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Chapter 1

Affine and projective algebraic
varieties

1.1 Affine varieties, Nullstellensatz

In this section we introduce affine algebraic varieties : the base objects of study in
algebraic geometry. The main theorem of this section is the famous Hilbert’s Null-
stellensatz on zero locus of a system of polynomial equations over an algebraically
closed field.

Let k£ be a field. The main cases of interest for this course is k = C, k alge-
braically closed, k = R, k = Q or a finite extension (a number field), k finite.

We identify the affine space A} with the set k".

An affine algebraic variety over k is the subset of k™ defined as zero locus of a
system of polynomials in k[zy, ..., z,):

Definition 1.1.1. For [ an ideal in k[z1, ..., z,] we denote
V() ={x=(z1,...,2,) €k"| f(x) =0Vf eI}

the affine algebraic variety defined by I.

If f1,..., fm € k[z1, ..., x,]is a finite family of polynomials, we write V' (fi,..., fim)
instead of V((f1,..., fm)) for the affine variety defined by the ideal generated by
fla SR fm

Recall that the ring k[xq, ..., x,] is noetherian : any ideal I of this ring is gen-
erated by a finite number of elements, so that any algebraic variety is of the form
V(fi,..., fm) as above.

Example 1.1.2. In the affine plane A? we have V(z,y) = (0,0), V(z — 1,y —2) =
(1,2), V(y*—2*+=) is a curve (we will see that it is an example of an elliptic curve).



Remark 1.1.3. In a more advanced course on algebraic geometry an affine variety
corresponds to an ideal in k[xy,...,z,]; saing that X = V(I) is an affine variety
means that we recall the data of X and I. Speaking about the set of rational points
X (k) C k™ of X means that we consider the set X (k) = V(I) but we «forget»
the data of I. If K/k is an extension of k we denote X(K) = V(Igx) C K" for
Ix C K|xy,...,x,) the idéal generated by I.

Note that if &k is not algebraically closed, the set V(I) could be empty: for
example, for I = (2> +y?> +1) C Rlz,y]. If k = C and I = (f) with f € k|x]
a non constant polynomial, the fundamental theorem of algebra says that V ([) is
not empty. In the case of polynomials in many variables, we have an analogous
statement:

Theorem 1.1.4. [weak Nullstellensatz| Let k be an algebraically closed field
and let I be an ideal of k[z1,...,x,], I # (1). The set V(I) is nonempty.

Proof. This theorem follows from a theorem on the structure of maximal ideals
in klxy,...,z,|, that we give below, for the proof see the next section. In fact,
the ideal I is contained in a maximal ideal m (Krull’s theorem), and we can write
m = (r; —ay,...,xr, —a,) by 1.1.5. As V(m) is nonempty, we see that V(I) is
nonempty as well. m

Theorem 1.1.5. Let k be an algebraically closed field. Any maximal ideal m in
klxyi,...,x,)] is of the form m = (1 — a1, ..., 2, — a,) with ay, ..., a, € k.
Definition 1.1.6. If X is a subset of £™ we denote

I(X) = {f € klz1,...2,), f(z) = 0Vz € X}

the ideal of X.

For example, if X = {0,0} C A, then /(X) is the ideal of polynomials in k[z, y]
with zero constant term.

Note that I(X) is indeed an ideal: if f € I(X) and g € k[z1,...,z,], then the
polynomial fg vanishes at every point of X.
Proposition 1.1.7. 1. Let I, J be the ideals of k1, ..., ).

(a) ICJ = V(J)CV();
(b) VIDHNV(J)=V({I +J);
(c) V(IDUV(J)=V(I-J)=V(INJ).

2. If X C Y are subsets of k", then 1(Y) C I(X).
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3. If J is an ideal in klxy, ..., x,], then J C I(V(J)).
4. If X C K™ is an algebraic variety, then X = V(I(X)).

Proof. We give a proof for 1(b) et 1(c), the other properties follow immediately
from the definitions.

1(b). Let x € V(I)NV(J). We then have f(z) =0 and g(x) =0 for all f €I
and g € J. We deduce h(x) = 0 for all h € I +J. In the other direction, if h(z) =0
for all h € I + J, we have in particular that f(z) = 0 and g(x) =0 for all f € I
and g € J, so that x € V(I) NV (J).

I(c). Let x € V(I) UV(J). We then have either f(z) = 0 for all f € I, or
g(x) =0for all g € J. We deduce h(z) =0forall h € I-J (resp. forall h € INJ).
In the other direction, assume h(z) = 0 for all h € [ - J (resp. for all h € I N J).
If x ¢ V(I), there exists f € V(I) such that f(z) #0. Let g € J. As fge I-J
(resp. in I N J), we deduce g(x) = 0, so that z € V(J). O

The previous properties imply that the sets V() are the closed sets of some
topology, called Zariski topology on k™. If X C k" is an affine algebraic variety,
we call the induced topology on X Zariski topology on X as well.

Note that we do not necessarily have the equality J = I(V(J)). In fact, there
could be two types of problems:

1. for J = (2?) an ideal in k[z], we have I(V(J)) = (z);

2. if k is not algebraically closed : for example, for J = (22 + 3?) an ideal in

Rz, y], we have I[(V(J)) = (x,y).

Hilbert theorem of zeros says that these two problems are essentially the only ones.

Recall the notion of a radical of an ideal:

Definition 1.1.8. If A is a (commutative) ring and I C A is an ideal, the radical
of I is
VI={ae Ala™ eI for some m > 1}.

One checks that /T is also an ideal of A. The ideal I is radical if I = +/I.
Example 1.1.9. For J = (2?) an ideal in k[z], we have V.J = (z).

Theorem 1.1.10. [Nullstellensatz| Let k be an algebraically closed field and let
J be an ideal in k[zy, ..., x,]. Then I(V(J)) =/J.

Proof. We deduce the theorem from its weak version. This argument is due to Artin
and Tate. Let f € I(V(J)), so that f vanishes at all common zeros of elements of
J. Consider the ideal J" of k[xy, ..., zp1]:

J/ = (xn+1f — 1, J)
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By construction, V(J') = (. Using weak Nullstellensatz, 1 € J', that is, we can
write in the quotient ring A = k[xy, ..., zpi1]/(Xns1 f — 1):

1= Z b;a;
with b; € J,a; € A, so that (writing by degrees of x,,,1)
l=cy+c1Tpp1 + ...+ Cnryy
with ¢; € J. As xp,.1f —1=01in A, we deduce
fr=cof™" + e f" 4+ s

that is, f™ —c = 0 with ¢ = cof™ + c1f™ ' + ... + ¢, € J. As the natural
map k[xy,...,z,] — A is injective, we deduce f™ — ¢ =0 in k[xq,...,x,], so that
fmeld. O

Remark 1.1.11. Note that if J = I(X), then J = +/J : in fact, if f™ € J, then
(f(x))™=0forall z € X, so that f(z) = 0 for all x € X, which implies that f € J.

