we have∏
v∈Σ(K)

|x|v = 1.

Proof. Assume first thatK = Q. We could then write x = ±pe11 . . . perr with pi prime
and ei ∈ Z \ {0}, i = 1, . . .m. We then have |x|pi = p−eii for all finite places, for the
place ∞ corresponding to the embedding Q ⊂ R, we have |x|∞ = |x| = pe11 . . . perr .
We then get ∏

v∈Σ(Q)

|x|v = p−e11 · . . . · p−err pe11 . . . perr = 1.

In the general case let p be a prime ideal of OK . Let us write

pOK = pe11 . . . pemm .

Let x ∈ K∗ ans let NK/Q(x) ∈ Q be the norm of x. We then have∏
p|p

|x|p = |NK/Q(x)|p. (6.1)

In fact, one verifies that NK/Q(x) = ±N(xOK), so that

NK/Q(x) = ±
∏
p

Npordp(x) = ±
∏

p
∑

p|p fpordp(x).

We then deduce

|NK/Q(x)|p = p−
∑

p|p fpordp(x) =
∏
p|p

Np−ordp(x) =
∏
p|p

|x|p,

and we get (6.1).
For the places at infinity we also have∏

v∈Σ∞(K)

|x|v = |NK/Q(x)|∞.

In fact, by the definition of the norm NK/Q(x) =
∏r1

i=1 σi(x)
∏r2

j=1 σi+j(x)σ̄i+j(x), so
that

|NK/Q(x)|∞ =
∏

v∈Σ∞(K)

|x|v.
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We then have:∏
v∈Σ(K)

|x|v =
∏

w∈Σ(Q)

∏
v|w

|x|v =
∏

w∈Σ(Q)

NK/Q(x)w = 1

by the first case when K = Q.

6.2 Heights

6.2.1 Weil height on Pn(Q)

The notion of height is designed in order to ’measure’ the size of points in a pro-
jective space or in a projective algebraic variety defined over a number field K.

Definition 6.2.1. Let K be a number field and let P = (x0 : . . . : xn) be a point
of PnK . One define the height of P relatively to the field K by the formula

HK(P ) =
∏

v∈Σ(K)

max(|x0|v, . . . |xn|v).

Remark.

1. Using the product formula 6.1.8, this definition does not depend on a choice
of projective homogeneous coordinates of the point P .

2. If K = Q, one could find coordinates P = (x0 : . . . : xn) with xi relatively
prime integers. We then get HQ(P ) = max(|x0|, . . . , |xn|).

Lemma 6.2.2. Let L/K be a finite extension of number fields of degree d. If
P ∈ Pn(K), then

HL(P ) = HK(P )d.

Proof. Left as an exercise.

The lemma above allows to define the Weil height on Pn(Q).

Definition 6.2.3. The Weil height on Pn(Q) is a map

H : Pn(Q)→ R
P ∈ Pn(K) 7→ HK(P )1/[K:Q].

We set hK = logHK and h = logH.
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Definition 6.2.4. If K is a number field and x ∈ K, one defines

H(x) = H(1 : x).

Theorem 6.2.5. [Northcott, Kronecker] Let d ≥ 1, C > 0.

(i) The set
{P ∈ Pn(Q), [Q(P ) : Q] ≤ d,H(P ) ≤ C}

is finite.

(ii) One has H(P ) > 1, unless P = (x0 : . . . : xn) is such that for any i either xi
is a root of unity or xi = 0.

Proof. (i) Let P = (x0 : . . . : xn). Up to a permutation one can assume x0 6= 0
and write P = (1 : α1 . . . : αn) avec αi ∈ Q. By definition

H(αi) ≤ H(P ) et [Q(αi) : Q] ≤ [Q(P ) : Q].

We deduce that it is enough to show that the set

S = {α ∈ Q, [Q(α) : Q] ≤ d,H(α) ≤ C}

is finite. By (ii) of the lemma below, the coefficients of the minimal polynomial
are bounded for any α ∈ S, which shows that the set S is finite.

(ii) We write P = (1 : α1 . . . : αn) as above. If H(P ) ≤ 1, then |αi|v ≤ 1 for any
i and any v. This last condition is also satisfied by αmi for all m > 0. Using
(i) we get that the set {(1 : αm1 . . . : αmn )} is finite, so that αi are the roots of
unity.

Lemma 6.2.6. (i) [Gauss Lemma] Let K be a number field and let P,Q ∈ K[x].
Let v be an absolute value corresponding the the prime ideal p of K and let
||P ||v be the norm sup of the coefficients of P . Then ||PQ||v = ||P ||v||Q||v.

(ii) Let α ∈ Q and let K = Q(α). Let P ∈ Z[x], P (x) = a0(x − α1) . . . (x − αd)
be the minimal polynomial of α. Then

HK(α) = |a0|
d∏
i=1

max{1, |αi|}.

Proof. (i) Let π ∈ p \ p2 (see remark after the theorem 6.1.6 to insure that this
set is nonempty). We have in particular ordp(π) = 1. Up to multiplying the
coefficients of P and Q by some power of π, we can assume that ||P ||v =
||Q||v = 1. In particular, the images P̄ and Q̄ of P and Q in the ring O/p[x]
are nonzero. Since O/p[x] is an integral ring, we then deduce that P̄ Q̄ = PQ
is nonzero which means that ||PQ||v = 1.
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(ii) Let L = Q(α1, . . . , αd). By definition we have:

HK(α)[L:K] = HL(α) =
∏

w∈Σfini(L)

max(1, |α|w)
∏

w∈Σ∞(L)

max(1, |α|w). (6.2)

For the places at infinity we have:

∏
w∈Σ∞(L)

max(1, |α|w) =
∏

v∈Σ∞(K)

max(1, |α|v)[L:K] = (
d∏
i=1

max(1, |αi|))[L:K].

(6.3)

Let w ∈ Σfini(L). Using the Gauss lemma (i) for P we have

1 = ||P ||w = |a0|w
d∏
i=1

max(1, |αi|w).

In addition, by the product formula,∏
w∈Σfini(L)

|a0|w = |a0|−[L:Q].

For the finite places we then have:

1 =
∏

w∈Σfini(L)

|a0|w
d∏
i=1

∏
w∈Σfini(L)

max(1, |αi|w) = |a0|−[L:Q](
∏

w∈Σfini(L)

max(1, |α|w))d.

(6.4)
We then deduce the result from (6.3), (6.4) and (6.2):

HK(α)[L:K] = |a0|[L:Q]/d(
d∏
i=1

max(1, |αi|))[L:K].

Theorem 6.2.7. Let (P0, . . . Pm), Pi ∈ Q̄[x0, . . . xn], i = 0, . . .m be a family of
projective homogeneous polynomials of degree d. Let Z = Vp(P0, . . . Pm) ⊂ PnQ and
let U = PnQ \ Z. Let V ⊂ PnQ be a projective variety such that V ∩ Z = ∅. One
defines

Φ : U(Q)→ PmQ
x 7→ (P0(x) : . . . Pm(x)).

Then there are constants c1, c2, c3 depending only on Φ and such that

(i) for any x ∈ U(Q) one has H(Φ(x)) ≤ c1H(x)d;
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(ii) for any x ∈ V (Q) one has c2H(x)d ≤ H(Φ(x)) ≤ c3H(x)d;

Proof. (i) Let x ∈ U(Q). There exists K a number field such that x ∈ U(K). We
write Pi(x) =

∑N
j=1 aijx

j where N is the number of monomials xj = xi00 . . . x
in
n

of degree d. Let v ∈ Σ(K). By the triangular inequality for v, there exists a
constant Nv such that

|y1 + . . .+ yN |v ≤ Nvmax(|y1|v, . . . , |yN |v). (6.5)

Note that one could take Nv = 1 for any finite place v. We then get

|Pi(x)|v ≤ Nvmaxj|aij|vmaxi|xi|dv. (6.6)

Let Av = maxi,j|aij|. Note that Av = 1 but for a finite number of places v.
We get

HK(Φ(x)) =
∏
v

maxi|Pi(x)|v ≤
∏
v

NvAvmaxi|xi|dv = (
∏
v

NvAv)HK(x)d

so that c1 = (
∏

vNvAv)
1/[K:Q] works.

(ii) Let V = V (Q1, . . . , Qr). Since V ∩Z = ∅, by porjective Nullstellensatz, there
exists M > 0 and polynomials Aij and Bij such that

xMj =
∑

AijPi +
∑

BijQi.

Note that one can assume that the polynomials Aij are homogeneous of degree
M − d. Up to replacing K by a fintie extension, one could also assume that
the polynomials in the equality above have their coefficients in K. We then
have, for any x = (x0, . . . xn) ∈ V :

|xj|Mv = |
∑

AijPi|v ≤ (m+ 1)vmaxi|Aij(x)|vmaxi|Pi(x)|v,

where (m + 1)v are constants defined as in (6.5). We apply the inequalities
6.6 to the homogeneous polynomials Aij of degree M − d, so that one could
write

|xj|Mv ≤ A′vmaxi|x|M−dv maxi|Pi(x)|v
for some constants A′v such that A′v = 1 but in a finite number of places. We
deduce

maxj|xj|dv ≤ A′vmaxi|Pi(x)|v,

and we get the result by taking the product over v.

Remark. In the theorem above one could write h(Φ(x)) = dh(x) +O(1).
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6.2.2 Weil height on an elliptic curve

Let E ⊂ P2
Q be an elliptic curve defined by

Y 2Z = X3 + aXZ2 + bZ3. (6.7)

For P ∈ E(Q) one defines

h(P ) =

{
h(xP ), P 6= 0E

0, P = 0E.

Theorem 6.2.8. There exists a constant c1 such that for any P ∈ E(Q) one has

−c1 ≤ h(2P )− 4h(P ) ≤ c1.

Proof. The statement is immediate if P = 0 or a 2-torsion point. Assume x2P 6= 0.
By lemma 6.2.10 below, the polynomials P0(T,X) = 4T (X3 + aXT 2 + bT 3) and
P1(T,X) = X4 − 2aX2T 2 − 8bXT 3 + a2T 4 have no common roots in P1. We apply
theorem 6.2.7(i) to Φ : P1 → P1, Φ = (P0 : P1). Since Φ(1 : xP ) = (1 : x2P ), we
deduce

h(2P ) = h(1 : xP ) = h(Φ(1, xP )) = 4h(P ) +O(1).

Theorem 6.2.9. (i) h(P ) = h(−P );

(ii) h(P +Q) + h(P −Q) = 2h(P ) + 2h(Q) +O(1).

Proof. Assertion (i) is immediate. We show (ii). We may assume Q 6= ±P . By
3.1.6, we have:

xP+Q + xP−Q =
2(xP + xQ)(a+ xPxQ) + 4b

(xP + xQ)2 − 4xPxQ

xP+QxP−Q =
(xPxQ − a)2 − 4b(xP + xQ)

(xP + xQ)2 − 4xPxQ
.