For the moment we introduced the objects of the category of affine algebraic
varieties over k. One is then also interested to understand the morphisms between
these objects.

Definition 1.1.12. Let X be an algebraic variety in £”. A polynomial function
on X is the restriction of a function in k[z,...,x,] to X. If Y is another algebraic
variety in k™, the function f : X — Y is polynomial if every coordinate function is.

Note that a polynomial function X — Y is continuous for Zariski topology: if
Z =V({I)NY C Y is closed, where [ is an ideal in k[y1,...,yn| generated by
(hi,...h.), then f~5(Z) =X NV (hyof,...h.o f)is closed in X.

Proposition 1.1.13. The algebra of polynomial functions on X s the algebra
k[X] = k[xq, ..., 2,)/I(X).

Proof. Let f,g € k[z1,...,x,] be two polynomials inducing the same polynomial
function on X. We then have f —g = 0 at all points of X, so that f—g € I(X). O

Let f : X — Y be a polynomial map between two affine varieties defined over a
field k. We define the map f*: k[Y] — k[X] by

f{(Py=FPof

where P (resp. P o f) is the class of P (resp. Po f) in k[Y] (resp. k[X]). This map
is well defined : if P, — P, € I(Y') then for all x € X we have P(f(x)) = P (f(x))
as f(z) €Y.



Proposition 1.1.14. Let X|Y be two affine varieties. Let g : k[Y] — k[X] be a
morphism of algebras. There exists a polynomial map f: X — Y such that g = f*.

Proof. We write k[X] = k[xy,...,2z,|/1(X) and k[Y] = Ek[y1,...,ym]/L(Y) by the
previous proposition. Let G be the composition

Ky, .o ym) = klyn, oyl JIY) S Koy, 2]/ T(X).

Let f; = G(yi). Let P; € k[x1,...,x,] such that f; = P,. Write f = (Py,..., P,).
As f*(y;) = P, = g(y;) by construction, it is enough to see that f has its values in
Y.

Let z = (ay,...,a,) € X and let h € I(Y). We have

h(f(z)) = h(Pi(a1,...,an),..., Pn(ai,...ay,)).

Forall i =1,...,m we see that the value Pi(ay,...,a,) depends only on the values
P, of P, in k[X]. As P, = G(y;) we get

h(f(@)) = MG (), .-, Glya))as, ..., an) =
= |G is a homomorphism of algebras | = Gh(y,...ym)(a1,...,a,) =0.

so that f(x) e V(I(Y)) =Y. O

Definition 1.1.15. Let X be an affine algebraic variety. We say that X is irre-
ductible if

X:X1UX2, X17X2 closedin X = X = X; or X = X,.

A variety X is irreductible if and only if I(X) is a prime ideal (see the exercises).
We deduce that the ring k[X] is integral. Then we define the field of functions
of X as the field of fractions k(X) of the ring k[X] : the elements of k(X)) are the

functions f/g with f,g € k[X] and f/g = f1/¢1 if and only if fg; = fig.

1.1.1 Finiteness properties

In this section we recall some properties of rings and modules.

Definition 1.1.16. Let A be a ring and B an A-algebra. We say that B is of fi-
nite type over A if B is generated, as an A-algebra, by a finite number of elements:
B ~ Alxy,...,z,| (where the elements (x;)1<;<, are not necessarily algebraically
independent). We say that B is a finite A-algebra if B is of finite type as A-
module, that is, B is generated by a finite number of elements as an A-module :
B~ Ax+ ...+ Ax,.



Example 1.1.17. 1. If k is a field and K = k(x) is an algebraic extension of
k generated by z, then K is a k-module of finite type. In fact, if P(z) =
2" + ap_ 2"+ ...+ a1x + ap is a minimal polynomial of z, then K is
generated by 1,z,...2" %

2. Let A be a ring. If B is an A-algebra of finite type (resp. a finite A-algebra
) and C is a B-algebra of finite type (resp. finite), then C' is an A-algebra of
finite type (resp. finite).

Definition 1.1.18. Let A be a ring and let M be an A-module. We say that M is
noetherien if any increasing sequence M; C My C ... M, C ... of submodules of
M is constant starting from some n = ng. A ring A is noetherian if A is noetherian
as an A-module, that is any increasing sequence Iy C I, C ...I, C ... is constant
starting from some n = nyg.

Proposition 1.1.19. An A-module M 1is noetherian iff any submodule of M could
be generated by a finite number of elements. In particular, a ring A is noetherian
if and only if any ideal of A could be generated by a finite number of elements.

Example 1.1.20. 1. Let M be an A-module. If M is noetherian, then any
submodule of M is noetherian, any quotient of M is noetherian and any
module of finite type over M is noetherian.

2. If Ais noetherian, then the ring A[z] is also noetherian, in particuliar, k[zq, . .., x,]
is noetherian. If B is an A-algebra of finite type, then B is a noetherian ring
. in fact, B is a quotient of Alxq,...x,].

3. The ring A = k[x;];en is not noetherian. The field of fractions K of A, being
a field, is noethérien. This shows that a subring of a noetherian ring is not
necessarily noetherian.

1.2 The structure of maximal ideals

Lemma 1.2.1. Let A C B C C be the inclusions of rings such that
(i) A is a noetherian ring,
(i) C is an A-algebra of finite type,

(11i) C is a B-module of finite type.

Then B is an A-algebra of finite type.

Proof. Let x1,...,x, be the elements of C' generating C' as an A-algebra. Let
Y1,---,Ym € C generating C' as a B-module :

C =By, + ...+ Byn.
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We can then write, for all 1 <i,j < n:

T = Z bty
t=1
with b € B and
Yi Y = Z CijtYt-
t=1

Let B’ C B be a subring generated over A by families (b;;) and (c;j¢). As B’ is
of finite type over A and A is a noetherian ring, we have that B’ is noetherian. By
construction, C' is generated by y1,...y, as a B-module. We then have that C,
viewed as a B’-module, is noetherien. As B is a submodule of C', we deduce that B
is generated by a finite number of elements as a B’-module: B = B'd; + ...+ B'd,.
We get that B is an A-algebra of finite type, generated by families (b;;) and (c¢;;)
and (d;). O

Proof of theorem 1.1.5. Let K = k[zy,...,z,]/m. The statement of the theo-
rem is equivalent to
K =k[zy,...,z,)/m ~ k.

In fact, it is enough to take a; the image of z; by the isomorphism above.
Next, as k is algebraically closed, it is enough to show that K is algebraic
over k. Up to renumbering, we may assume that xy,...x, € K are algebraically

independent over k and that x,,1,...x, are algebraic over k(z1,...,x,), that is K
is a k(z1,...,x,)-module of finite type. If r = 0, there is nothing to prove. Assume
that » > 0.