By theorem 6.2.7(ii) and lemma 6.2.10 we deduce that for the map

Φ(T, U, V ) : P2 → P2

(T : U : V ) 7→ (U2 − 4TV : 2U(aT + V ) + 4bT 2 : (aT − V )2 − 4bTU)

one has
h(Φ(x)) = 2h(x) +O(1).

Let

ψ : (E \ 0E)2 → P2

(P,Q) 7→ (1 : xP + xQ, xPxQ)
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and µ(P,Q) = (P + Q,P −Q). We then have ψ ◦ µ = Φ ◦ ψ and by lemma 6.2.11
below

h(ψ(P,Q)) = h(xP ) + h(xQ) +O(1).

We deduce

h(P +Q) + h(P −Q) = h(1 : xP+Q + xP−Q : xP+QxP−Q) +O(1) =

= h(ψ ◦ µ(P,Q)) +O(1) = H(Φ ◦ ψ(P,Q)) +O(1) =

= 2h(ψ(P,Q)) +O(1) = 2h(P ) + 2h(Q) +O(1).

Lemma 6.2.10. Let k be a field. Let a, b ∈ k∗ with 4a3 + 27b2 6= 0.

(i) The polynomials x3 +ax+b et x4 +2ax2−8bx+a2 in k[x] are relatively prime.

(ii) The homogeneous polynomial U2−4TV, 2U(aT +V )+4bT 2, (aT−V )2−4bTU
have no commun roots P2

k.

Proof. The statement (i) follows from :

(3x2 + 4a)(x4 − 2ax2 − 8bx+ a2)− (3x3 − 5ax− 27b)(x3 + ax+ b) =

= 4a3 + 27b2. (6.8)

The statement (ii) is trivial if T = 0. Assume T 6= 0 ans denote u = U/2T and
v = V/T . One has u2 − v = 2u(a + v) + 4b = 0 et (v − a)2 − 8bu = 0, so that
u4 − 2au2 − 8bu+ a2 = u3 + au+ b, contradiction with (6.8).

Lemma 6.2.11. Let α, β ∈ Q. Then

1/2H(α)H(β) ≤ H(1 : α + β : αβ) ≤ 2H(α)H(β).

Proof. Let K be a number field such that α, β ∈ K. The statement follows from:

max{1, |α + β|v, |αβ|v} = max{1, |α|v}max{1, |β|v}, v ∈ Σfini(K);

1/2 max{1, |α|v}max{1, |β|v} ≤ max{1, |α + β|v, |αβ|v} ≤
≤ 2max{1, |α|v}max{1, |β|v}, v ∈ Σ∞(K).
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6.2.3 Néron-Tate height on an elliptic curve

The goal of this section is to define a height function for the points of an elliptic
curve E which is a quadratic form.

Lemma 6.2.12. Let S be a set. Assume that we have functions h : S → R and
g : S → S such that there are constants d > 1 and c > 0 such that

|h(g(x))− dh(x)| < c for any x ∈ S.

Then for any x ∈ S the sequence xn = h(gn(x))
dn

converges in R. If ĥ(x) is the limit
of the sequence (xn), then

|h(x)− ĥ(x)| ≤ c/(d− 1)

ĥ(g(x)) = dĥ(x).

Proof. Let us show that the sequence (xn) is a Cauchy sequence. We write the
inequality |h(g(x))− dh(x)| < c for x = gk−1(x):

− c

dk
≤ h(gk(x))

dk
− h(gk−1(x))

dk−1
≤ c

dk
.

We take a sum between n+ 1 and n+m and we get

− c

dn(d− 1)
≤ h(gn+m(x))

dn+m
− h(gn(x))

dn
≤ c

dn(d− 1)
.

The sequence (xn) is then a Cauchy sequence, we set ĥ(x) its limit. Passing to the
limit in the inequalities above, we get

− c

dn(d− 1)
≤ ĥ(x)− h(gn(x))

dn
≤ c

dn(d− 1)
,

so that |h(x)− ĥ(x)| ≤ c/(d− 1). In addition,

ĥ(g(x)) = lim
n→∞

h(gn+1(x))/dn = d lim
n→∞

h(gn+1(x))/dn+1 = dĥ(x).

Let E be an elliptic curve defined over a number field K. By theorem 6.2.8, if
we set S = E(K), h the Weil height on E and g the multiplication by 2 on E(K),
then the conditions of the previous lemma are satisfied (with d = 4). We can then
define :

Definition 6.2.13. The Néron-Tate height on E is defined by

ĥ(P ) = lim
n→∞

h(x2nP )

4n
.
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Theorem 6.2.14. (i) ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q);

(ii) ĥ(P ) = 0 iff P is a torsion point.

Proof. We get the statement (i) passing to the limit on n in inequalities

−c/4n ≤ h(2n(P +Q))

4n
+
h(2n(P −Q))

4n
− h(2nP )

4n
− h(2nQ)

4n
≤ c/4n

in the theorem 6.2.9.
IfmP = 0, then 0 = ĥ(mP ) = m2ĥ(P ), so that ĥ(P ) = 0. Inversely, if ĥ(P ) = 0,

then ĥ(mP ) = 0 for all m. But the set {mP,m ∈ Z} is finite, so that P is tor-
sion.

Corollary 6.2.15. Let E be an elliptic curve defined over a number field K. Then
the torsion subgroup E(K)tors of E(K) is a finite group.

Proof. The statement follows from the previous theorem and the fact that we have
only a finite number of points of bounded height.

6.3 Mordell-Weil theorem
The goal of this section is to give a proof of the following famous theorem:

Theorem 6.3.1. [Mordell-Weil] Let E be an elliptic curve over a number field
K. The group E(K) is an abelian group of finite type.

In particular E(K) = E(K)tors⊕Zr where the group of torsion points E(K)tors
of E is finite and r is by definition the rank of E.

The proof is in two steps:

1. Let E/K be an elliptic curve defined by the equation y2 = x3+ax+b such that
the polynomial P3(x) = x3 + ax+ b has three roots in K. A decent argument
and the existence of the quadratic height function ĥ on E(K) show that
theorem 6.3.1 is a consequence of its "weak" version: le group E(K)/2E(K)
is finite.

2. In order to show the weak Mordell-Weil theorem we construct a homomor-
phism E(K) → (K∗/K∗2)3 with kernel 2E(K) and finite image. This last
property uses in particulr the Dirichlet theorem on units in the ring of inte-
gers of a number field (see below).
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6.3.1 Descent

Proposition 6.3.2. Let G be an abelian group and let q : G → R be a quadratic
form. Assume

(i) the quotient G/2G is finite;

(ii) for any c ∈ R, the set {x ∈ G, q(x) ≤ c} is finite.

Then the group G is an abelian group of finite type : if S is the set of representatives
for each class of G/2G and if c = maxx∈Sq(x), then the set {x ∈ Gq(x) ≤ c}
generates G.

Proof. Note first that for any x ∈ G one has q(x) ≥ 0. In fact, if it was not the
case, we would have q(mx) = m2q(x) < 0 for any integer m > 0, contradiction with
(ii). So that we could define

|x| =
√
q(x).

Since q is a quadratic form, we have |mx| = m|x| for anym > 0 and |x+y| ≤ |x|+|y|.
Let c as in the statement and let x ∈ G with q(x) > c. One could write

x = y1 + 2x1 for x1 ∈ G and y1 in the set of representatives of G/2G, in particular
|y1| ≤

√
c. We have

|x1| =
1

2
|x0 − y1| ≤

1

2
|x0|+ |y1| ≤

1

2
(|x0|+

√
c) < |x0|.

We then construct inductively the sequence (xn) with x0 = x and xn = yn+1 +2xn+1

and |xn+1| < |xn|. By the finiteness condition (ii), there exists n0 such that
|xn0| <

√
c. We then get that x is a combination of yi, i ≤ n0 and and xn0 ,

which are in the finite set S.

"Weak" version implies theorem 6.3.1. Let E/K an elliptic curve defined by an
equation y2 = x3 + ax+ b. Let L/K be a finite extension such that L contains the
decomposition field of the polynomial P (x) = x3 + ax + b. We have an inclusion
E(K) ⊂ E(L), hence, if E(L) is an abelian group of finite type, then E(K) is lso
of finite type. Up to replacing K by L, we may then assume that E is given by the
equation (6.9).

The "weak" version gives the finiteness of the group E(K)/2E(K). But we also
have the Néron-Tate height ĥ : E(K) → R which is a quadratic form and verifies
the condition that for any c ∈ R, the set {x ∈ E(K), ĥ(x) ≤ c} is finite. By propo-
sition 6.3.2, the group E(K) is an abelian group of finite typei.

6.3.2 Dirichlet units theoerm

In order to establish the Mordell-Weil theorem we will need to use some additional
properties of units in OK .
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Definition 6.3.3. Let S be a finite set of prime ideals in OK . The ring of S-
algebraic integers of K is the ring

OK,S = {x ∈ K, ordp(x) ≥ 0∀p /∈ S}.

We denote O∗K,S the set of S-units. Note that if S is empty, then O∗K,S = O∗K .
Assume that K has r1 real embeddings and r2 pairs of conjugated complex

embeddings. We consider a map

ΦK,S : O∗K,S → Rr1+r2+|S|

ΦK,S(x) =
∏

i=1,...,r1+r2

log σi(x) ·
∏
v∈S

log |x|v.

Lemma 6.3.4. The image ΦK,S(O∗K,S) is a discret subgroup of Rr1+r2+|S|.

Proof. Since Φ is a homomorphism, the image I = ΦK,S(O∗K,S) is a subgroup of
V = Rr1+r2+|S|. Il is enough to show that there exists a neighborhood T of 0 ∈ V
such that T ∩ I is finite. Let

T = {x = (x1, . . . xr1+r2+|S|) ∈ V, |xi| < 1, i ≤ r1+r2, |xj| < logNp, j corresponding top ∈ S.}

Let x = ΦK,S(α) ∈ T ∩ I. The condition |xj| < logNp for j corresponding to a
prime p implies that |ordp(α)| < 1, so that |ordp(α)| = 0. Hence, α ∈ O∗K . In
addition, |σi(α)| are bounded for all i = 1, . . . r1 + r2. The finiteness of T ∩ I then
follows from the lemma below.

Lemma 6.3.5. Let K be a number field havig r1 real embeddings σ1, . . . σr1 and
r2 pairs of conjugate complex embeddings σr1+1, σ̄r1+1, . . . , σr1+r2 , σ̄r1+r2. Let a1, i =
1 . . . , r1 + r2 be strictly positive real numbers. Let

U = {α ∈ OK , |σi(α)| ≤ ai ∀ i}.

Then

(i) the set U is finite;

(ii) if (a1, . . . , an) = (1, . . . , 1), then any α ∈ U is a root of unity.