We apply proposition 1.2.1, to B = k(xy,...x,), C = K and A =k, Bis a
k-algebra of finite type. We write

B=Fk[z,...,z

with
Pi(xy,... )
2i = —77—7—=
Qi(l‘h e .%'T)
Let f € k[zy,...,z,;] be an irreducible polynomial. We have % € B. As B =
k[z1,...zs], we can write 1/f as a polynomial in z;, in particular, this implies that
f divides at least one ();. But there is only a finite number of polynomials verifying

this property. As k is algebraically closed, it is in particular infinite. We then have
an infinite family (x — a)qe of irreducible polynomials over k, contradiction. [

P, Qi € k[xq, ...z,



1.3 Additional exercises 1

1. Show that the polynomial f(x,y) = y*—ax(x—1)(z+1) € k[x,y] is irreducible
over any field. Deduce that X = V(f) is an irreducible variety. Draw a picture
in the case £k = R.

2. (a) Let X = V(y—2?). Show that k[X] is isomorphic to the polynomial ring
in one variable.

(b) Let X = V(xy —1). Show that k[X] is not isomorphic to the polynomial
ring in one variable.

3. Let k be a non algebraically closed field.

(a) Show that there exists a polynomial f € k[z,y] such that V(f) = (0,0).
Deduce that for any n > 0 there exists a polynomial F' € k[zy,...,x,]
such that V(F) = (0,...,0).

(b) If X is an affine variety over k, show that X could be defined by a single
equation.

4. Let k be an algebraically closed field.

(a) Let f,g € k[z,y] with f an irreducible polynomial and ¢ not divisible
by f.
i. Show that there exists u,v € k[z,y] and h € k[z] \ {0} such that
uf +vg = h.
ii. Deduce that the curves V(f) and V(g) intersect only in a finite
number of points.

(b) Let I ne a prime ideal in k[z,y]. Show that either I = (f) with f an
irreducible polynomial, or [ is maximal.

5. (Algebraic groups) Let k be a field.

mial in n? variables.
(b) Show that GL,(k) is open in M, (k) ~ k™ for the Zariski topology.

(c) Show that for all 0 < r < n the set M, od matrices of rank at most r is
irreducible closed subset of M.
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Chapter 2

Projective varieties and plane curves

2.1 Projective varieties

Let k be a field. One can view the projective space P} as the set of lines in k™!
passing by 0. More precisely, let ~ be an equivalence relation on k"1 where we set

x ~ vy if and only if x = Ay, A € k.
Definition 2.1.1. The projective space P} is defined as a quotient

Py = k" — {0}/ ~
For (x,...x,) € k"™ —{0} we denote (zq : ... : z,) the corresponding point of P?.
Example 2.1.2. We view P7 as the set of triples (X : Y : Z) where at least one

coordinate is nonzero and we identify

(X:Y:Z)=(AX:AY :\Z), A€ k™.

If f € klxo,...,x,] is a homogeneous polynomial of degree d, we have by def-
inition f(Azo, ..., A\x,) = \f(x,...,1,). Projective varieties are then defined as
zero loci in P} of homogeneous polynomials in k[xy, . .., z,].

Definition 2.1.3. An ideal I in k[zo,...,z,] is homogeneous if I = (fi,..., fm)
where f;, 1 <17 < m are homogeneous polynomials.

One easily checks that I is homogeneous if and only if for any f € I the homo-
geneous components of f are also in [.
Definition 2.1.4. For I a homogeneous ideal in k[zo, ..., z,] we set

Vill)={z=(z0:...:2,) €Py| f(x) =0Vf €I}
the projective algebraic variety defined by I.

11



Definition 2.1.5. For X a subset of P} we define I,(X) a homogeneous ideal gener-
ated by the homogeneous polynomials f € k[xo, ..., z,] such that f(z) = 0Vz € X,
we call [,(X) the ideal of X.

Example 2.1.6. 1. A hyperplane H in [P} is defined as zero locus of a linear
form in xg, ..., z,:
H = ‘/;)(aoxo + e + anili'n),

where the coefficients a; € k are not all zero.

2. More generally, a hypersurface of degree d in [P} is defined as zero locus of
a homogeneous polynomial of degree d in xq, ..., x,.

3. In P2 we have :

e aline L C P? given by an equation aX + bY + ¢Z = 0.

e a conic C' C P? given by a homogeneous equation of degree 2.

4. If V = V,(I) is a projective variety in P}, we call the cone C(V') of V' the
affine variety in A7 defined by C(V) = V/(I).

Similarly as in the affine case, we have the following properties:

Proposition 2.1.7. 1. Let I,J be homogeneous ideals in klzo,...,x,]. Then
ICcJ = V,(J)CV,(I).

2. If X CY are the subsets of P, then I,(Y) C I,(X).
3. If X C P} is an algebraic variety, then X = V,(1,(X)).
4. If J is a homogeneous ideal in k[xo, ..., x,)|, then J C L,(V,(J)).

5. If k is infinite and V = V(I) is a projective variety in P}, then I,(V) =
1(C(V)).

Proof. We give a proof for the last property, the others are similar to the affine
case. The inclusion [,(V) C I(C(V)) is straightforward. Let f € I(C(V)). Write
f=>_fa € klxg,...,x,] where f; are the homogeneous components of f. Because
V' is a projective variety, if (zo,...,z,) € C(V), then for any A € k one has
(Azg, ..., z,) € C(V), so that the polynomial

g(N) = FAzo, . Ax) =Y A fa(zo, ..., )

vanishes at any A € k. As k is infinite, fyq(xo,...,x,) = 0 for any d, i.e. the homo-
geneous components of f are in I,(V), so that I(C'(V)) C I,(V). O

The sets V,(I) are the closed sets of a topology, called (as in the affine case)
Zariski topology on P. If X C P} is a projective variety, one gets the induced

12



topology on X.

Affine charts of P}. Let ¢, : A} — P}, ¢« = 0,...,n be the morphism
(X1, yxn) = (z1 ¢ oo w0 1 rxy oL xy,). It is clear that the space P} is
covered by the images of these maps ¢;. Let U; C P} be an open {x; # 0} : it is a
complement of the hyperplane z; = 0. Let

To Ti—1 Ti4+1 Tn

ViU = AF (g0 cay) = (&, , o

) ) M

)

One immediately sees that 1; is an isomorphism, its inverse is the map ¢;. We call
U; the affine charts of P}.

In particular, we have the following affine charts for P:

1. If Z #0, we have (X : Y : Z) = (5 : £ : 1), so that we have an isomorphism

1z between the open set Uy := {Z # 0} and A}
XY

X:Y:Z -, = cy 1 .
1

2. if Y #0, one has (X : YV : Z) = (&
Yy between Uy := {Y # 0} and A7

X VA
X:Y:Z —=:1: =
( Y (51

3.if X #0, one has (X : Y : Z) = (1: % : £), so that we have an isomorphism

¥x between Uy := {X # 0} and A?

(X:Y:Z)H(l:%:%), (1:z:y) <+ (x,y).

: £), so that we have an isomorphism

~—

(x:1:y)« (x,y).

Here is an example of changing the charts : ¥y o' : (z,y) = (z:y: 1) — (£, %)

(if y # 0).

A homogeneous polynomial f(xg,...,z,) of degree d induces a polynomial map
fi on U; given by fi(zo,...,xi—1,1,2i41,2,). Conversely, if f € k[xy,...x,] is
a polynomial of degree d, we call the homogenization of f the homogeneous

polynomial
* _d x1 T
[ (o, ..., xn) = 2§ (—IO,...,—IO).

One can do a similar construction with z; instead of zy.

If I is a homogeneous ideal in k[x,...xz,], we are also interested to know if
V,(I) is not empty. Of course, it does not hold for I = (zo,...,x,) or even if
I = (z,...,2). A projective version of the Hilbert theorem of zeros claims that
over an algebraically closed field these are the only such examples :

13



Theorem 2.1.8 (Homogeneous Nullstellensatz ). Let k be an algebraically
closed field and let I be a homogeneous ideal in k(xo,. .., x,].

(i) Vo(I) =0 < 3r >0, (zo,...,2,)" CI;
(i) i V(1) 20, then T,(Vy(1)) = VT

Proof. (i) The implication < is straightforward. Let us show the implication
=. We have V,(I) = 0 & C(V) = {(0,...,0) € k"™'}. Using the affine
Nullstellensatz, this is equivalent to v/I = (x1,...,,), which implies that
Ir >0, (zg,...,x,)" CI.

(i) If V,(I) # ©, one has I,(V) = I(C(V)) = VT by 2.1.7 and by the affine
Nullstellensatz theorem.
[

Examples of morphisms. Let (fo,... f) be a family of homogeneous poly-
nomials of degree d in n variables xq, ..., x,, with coefficients in a field k. If the
polynomials f; have no common zeros (xq,...,z,) # (0,...,0) (if k is algebraically
closed, this means that the ideal (xy, ..., z,)" is contained in the the ideal generated
by fi,.-., fm), so that one can define a map

F:Pr =P (xg:...ixp) = (folzo: oo oxn), oot frTo, oo 20)).

More generally, let X C P} and Y C P}’ be two projective varieties. If X N
V(fo,... fm) =0 and if for all z € X we have (fo(x),..., fm(z)) € Y, then one can
define a map

F:X =Y (xo:...:x,) = (folzo, . .xn) oot fin(@oy ... T0)).

Example 2.1.9. 1. A line in P is the image of a morphism P}, — P} given by
linear polynomials. As usual, there is a unique line passing through two given
distinct points of P}.

2. Let V' C P% be a conic given by the equation 2% + y? — 22 = 0. We have a
morphism P! — V., (u:v) — (u? — 02, 2uv, u® + v?).

3. Let k = [, be a finite field and let V' C P} be a projective variety. One defines
the Frobenious map by Fr:V =V, (zg:...:x,) — (zf : ... x9).

In this lectures we will be interested in affine and projective varieties, as well as
in their products. A motivation to be interested in projective varieties (rather than
in affine varieties) is the following result, which gives an exact number of points of
intersection of two curves in the projective plane (for A? the statement is no longer
true as one can have for example two parallel lines).
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Theorem 2.1.10 (Bézout’s theorem). Let k be an algebraically closed field and let
Ch, Cy be two projective curves defined in P2 by homogeneous equations of degrees dy
and dy. The number of intersection points of Cy and Cy counted with multiplicities,

18 dldg.

We will now give a proof of this theorem if C] is a line or a conic. These two
cases are very important in order to define a group law on the points of an elliptic
curve.

2.2 Some projective geometry

In this section £ is an algebraically closed field. We start by two first cases of Bézout
theorem.

Lemma 2.2.1. Let C C P? be a curve defined by a homogeneous polynomial of
degree d and let L C P2 be a line not contained in C' (as a component). Then the
intersection C'N L consists of d points counted with multiplicities.

Proof. Let F(X,Y,Z) = 0 be the homogenious equation of degree d defining the
curve C' and let aX + bY + ¢Z = 0 be the equation of the line L. Up to a per-
mutation of the coordinates, one may assume that a # 0 and that the equation of
the line is X = —0'Y — ¢Z. The polynomial f(Y,Z) = F(=bY —dZ,)Y,Z) is a
nonzero homogeneous polynomial (as L is not contained in C') of degree d. As k is
algebraically closed, one has a factorisation

fY,Z2)=alY —a; Z)™ (2.1)

with Y m; = d. The points of intersection of L and C are given by the condition
f(Y,Z) =0, so that we have Y m; = d of these points. O

Remark 2.2.2. Assume that k is not algebraically closed. If C', L and d — 1 points
of intersection of L and C' are defined over k, then the proof above shows that
f(Y,Z) has a direct factor of degree d — 1 defined over k. We then get that the
decomposition (2.1) exists over k and all d intersection points of L and C are defined
over k.

Lemma 2.2.3. Let C C P? be a curve defined by a homogeneous polynomial of
degree d and let D C P2 be a conic not contained in C. Then C' N D consists of 2d
points counted with multiplicities.

Proof. Let F(X,Y,Z) = 0 be a homogeneous equation of degree d defining the
curve C'. If the conic D is reducible, D is a union of two lines, so that the state-
ment follows from the previous lemma. Up to a linear change of coordinates, one
can assume that the conic is given by an equation XY — Z? = 0, i.e. that D is
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the image of the morphism P! — P2 (u : v) — (u? : v® : wv). The polynomial

f(u,v) = F(u?,v* uv) is a nonzero homogeneous polynomial (as D is not con-
tained in C') of degree 2d. As k is algebraically closed, we have a factorization
fY,Z) = a(Y —a;Z)™ with > m; = 2d. The intersection points of D and C' are
given by the condition f(u,v) = 0, so that we have ) m; = 2d of such points. [

In the next statements we will be interested to describe the plane curves passing
by some given points. In general, the set of hypersurfaces of degree d in PY gives
also a projective space with coordinates corresponding to the coefficients. For exam-
ple, a conic in P is given by a homogeneous equation ¢(X,Y, Z) = > a;;s X' Y? Z*
with ¢ + 7 + s = 2, so that one has 6 coefficients. One associates to a conic the
vector of its coefficients. The set of all the forms ¢(X,Y, Z) is then a vector space
of dimension 6. Two forms define the same conic if they differ by a multiplication
by a scalar. The set of the conics is then a projective space P3.

Lemma 2.2.4. Let P, ..., Ps be distinct points in P2. There exists a conic in P?
containing these points. If no four of these points are on a line, the conic is unique.

Proof. A conic C'in P% is given by a homogeneous equation ¢(X,Y, Z) = 3 a;;s XY Z*
with 14 j+s = 2. The k-vector space V' of coefficients of conics is then of dimension
6. The condition that the conic C' passes by a point gives a linear condition on this
space. The coefficients of a conic passing by 5 points are then the solutions of a
system of 5 linear equations in a space of dimension 6, so that there is always a
conic passing by 5 points.