Proof. Let α ∈ U and let

χα,K(x) =

r1∏
i=1

(x− σi(α))

r2∏
j=1

(x− σr1+j(α))(x− σ̄r1+j(α)).

We have χα,K ∈ Z[x].We have χα,K(α) = 0. SInce |σi(α)| ≤ ai ∀ i, the coefficients
of χα,K are bounded. We have only a finite number of such polynomials, so that
we get the finiteness of U . If (a1, . . . , an) = (1, . . . , 1), then the condition α ∈ U
implies that αm ∈ U for any m > 0. SInce U is finite, we deduce that α is a root of
unity.
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Theorem 6.3.6. [Dirichlet-Chevalley-Hasse]Let K be a number field with r1

real embeddings and r2 pairs of conjugated complex embeddings. Let S be a finite
set of prime ideals in OK, we denote |S| its cardinaity (S could be empty). Then:

(i) the group of S-units O∗K,S is a groupe of finite type;

(ii) the rank of the group O∗K,S equals to r1 + r2 − 1 + |S|.

Proof. We estalish here the part (i) of the theorem, it is enough for the applications
to elliptic curves .

By lemma 6.3.5, I := ΦK,S(O∗K,S) is a discrete subgroup of Rr1+r2+|S|. By lemma
below, there exist elements v1, . . . vm ∈ I such that

(i) vi = ΦK,S(ui), with ui ∈ O∗K,S;

(ii) for any element u ∈ O∗K,S we have u = e
∏

i u
ri
i with ri ∈ Z and e ∈ ker ΦK,S.

An element e ∈ ker ΦK,S verifies

(*) ordp(e) = 0 for any p ∈ S, in particular, e ∈ OK ;

(**) |σi(e)| = 1 for any i.

In particular, conditions of lemma 6.3.5(ii) are satisfied, we then get that e is a root
of unity and the set of such e is finite. We deduce from (ii) above that the group
O∗K,S is a group of finite type.

Lemma 6.3.7. Let V be an R-vector space of finite dimension. Let I ⊂ V be a
discret subgroup. Then there exist R-linearly independent vectors v1, . . . , vm ∈ V
such that

I = Zv1 + . . .+ Zvm.

Proof. Consider w1, . . . , wn the maximal set of element of I, independent over R.
Hence I ′ = Zw1 + . . . + Zwn ⊂ I and any element a ∈ I could be written as
a = r1w1 + . . .+ rnwn with ri ∈ R. Let

T = {
∑

λiwi, 0 ≤ λi ≤ 1.}

Since I is discret, T ∩I is finite: T ∩I = {a1, . . . , as}. From the argument above, we
deduce that any a ∈ I could be written as a = ai + a′ with a′ ∈ I ′. In particular, I ′
is a subgroup of finite index in I, i.e. dI ⊂ I ′ for some integer d. We then get that
I ⊂ 1

d
I ′ and 1

d
I ′ is a free Z-module of rank n. Hence I is a free Z-module of finite

rank n ≤ m: let v1, . . . vm be the generators of I. Since w1, . . . , wn are independant
over R and

∑n
i=1 Rwi ⊂

∑r
j=1 Rvj, we deduce that n = m and that v1, . . . , vm are

R-linearly independent.
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6.3.3 Weak Mordell-Weil theorem

Let E be an elliptic curve over a number field K defined by an equation

y2 = (x− α1)(x− α2)(x− α3) (6.9)

Let Pi = (αi, 0). We define a map φ = (φ1, φ2, φ3) : E(K)→ (K∗/K∗2)3 by

φi(P ) =


xP − αi P 6= Pi, 0E

(αi − αi−1)(αi − αi+1), P = Pi

1 P = 0E

where we write P = (xP , yP ) the coordinates of the point P ; the indices i− 1 and
i+ 1 are modulo 3.

Proposition 6.3.8. The map φ is a homomorphism.

Proof. By definition, for any point P ∈ E(K), we have

φ(P ) = φ(−P ) = φ(P )−1 (6.10)

in (K∗/K∗2)3. Let P,Q ∈ E(K) and let R = −(P +Q), i.e.

P +Q+R = 0E.

We then have φ(P +Q) = φ(R) and we want to show that

φi(P )φi(Q)φi(R) = 1, i = 1, 2, 3. (6.11)

Let f(x) = (x − α1)(x − α2)(x − α3). Let y = λx + µ the equation of the line L
intersecting E in P,Q,R, so that the equation

f(x)− (λx+ µ)2 = 0

has three roots xP , xQ, xR. We have the following cases to consider:

1. P,Q,R are all distinct from Pi and from 0E. Consider

g(x) := f(x+ αi)− (λx+ λαi + µ)2 = 0,

then g(x)has three roots xP − αi, xQ − αi, xR − αi. Since f(αi) = 0, the
constant coefficient of the polynomial g(x) is (λαi + µ)2. We then have

(xP − αi)(xQ − αi)(xR − αi) = (λαi + µ)2,

and we get (6.11) in this case.

2. One point among P,Q,R is the point 0E. By (6.10), one could assume that
R = 0E. One then gets (6.11) using (6.10) again.
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3. One point among P,Q,R is the point Pi. One can assume i = 1 in order
to simplify the notations. Using (6.10), one could assume R = P1. We then
argue as in the first case: the equation of the line L is y = λ(x− α1) and the
equation

f(x) = λ2(x− α1)2

has three roots: xP , xQ et α1, i.e. the equation

(x− α2)(x− α3) = λ2(x− α1)

has two roots xP et xQ. Let x = x′ + α1. We then have that the equation

(x′ + (α1 − α2))(x′ + (α1 − α3)) = λ2(x′)2

has two roots φ1(P ) and φ1(Q), so that φ1(P )φ1(Q) = (α1 − α2)(α1 − α3) =
φ1(R), which implies (6.11).