Assume that 3 points, say, P, P», P3 are on a line. Let L be the line P, P,. The
equation ¢ of the conic C is then divisible by the equation of L and ¢ vanishes at
P, and P5. As P, and Ps5 are not on L, the conic C' is a union of two lines L U P, P;

Assume that no three points from P;,..., P5 are on a line. Let P be a point
on the line L = P P,, distinct from P, and P,. Assume that the dimension of
the k-vector space of the equations of conics passing by the points P, ..., Ps is at
least 2. Then there is a conic containing P, ..., FPs : in fact the condition that the
conic passes through a given point is a linear condition. As the points Py, P, P
are on a line, C' is a union of L and another line, so that Ps,..., P5 are on a line,
contradiction. O

Lemma 2.2.5. Let Py,..., Py be distinct points of P2, no four of these points on
a line, no seven on the same conic. Let V be a k-vector space of homogeneous
polynomials of degree 3 vanishing at Py, ..., Ps. Then dimV = 2.

Proof. The k-vector space W of coefficients of a cubic is of dimension 10, so that
dimV > 10 — 8 = 2. We have the following cases to consider :

1. Assume Py, P, P; are on a line, let L be a corresponding line. Let Py be
a point (distinct from Pj, P, P3) on this line. The vector space of cubics
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passing by these nine points is of dimension dimV — 1. If a cubic C passes

by Pi,..., Py, then the intersection of C' and L contains at least 4 points, so
that C' is the union L U @ for @) a conic. Using the hypothesis, ) contains
Py, ..., Ps. Using lemma 2.2.4, there exists just one such conique. We get

dimV — 1 <1, and the result follows.

2. Assume that Py, Ps, ..., Ps are on a conic (). Let Py be another point on this
conic. We have again that any conic containing Py, ... Py should contain @),
so that one gets C' = QQ U L. Using the hypothesis, L. = P;FP;. We obtain
again dimV — 1 <1 and the claim follows.

3. General case : no three points among P, ..., Py are on a line, no six are on
a conic. Let Py, Pig be on a line L = P, P, different from P, and P,. Assume
dimV > 2. There is a cubic C passing by P,..., Py, so that this cubic
contains the line L, so that it is a union of L and another conic. We get a
contradiction with the hypothesis on P, ..., Fx.

]

Lemma 2.2.6. Let C; and Cy be two cubics in Pi. Assume that C; s irreducible.
Assume that we have 9 points Py, ... Py of intersection of Cy and Cy, such that the
points Py, ..., Py are distinct. If a cubic C contains the points Py, ..., Py, then it
contains the point Py.

Proof. The cubic C; does not contain 4 points on a line: if not, using lemma 2.2.1,
we would get that C; contains a line, which is not possible since (' is irreducible.
Similarly, C'; does not contain 7 points on a conic. The points P, ..., P satisfy the
hypothesis of lemma 2.2.5 and the vector space over k£ of homogeneous polynomials
of degree 3 vanishing at P, ..., Py is of dimension 2. We deduce that it is gener-
ated by C and (5. Then the equation of the cubic C'is a linear combination of the
equations of C and Cs, in particular, it vanishes at P. ]

2.3 Additional exercises 2

1. Let k be an algebraically closed field and let ¢(X,Y, Z) be a quadratic form
over k in three variables. Let Q = V,(q) C P%. Show that @ is either a union
of two lines or () is an irreducible conic which is defined by the equation
XY — Z2, up to a linear change of coordinates.

2. Let k be an infinite field, let ® : P} — P? be the morphism

®(z,y) = (2°, 2%y, 2y*, y*)

and let X be the image of .
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(a) Show that X = V(I) where [ = (XT —YZ Y? - XZ,Z*> - YT) in the
homogeneous coordinates (X : Y : Z: T) of P3.

(b) Show that I(X) = I (show first that any homogeneous f € k[X,Y, X, T]
could be written modulo I as f = a(X,T) +b(X,T)Y + ¢(X,T)2).

(c) Show that I can not be defined by two generators.

(d) Show that X could be written as X = V(Z? — YT, P) where P is a
homogeneous polynomial of degree 3.

18



Chapter 3

Elliptic curves : first properties

3.1 Eliiptic curves and the group law

An image. Assume we have a pyramide with n bowls. If the pyramide falls down,
could one arrange the bowls in a square?
Let x be the height of the pyramide. We are looking for the solutions of

y? = z(x +1)(2x +1)/6.

This equation defines an elliptic curve. One can show (this is not at all obvious!)
that the only integral solutions are (1, 1) and (24, 70).

Let k be a field and C' C P be a plane curve defined by a homogeneous equation
F(X,Y,Z)=0.

Definition 3.1.1. The curve C' is smooth at a point P € C'if
(OF/0X(P),0F/0Y (P),0F/0Z(P)) # (0,0,0).
If this is the case, the tangent line to C' at P is the line

OF oF oF

The curve C' is smooth if it is smooth at all its points.

For the most general definition of an elliptic curve, one takes a smooth plane
curve E defined by a homogeneous equation of degree 3 with F(k) # (). One can
show, that one can define such curve by the following equation, called the Wier-
strass form of F, the definition that we will use for this course.

Definition 3.1.2. An elliptic curve FE is a plane curve defined by the equation

Y2Z = X3 +aXZ*+b7%, with 4a® + 276* # 0. (3.1)
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We have E(k) # (0: the point Ogp = (0:1:0) is in E. We call A = —(4a® + 270?)
the discriminant of F.
Following the context, we also call elliptic curve an affine curve defined by the
equation

y* = 2° +ax + b, (3.2)

with the same conditions for a and b: it is an open {Z # 0} of the curve defined by
the equation (3.1). The complement of this open contains only the point Og. The
conditions on a and b are justified by the following lemma:

Lemma 3.1.3. (i) The plane curve C defined by the quation Y*Z = X3+aX Z?+
bZ3 is smooth if and only if A = —(4a® + 27b%) # 0.

(i) Let ey, ey, e3 be the roots od f(x) = 2+ ax + b in an algebraic closure k of k:
f(x)=(r —e1)(x —es)(x —e3). Then

A = [(er —ea)(er —e3)(ea —e3)].

Proof. exercise. O

If P is a point of an elliptic curve E, we write P = (Xp : Yp : Zp) in the pro-
jective coordinates (3.1) or P = (xp, yp) in the affine coordinates (3.2), if P # Og.
The fundamental result in the theory of elliptic curves, which is also the base of the
cryptographical applications, is that the points of an elliptic curve form an abelian

group.

The group law: definition. Let E be an elliptic curve given by an affine
equation (3.2). Let P # @ € E(k). Since E is defined by an equation of degree 3,
the line L = P(Q) intersects E in the third point R (see lemma 2.2.1 and the remark
after the lemma), eventually R = Op. We define P + () = —R where the point —R
is the point (Xg : =Yg : Zg). If P = @ we take for L the tangent line at P. We
define also P+ O = O+ P, Ogp + O = Og.

Theorem 3.1.4. The composition law on E(k) as defined above is a group law.
This law 1s commutative, the neutral element is Op.