Proposition 6.3.9. The kernel of the map φ is 2E(K).

Proof. By the previous proposition φ(2P ) = φ(P + P ) = (φ(P ))2 = 1, so that
2E(K) ⊂ kerφ. It is enough to establish the inclusion kerφ ⊂ 2E(K). Let P ∈
kerφ. We can then find zi ∈ K∗, i = 1, 2, 3 such that

xP − αi = z2
i . (6.12)

Let u, v, w such that
u+ vαi + wα2

i = zi

(in fact, u, v, w are solution of the Vandermonde linear system.) The equations
(6.12) give the following conditions :

u2 − 2vwb− xP = 0

2uv − 2vwa− bw2 + 1 = 0

v2 + 2uw − aw2 = 0,

so that v3 + vw2a + bw3 − w = 0. Note that w 6= 0 (if not, v = 0 and we get a
contradiction 1 = 0 from the second equation). We then have

(v/w)3 + a(v/w) + b = (1/w)2.

We deduce that Q = (v/w, 1/w) is a point of E(K). One verifies that P = 2Q:

x2Q =
(v/w)4 − 2a(v/w)2 − 8b(v/w) + a2

4((v/w)3 + a(v/w) + b)
=

=
v4 − 2av2w2 − 8bvw3 + a2w4

4w2
=

=
(aw2 − 2uw)2

4w2
+

1

4
(−2av2 − 8bvw + aw2) =

= u2 − 2vwb− a

2
(v2 − aw2 + 2uw) = x. (6.13)
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Proposition 6.3.10. The image φ(E(K)) of the map φ dans (K∗/K∗2)3 is finite.

Proof. By theorem 6.1.5, the group of classes Cl(OK) is finite. One could then find
a finite set S of places of K such that OK,S is a principal ring. Up to enlarging S,
one could assume in addition that ∆E = −(4a3 + 27b3) is in O∗K,S. We have

∆E = ((α1 − α2)(α1 − α3)(α2 − α3))2,

so that αi − αj ∈ O∗K,S. Let P ∈ E(K). We write xP = u/v and yP = w/t with
u, v, w, t ∈ OK,S and

(u, v) = (w, t) = 1 in OK,S. (6.14)

We have
w2v3 = t2(u− vα1)(u− vα2)(u− vα3).

Using conditions (6.14), we deduce that v3 = t2, up to a multiplicatin of v and t by
units. One could then write v = s2 and t = s3, so that

P = (u/s2, w/s3), w2 = (u− α1s
2)(u− α2s

2)(u− α3s
2).

Any common divisor of (u−α1s
2) and (u−α2s

2) divides (α1−α2)s2 and (α1−α2)u,
so that it divides (α1−α2) ∈ O∗K,S. We then deduce that (u−α1s

2), (u−α2s
2) and

(u− α3s
2) are relatively prime between them, so that

xP − αi =
u− αis2

s2
= γir

2
i , γi ∈ O∗K,S.

Hence, φ(P ) = (γ1, γ2, γ3). The Dirichlet-Chevalley-Hasse theorem 6.3.6 implies
that the group O∗K,S/(O∗K,S)2 is finite. We deduce that φ(E(K)) is finite.

Theorem 6.3.11. [Weak Mordell-Weil] Let E be an elliptic curve defined by
equation (6.9). The group E(K)/2E(K) is finite.

Proof. By proposition 6.3.9, E(K)/2E(K) ' φ(E(K)). This last group is finite by
proposition 6.3.10.

6.3.4 Computing the group E(Q).

Let E be an elliptic curve over K = Q defined by an equation

y2 = x3 + ax+ b = (x− α1)(x− α2)(x− α3).

The proof of the weak Mordell-Weil theorem give in fact a method to detemine the
group E(Q)/2E(Q): we see that Imφ ⊂ {(γ1, γ2, γ3) ∈ (O∗K,S/(O∗2K,S))3, γ1γ2γ3 =
1} where S = {p prime, p|∆E}. To determine the group E(Q)tors one could use the
following result:
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Theorem 6.3.12 (Lutz-Nagell). Let E be an elliptic curve y2 = x3 + ax + b with
a, b ∈ Z. Let P ∈ E(Q) be a torsion point. Then xP , yP ∈ Z and either yP = 0 or
y2
P |4a3 + 27b2.
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Chapter 7

Elliptic curves over C

In this chapter we briefly discuss elliptic curves defined over the field C. In this
case we can use in addition some analytic methods.

7.1 Elliptic functions
Let ω1, ω2 ∈ C be linearly independent over R. Let Λ = Zω1 ⊕ Zω2 ⊂ C be the
corresponding lattice. The fundamental domain of Λ is the set∏

= {t1ω1 + t2ω2, 0 ≤ t1, t2 < 1}.

We have a bijection ∏ ∼→ C/Λ (7.1)

so that we can identify
∏

with C/Λ.

Definition 7.1.1. A Λ-elliptic function is a meromorphic function on C such
that

f(z + w) = f(z)∀w ∈ Λ, z ∈ C.

These functions appear in the study of elliptic integrals∫ x

∞

dt√
t(t− 1)(t− λ)

.

Often we do not specify the lattice Λ and we say «an elliptic function». One could
see an elliptic function f as a function on the quotient C/Λ, using the isomorphism
(7.1) above.

The set of all Λ-elliptic functions form a field that we denoteM(Λ).
Recall that for any meromorphic function f and for any z ∈ C, one defines the

order ordzf and the residu reszf . If f is elliptic, we have that ordzf and reszf
depend only on the class of z in C/Λ. We have the following properties.

Proposition 7.1.2. Let f be an elliptic function.
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1. If f has no poles, then f is constant;

2.
∑

z∈C/Λ
reszf = 0;

3.
∑

z∈C/Λ
ordzf = 0;

4.
∑

z∈C/Λ
ordzf · z ∈ Λ.

5. if f has only one pole z0, then z0 is not a simple pole.

The constant functions are obviously elliptic. One defines

ρ(z) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2
)

the Weierstrass function.

Proposition 7.1.3. 1. the function ρ and its derivstive ρ′ are elliptic;

2. the fieldM(Λ) of elliptic functions is generated by ρ and ρ′:

M(Λ) = C(ρ, ρ′);

3. we have
ρ′(z)2 = 4ρ(z)3 − 60G4ρ(z)− 140G6 (7.2)

where G2k = G2k(Λ) =
∑

w∈Λ\{0}

1
w2k ,k ≥ 2;

4. for
g2 = 60G4 and g3 = 140G6 (7.3)

we have g3
2 − 27g2

3 6= 0.

One also verifies the addition formulas for the Weierstrass function:

ρ(z1 + z2) = −ρ(z1)− ρ(z2) +
1

4
(
ρ′(z1)− ρ′(z2)

ρ(z1)− ρ(z2)
)2 (7.4)

ρ(2z) = −2ρ(z) +
1

4
(
ρ′′(z)

ρ′(z)
)2. (7.5)

70



7.2 Properties of elliptic curves over C

7.2.1 The group of points

Proposition 7.2.1. Let E be a complex elliptic curve defined by the equation

Y 2Z = 4X3 − g2XZ
2 − g3Z

3

where g2 and g3 are defined in (7.3). We then have a biholomorphic map

Ψ : C/Λ→ E, z 7→ [ρ(z) : ρ′(z) : 1]

which is a group isomorphism.

Proof. Consider first the surjectivity. Let (x, y) ∈ E. We then have that the
function h(z) = ρ(z)− x has a double pole at 0. Hence h has also a zero z0 in

∏
.

We deduce from 7.2 that ρ′(z0) or ρ′(−z0) is y. Hence, either z0, or −z0 works.
For the injectivity assume that ρ(z1) = ρ(z2) and that ρ′(z1) = ρ′(z2). The goal

is to show that z1 − z2 ∈ Λ. We distinguish the following cases :

1. If z1 is the pole of ρ, then z2 is also a pole, so that z1 − z2 ∈ Λ.

2. Assume that z1 is not a pole of ρ. Note that for ω1, ω2 and ω3 = ω1 + ω2 we
have ρ′(ωi/2) = ρ′(−ωi/2) = −ρ′(ωi/2) (the first equality is a consequence of
the fact that ρ′ is elliptic). We then have that ρ′ has three zeros ωi/2 in

∏
.

Since ρ′ has only one pole of order 3 in
∏
, we get that ρ′ has no other zeros

in
∏
.

If now z1 6= ωi/2 we introduce h(z) = ρ(z) − ρ(z1). Then h(z) = 0 for
z = z1, z2 or −z1. Since h has only one double pole in

∏
, we deduce that

z2 = −z1. Hence y = ρ′(z2) = ρ′(−z1) = −y so that ρ′(z1) = 0 which is not
possible from the above argument.

3. If z1 = ωi/2, we find ρ′(z1) = 0, i.e. z1 is a double root of h. But h has only
two zeros (and h(z2) = 0), so that z1 = z2.

In order to show that Ψ is a group homomorphism, we use the addition formulas
for the Weierstrass function, we leave it as an exercise.

Remark 7.2.2. 1. Let a, b ∈ C such that a3 − 27b2 6= 0. The uniformization
theorem says that there is a unique lattice Λ ⊂ C such that g2(Λ) = a,
g3(Λ) = b. Up to a linear change of coordinates, any complex elliptic curve is
given by an equation y2 = 4x3 − g2x− g3 with g3

2 − 27g2
3 6= 0. We can always

identify a complex elliptic curve with the quotient C/Λ for some lattice Λ.
We call such a quotient a complex torus.
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2. As a direct consequence of the proposition 7.2.1, we get the structure of the
subgroup E[n] of the n-torsion points, for a curve E defined over the field C.
In fcat, the kernel of the multiplication by n on C/Λ could be identified to
{z ∈ C, nz ∈ Λ}/Λ = (Z/n)2.

We also have another interpretation of the group of points of a complex elliptic
curve, as a groupe of divisors.

Definition 7.2.3. A divisor D on C/Λ is a finite formal sum

D =
∑

nizi, zi ∈ C/Λ.

We define the degree of D by deg(D) =
∑
ni. A principal divisor is the divisor

D of type
D =

∑
z∈C/Λ

(ordzf)z

where f is an elliptic function.

The set of all divisors on C/Λ is an abelian group. We denote Div(C/Λ) this
group, Div0(C/Λ) is the subgroup of divisors of degree zero and Divp(C/Λ) is the
subgroup of principle divisors. By proposition 7.1.2.3 above, we have Divp(C/Λ) ⊂
Div0(C/Λ).