Proof. The commutativity follows easily from the definition, also it is straightfor-
ward that Opg is the neutral element and that —P is the inverse of a point P. The
most difficult part is to establish the associativity, that we will do in the next sec-
tion using some results from the projective geometry. O

There are also explicit formulas for the group law of an elliptic curve :

Proposition 3.1.5. Let P,Q € E(k) be two points distinct from Op.

1. =P = (zp,~yp);
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2. If P=Q let \ = (32% + a)/2yp and u = yp — \wvp. Then

P+Q=(\—zp—2g,—\ + Nap+z0) — p).

- prrprotad+
3. [fP%Qlet)\:gP—yQ and,u:yp_)\xp. Then)\:xp TprQTTyTa and

P—IQ yrt+yq

P+Q:()\2—pr—l'Q,—)\S—i-)\(Q?P—l-l'Q)—,u).

Proof. The formula for —P follows from the definition. Let L be the line PQ) if
P # (@) and the tangent line to E at P, if P = (). It follows from the definition of
A and p that the line L is given by the equation y = Az + p. Let R be the third
point of intersection of the line L with the curve E. We have P + @ = (zg, —yr)-
The z-coordinate of the point R is the solution of

0=a+ax+b— (Av+p)® =2° - N2> + (a — 2\p)x + (b — 1i?).

Since zp and z( satisfy this equation, one deduces the expressions of the third
solution as claimed. O]

The following formulas are also useful:

2(zp+zg)(atzprg)+4db
(xp—1q)* '

Proposition 3.1.6. 1. Tpyg+Tp-Q =

(zprg—a)’—4b(zp+rq)
(rp—2q)?

2. TpyQTp—Q =

r'h—2ax%—8bx p+a’
4(xH+ax p+b)

3. Top =

Proof. One verifies the identities of the proposition using the explicit group law
3.1.5. O

3.2 The associativity of the group law

General case

We take P, Q, R € E(k) three distinct points. We set

L is the line PQ), T is the third intersection point with F

Ly is the line TOg, T = —T is the third intersection point with £

L3 is the line RT’, U is the third intersection point with F;

M is the line QR, S is the third intersection point with £

Mj is the line SOg, S” = —S is the third intersection point with F;

M3 is the line PS’, V is the third intersection point with F;

From this construction, (P+ Q)+ R = —U et P+ (Q + R) = —V we want to show
that U = V.
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Let Cy = Ly + My + Ly and Cy = M; + Ly + M5 be two cubics. We have
ENnC, ={P,Q,R,Op,T,7',5,5 U} and ENCy = {P,Q,R,Op,T,T7",5,5",V}.
Assume that the points P,Q, R,Og,T,T",S,5’,U are all distinct. Using lemma
2.2.6 for E and (', we then have U = V. We establish the remaining cases below,
using the explicit group law.

Associativity of the group law : end of proof.
In the notation of the general case, we established the associativity if the points
P Q,R,OpT,T7',S,S" are all distinct. The remaining cases are :

1. At least one of the points P,Q, R, T,7",S,5’,U,V is the point Og.
(a) If Op € {P,Q,R}, we have (P + Q)+ R = P+ (Q + R) using the
definition of the sum with Og.

(b) Assume that no point from P, @, R is the point Og. Using the construc-
tion, T = O iff T" = Op. Assume this is the case. We then have
() = —P. We want to show that R = (P+(—P))+ R = P+((—P)+R),
which is clear from the definition and the following argument using the
symmetry with respect to the line y = 0. In fact, let D be the line
passing by —P and R and K be the thrd intersection point of D with
E. We then have —P + R = —K. The line D’ passing by P and —K
is symmetric to D. The third intersection point of D’ eand E is then
the point —R, so that P 4+ (—K) = R, as claimed. The case S = Op is
similar. Note that this case also implies that for two points W and W;
of E we have

W =W, & (—P)+W = (=P) + Wj.

In fact, the implication = is straightforward and fo the implication <«
we observe that P+ ((—P)+ W) = (P+ (—P)) + W = W, similarly for
Wi.

(c) Assume that U = Og, i.e. that R = —(P + (). We want to show that

(P+Q)+(=(P+Q)) =P+ (Q+(=(P+Q))).
The left side is Og. We have
O = PHQH(~(P1Q)) & ~P = Q+(~(P+Q)) & ~P+(-Q) = ~(P+Q)
which follows by a symmetry argument. The case V' = Op is similar.
2. Assume that

(*)Op ¢ {P,Q,R,T,T",5,5",U,V} and no couple (P, Q), (Q, R), (P+
Q, R), (P,Q + R) contains two same points.
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Let E° be the affine open E \ {Og} of the curve E and let A be the affine
variety E° x E° x E°. One checks that the variety A is irreducible, so that
any open of A is irreducible as well. Let A" C A be the open {P # Q, P #
—Q,Q # R,Q # —R}. Using the explicit group law, for any (P,Q,R) € A’,
the coordinates of the points P + ) and Q + R are given by the formulas
3.1.5.3, in particular zpyg = f(zp,2q,yp, yg) Where f = fi/fs is the rational
fraction with non zero denominator, similarly for yp.o = ¢1/g2. The condition
P+ @ = R is given by the polynomial conditions f; —xgrfo =0, g1 — yrge =
0. Similarly for the condition P = ) + R. We deduce that the locus of
points (P, @, R) € A’ where the condition (x) is satisfied is an open A” of
A’. By the the argument as above, for any (P,Q, R) € A", we express the
coordinates of the points P + Q, (P + Q) + R,Q + R, P + (Q + R) via the
formulas 3.1.5.3, in particular, the locus of the points (P, @, R) € A” such that
(P+Q)+R =P+ (Q+R) is aclosed set B of A”. But this closed set contains
an open corresponding to the general case, where all the points P,Q, R,T =
—(P+Q), T = (P+Q), S = —(Q+R), S' = (Q+R),0p,U = —((P+Q)+R)
are distincts. As A” is irreducible, any open set is dense, so that B = A” and
we get that for all (P, @, R) satisfying (%) we have (P+Q)+ R = P+ (Q+R).

. The case where the points P,Q, R, P + @,Q + R are not all distinct and no
point among P,Q, R, T,T",S,5",U,V is O is left as an exercise.

23



Chapter 4

Elliptic curves over finite fields

Let E be an elliptic curve defined over a finite field F, with ¢ = p" and p prime.
The famous Hasse theorem allows to estimate the (finite) number of points E(F,):

Theorem 4.0.1. [Hasse| Let E be an elliptic curve defined over a finite field F,.
Then
[#E(F,) —q— 1] <2V4q.

It is also known' that for any integer a prime to p and such that |a|] < 2\/q

there exists an elliptic curve E over F, with #E(F,) =¢+ 1 —a.

We start by an approach coming from the analytic number theory, This method
allows to establish the Hasse theorem in two particular cases : ¢ = p and E given
by y* = 23 + D or y? = 23 — Dx, where D is a nonzero integer.

4.1 Characters, Gauss and Jacobi sums.

Definition 4.1.1. A multiplicative character on [, is a map x : F; — C* such
that x(ab) = x(a)x(b).
Proposition 4.1.2. Let x be a multiplicative character and let a € F,. Then

(1) x(1) =1,

(ii) x(a)»™' =1, i.e. x(a) is a (p — 1)-th root of unity;

(iii) x(a™") = x(a)~! = x(a).
Proof. (1) We use that x(1) = x(1) - x(1) and that x(1) # 0 by definition.

(ii) For a € F}, we have a?~' = 1. Hence (x(a))?"' = x(a?~') = x(1) = 1 by (7).

(iii) We have x(a)x(a™') = x(aa™') = 1, so that x(a™') = x(a)™'. By (i),

Ix(a)* = x(a)x(a) = 1.

m
Exemples :

Lthis result uses more difficult techniques and can not be considered for this course.
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1. the Legendre symbol (a/p) is a character;
2. the trivial character : ¢(a) = 1 for all a € F;.

3. Recall that ), is a cyclic group of order p—1. Let g be a generator of this group.
In order to definie a multiplicative character on IF,, it is enough to give its value
at g. We define the character A : F5 — C by Ag) = e*™/#~1 (so that we
have A(gF) = e2™*/=1)) We have P71 =1: A(g)P~' = A(g?™1) = (1) = 1.
In addition, if n is such that A» = 1, we have A(g)” = A(g") = 2™/~ = 1,
so that we should have p — 1| n.

4. One could extend the character y to F, by : x(0) =0 if x # € and x(0) =1
if y #£e.

The set of characters is a group: if x, A are two characters, we set (yA)(a) =

x(a)A(a) et x~*(a) = (x(a))~".
Proposition 4.1.3. The group of characters is a cyclic group of order p — 1. If
a € Fy,a # 1, then there exists a character x such that x(a) # 1.

Proof. Using the example 3 above, a character x is determined by the value x(g)
and, by proposition 4.1.2, x(g) is the (p—1)-th root of unity. We then have at most

p — 1 characters. Again using example 3, the characters e, \,\2, ..., \*~! are all
distinct, so that we get exactly p — 1 characters over F, and the group of characters
is cyclic. If a € Fy,a # 1, then A(a) # 1. O

Proposition 4.1.4. (i) For x # € a multiplicative character we have ) o x(a) =
0.

(it) For a € Fy,a# 1 we have 3 x(a) = 0.

Proof. (i) Since x # €, there exists b € F,, such that x(b) # 1. One checks that
x(b) Zaeﬂ?p x(a) = Zaeﬂ?p x(a), so that Zaer x(a) = 0.

(ii) Using the previous proposition, there exists a character A such that A(a) # 1.
We then get A(a) > x(a) =3, x(a) = 0.

O]
The next two statements show how one can use the characters to solve the
equations over [F,.

Lemma 4.1.5. Let a € F},.
1. The equation 2" = a has a solution iff a?~"/4 = 1 where d = (n,p — 1).

2. Assume that n|p — 1. If the equation ™ = a has no solution, there exists a
caracter x such that x(a) # 1 and x™ = e.
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Proof. 1. Follows from the fact that the group F is cyclic of order (p — 1).

2. Let g and X be as in example 3 above. Let n’ = p —1/n. Let x = . We
then have x" = €. Let us write a = ¢°, we have that n does not divide s
under the assumption that the equation 2™ = a has no solution. We deduce
x(a) = x(g)* = >t/ £ 1.

m

Proposition 4.1.6. Let a € Fy. Let n be an integer such that nlp—1. Let N(z" =
a) be the number of solutions in Iy of the equation 2™ = a. We have

Proof. 1. Ifa=0then N(z" =a) =1 and )
X # € x(0) =0.

2. Assume that the equation 2™ = a has a solution : a = b™. Note that, as the
group of characters is cyclic, one has exactly n characters such that y" = e.
For such character x we have y(a) = x(b") = x(b)" = x"(b) = €(b) = 1. We
get Zx,x"ze X(a) =Nn= N(xn = a)'

3. Assume that the equation ™ = a has no solution. Let y as in the part 2 of

the proposition above. We have y(a) ZX/,X/":E X'(a) = le’x,nze x'(a), so that
ZX,,X/"ZE X/(a/) = 0 as X(a) % 1.

xn=e X(0) = 1 as for any character

O
Definition 4.1.7. Let x be a character of [F, and let a € F),. Let ( = e?™/P . We

define
ga() = > x(£)¢*

teF,

the Gauss sum of the character x. One defines g(x) = ¢1(x).

x(@gi(x) a#0,x#e

0 0.v =

Lemma 4.1.8. ¢,(x) = a7 0,x=¢
a=0,x#e€

p a=0,x =¢€.

Proof. 1. Assume a # 0, x # €. Then x(a)ga(x) = Zter x(at)C™ = g1x.

2. Assume a # 0, x = €. Then go(X) = > e, ¢ = 11?;: =0.

3. Assume a = 0, x # €. Then g,(x) = ZteFP X(t) = 0 by proposition 4.1.4.
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4. Assume a = 0,y = €. Then ga(X) = Zteﬂ“p 1=

Proposition 4.1.9. If x # ¢, [g(x)| = /-

Proof. We write S(x) =, 9a(X)ga(x)- By the lemma above, for a # 0 one has

9a(X)9a(x) = x(a " x(a)g(x)g(x) = lg(xX)I*.

Since go(x) = 0 by the lemma above, one has S(x) = (p — 1)|g(x)|*>. We also have
- S S e
But Y, (" =pifc=0and ), (" = 11__4;1) =0if ¢ #0. We get
=> > x@x(©)8(u,v)p = (p— Lp.

We then get (p — 1)|g(x)|* = (p — 1)p, and result follows.

O

Definition 4.1.10. Let x and X be two characters in F,. The Jacobi sum J(x, A)
is defined by J(x,A) = >, p—1 X(a)A(D).

Proposition 4.1.11. Let x and A be two characters in F),.
(1) J(e,€) = p;
(ii) for x # €, one has J(e,x) = 0;

(iii) for x # €, one has J(x,x ') = —x(—1);

) g — 99N .
() if x\ # € then J(x,\) = TRV

(v) if X\ # € then [J(x,\)| = /D

Proof. The statement (i) us straightforward, the statement (i7) follows from propo-
sition 4.1.4, the statement (v) follows from (iv). Let us show (i7i). We have

Joex ™)=Y xlax'0) = Y, xla/b)=) xla/l-a)=[c=1/1-d =

a+b=1 a+b=1,b#0 a#1

Z x(c) = [par 4.1.4] = —x(—1).

c£—1
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Let us show (iv). We have
Zx )¢*) Z (b)¢") =
=D x(@A®)C =Y (Y x(@A®)S

t  atb=t

If t =0, we get >, x(a)A(—a) = A(—1) >, (xA)(a) = 0 par la proposition 4.1.4. If
E 0, we got 3oy X(WAD) = Yy X@OME) = (M) J(x: A). We then
get g(x)g(A) = 22 (XA(1))CT (X, A) = J(x: A)g(xA)- =

4.2 Hasse theorem : particular cases

4.2.1 Case F:y*=2°4+D

Let p > 5 be a prime and let E be an elliptic curve over I, defined by a homogeneous
equation y?z = 23 + Dz3, D # 0. Let N, be the set of points E(F,). As F has a
point at infinity, one has

N, =1+ N(y* =2° + D).
We have two cases to consider:

1. Assume p = 2(mod 3). Then (p — 1,3) = 1 and the map = + z* is an
automorphism of F}. For a fixed a = y* the equation z* = a*> — D has a
unique solution. We get N(y* = 2%+ D) =p and N, =1+ p.