Theorem 7.2.4 (Abel-Jacobi). The map

Div(C/Λ)→ C/Λ,
∑

nizi 7→
∑

ni · zi

induces a group isomorphism

φ : Div0(C/Λ)/Divp(C/Λ)
∼→ C/L.

Proof. (sketch) By proposition 7.1.2, the map φ is well defined. By the définition,
it is a group homomorphism. Since φ(z − 0) = z for any z ∈ C/Λ, the map φ is
surjective. For the injectivity, if D is a divisor such that φ(D) = 0, one explicitely
constructs a function f such that D = div(f).

Corollary 7.2.5. Let E be a complex elliptic curve Y 2Z = 4X3 − g2XZ
2 − g3Z

3

where g2 and g3 are defined in (7.3). We then have a group isomorphism

Div0(C/Λ)/Divp(C/Λ)→ E.

Proof. We get an isomorphism as above by composition of the map φ and the map
from proposition 7.2.1.
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7.2.2 The endomorphisms

Let E be a complex elliptic curve. By remark 7.2.2, one can identify it with the
torus C/Λ. On the other hand, for u ∈ C∗, the multiplication by u induices an
isomorphism between C/Λ and C/uΛ. Up to multiplying by an element u ∈ C we
can always assume that Λ = Z⊕Zτ with τ in the Poincaré plan H (i.e. Imτ > 0.)

Proposition 7.2.6. Two complex tori C/(Z⊕Zτ) and C/(Z⊕Zτ ′) are isomorphic
if and only if there is a matrix

(
a b
c d

)
∈ SL(2,Z) such that τ ′ = aτ+b

cτ+d
.

Proof. Let φ : C/(Z⊕ Zτ ′)→ C/(Z⊕ Zτ) be a homomorphism. Note that φ is in-
duced by a multiplication by an element α ∈ C such that α(Z⊕Zτ ′) ⊂ Z⊕Zτ. We
then have α = cτ + d and ατ ′ = aτ + b with a, b, c, d ∈ Z. Hence τ ′ = aτ+b

cτ+d
.

Since φ is an isomorphism, we have that the matrix
(
a b
c d

)
is invertible, since

Im(τ ′) = det
(
a b
c d

)
Im(τ)/|cτ + d|2 we get

(
a b
c d

)
∈ SL(2,Z).

Corollary 7.2.7. Let E = C/Λ be an elliptic curve, where Λ = Z⊕ Zτ. Then

End(E) =

{
Z, [Q(τ) : Q] > 2

Z + ZAτ, [Q(τ) : Q] = 2.

In the second case, the integer A is the coefficient of the minimal polynomial Aτ 2 +
Bτ + C of τ . We then say that E has complex multiplication.

Proof. We have End(E) = {α ∈ C, |αΛ ⊂ Λ}. Using previous proposition we have
that α = cτ +d corresponds to the matrix

(
a b
c d

)
∈ SL(2,Z) such that τ = aτ+b

cτ+d
. We

then get cτ 2 + (d− a)τ − b = 0. If [Q(τ) : Q] > 2, we get c = b = 0, a = d, i.e. the
multiplication by d. If [Q(τ) : Q] > 2 and Aτ 2 +Bτ +C is the minimal polynomial
of τ , we find in addition c = mA, d− a = mB,−b = mC, so that α = mAτ + d.

7.3 Complement : Fermat’s Last Theorem
To finish this course we will explain the role of the elliptic curves in the proof of
the Fermat’s last theorem.

Let E be an elliptic curve defined over Q. By a linear change of variables, one
can assume that E is given by an equation

y2 = x3 + Ax+B, A,B ∈ Z. (7.6)

For any prime p, one has a curve

Ep : y2 = x3 + Apx+Bp

where Ap ∈ Z/p (resp. Bp) is the reduction of A (resp. of B) modulo p. If p 6 |∆E,
the curve Ep is an elliptic curve over Fp. We say that E has an additive reduc-
tion at p if Ap = Bp = 0. If this happens for no prime p, we say that E has a
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semi-stable reduction.

For any prime p and for any r > 0 one defines apr = pr + 1−#Ep(Fpr) if Ep is
smooth. If it is not the case, one defines apr ∈ {−1, 1, 0} according to its type of
reduction. If n =

∏
prii is an integer, one defines an =

∏
aprii . To an elliptic curve

E one associates the series:

fE(τ) =
∞∑
n=1

anq
n, q = e2πiτ ,

convergent for any τ ∈ H.

Theorem 7.3.1 (Wiles, Breuil, Conrad, Diamond, Taylor).
(Taniyama-Shimura-Weil Conjecture)
Let E be the elliptic curve (7.6). The the curve E is modular : there exists an
integer N such that for any τ ∈ H one has

1. fE(aτ+b
cτ+d

) = (cτ+d)2fE(τ), ∀
(
a b
c d

)
∈ Γ0(N), with Γ0(N) = {

(
a b
c d

)
∈ SL(2,Z), c ≡

0 (mod N)};

2. fE(− 1
Nτ

) = ±Nτ 2fE(τ).

In 1994, A. Wiles established this conjecture for E semi-stable.

Let now
xn + yn = zn, n ≥ 3.

Assume that this equation has a nontrivial solution (a, b, c) with a, b, c ∈ Z. It
is enough to consider the case n = ` an odd prime. In 1986, Frey introduced an
elliptic curve associated to such a solution

EFrey : y2 = x(x− a`)(x+ b`).

Theorem 7.3.2 (Ribert, 1986). The curve EFrey is not modular.

This theorem and the theorem of A.Wiles imply that a solution (a, b, c) of the
Fermat equation cannot exist.
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