2. p = 1(mod 3). Let x be a primitive multiplicative character of order 3 and p
the multiplicative character of order 2 over ;. We have

N =2*+D) = Z N(y* = a)N(z* = —b) = [par 4.1.6]

a+b=D
= > (L4 p(a)(1 + x(=b) + X*(=b)) =
a+b=D
—pt Y plax®+ S p@)b) = [a = Dalsb = DY)

=p+ px(D)J(p,x) + px(D)J (p; x)-
As |J(p, x)| = +/P by proposition 4.1.11, we deduce [N, —1 —p| < 2,/p. O

4.2.2 Case F:y?>=2°— Dx

Let E be an elliptic curve over F,, p > 2, defined by a homogeneous equation
v’z = 2% — Dxz?, with D # 0. Let N, be the set of points E(F,). As in the
previous case, we have

N, =1+ N(y* = 2° — Dx).
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Lemma 4.2.1. Let C be an affine curve y> = a3 — Dx and let C' be an affine curve
u? =v*+4D. Let
T:A%Z — A?
u+v? v(u+0v?)
2 7 2

U,V >
and let

S A% 5 A?

2

x,yH2m—y—2,g.
x?x

Then T maps C' to C and S maps C \ {0,0} to C'. In addition, the restriction
ToS|C\ {0,0} is the identity on C' and the restriction of SoT to C' is the identity
on C.

Proof. Straightforward verification using definitions of the applications T"and S. [

Let N' = N(u? = v*+4D). Using the lemma above, N,, = 2+ N’. We have two
cases to consider:

1. Assume p = 3(mod 4). Then —1 is not a square, i.e. any element a € F,
could be written as a = £b?. In particular, > = b?, i.e. any square is a

4t power. Hence N’ = N(y?> = v* +4D) = N(u? = v> + 4D) = p — 1 and
N,=2+N' =1+p.

2. p = 1(mod 4). Let A be multiplicative character of order 4 and p = A%, We
have

N(u?* =v* +4D) = Z N(u® = a)N(v* = —b) = [car J(p,p) = —1] =

a+b=4D

— p— 1+ N—4D)J(p, \) + A(—4D) T (p, N).

As [J(p, \)| = \/p by proposition 4.1.11, we deduce |N, — 1 —p| < 2\/p. [
4.3 Endomorphisms

In this section k is an algebraically closed field.

Definition 4.3.1. Let E be an elliptic curve defined over k. We define an endo-
morphism of £ as a map a : £ — FE given by rational functions and verifying

a(P+ Q) = a(P) + a(Q).
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If E is given by affine equation (3.2), one can write

a(z,y) = (Ri(z,y), Ra(2,9)),

In what follows, we will express « in a easier way and in particular definie a at the
points where the denominator of R; or R, vanishes (in projective coordinates. )
Since (z,y) € E, we may assume that the fractions Ry, Ry do not have terms in
y? and write
pi(@) +py(@)y _ (pi(x) + ph(@)y) (i (x) — d(x)y) _ ri(z) +ri(x)y

() = _ _
B = D oy~ @@ - @)@ +az +b) (@)

=

for some polynomials ¢, %, ¢'.
Next, since a is an endomorphism, we have o(z, —y) = —a(x, y) where Ry (z, —y) =
Ry(z,y) and Ry(z, —y) = —Ra(x,y). We deduce that one can write

_plx) s(@)y
a(z,y) = (m, ) ) (4.1)

with p,q,r,t € k[z] such that p, ¢ have no common roots and s, ¢ have no common

roots.

Definition 4.3.2. We define the degree of a as
dega = max{degp(x),deg q(z).}

We say that « is separable if the derivative of the fraction p(z)/q(x) is not iden-
tically zero.
We will now define o at the points where the denominators ¢(x) or ¢(x) vanish.
Since a(x,y) € E we have

(2° + ax + b)s(x)* _ p(x)° + ap(x)q(x)* + bg(x)’
t(z)? q(x)? ‘

We have in particular the equality

(2% + az +b)s(2)’q(2)” = (p(x)’ + ap(x)q(z)* + bg(x)*)t(x)*

at any point x such that g(x)t(z) # 0. Since the set of roots of ¢ and ¢ is finite and
k is algebraically closed, the equality above is true for any = € k. Write

fx) =2+ ar®+b=(z—e)(x —ez)(x — e3).

Let S C {e1, €2, e3} be the set of common roots of ¢(x) and x® + ax + b. Since t(z)

and s(z) have no common roots and the polynomial x® + az + b has only simple
roots, we deduce that g(z) = u(z)?[[¢(x — ¢;) and t(z) = u(z)* [[s(z — €)%
We could write « in the projective coordinates:

alz,y) = (p(e)u(x) [J(z —e) : s(@)y : u(@)® [[(x - e)?). (4.2)

S
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If g(z) # 0 we have u(x)*[[4(z — e;)* # 0, so that a(z,y) is well defined. If
q(z) = 0, we set a(z,y) = Og. One could justify it as follows. If ¢(x) = 0, we have
s(x) # 0. If y # 0, then a(x,y) = Og using the formula above. If y = 0, we then
have = = ¢;,7 € S. Then we use y* = [[(x — ¢;) to write

a(z,y) = (p)u@)y : s@@) [[(@ —e) ru@)’y [J(= - e)).
i2S S

so that we see a(z,y) = Og.

The next two statements are very useful for the applications :

Proposition 4.3.3. Let a be a nonzero endomorphism of an elliptic curve E. We
then have

(1) if a is separable, then deg «v is equal to the cardinal of ker(a);

(i1) if « is not separable, then dega > #ker(a);

Proof. We write « in the form (4.1). Let ri(z) = %, ro(z) = i((i))

(i) If ais separable, the function 7 (z) is not identically zero, in particular p’q—pq’
is not a zero polynomial. Let

S={z ek, (p'g—pq)q(x) =0}

Note that S is a finite set. Observe that the function r1(x) has an infinite
number of values, in particular, there exists P = (¢, d) € E(k) a point distinct
from Op such that

1. c#0,d#0,c ¢ ri(9), (c,d) € a(E(k))

2. deg (p(z) — cq(x)) = deg ().

Let
8" = {(z0,50) € E(k)|a(z0,50) = (c. d).}

We will show that the set S’ contains exactly deg(«) elements. In fact, if

(x0,y0) € S, we have zgigg = ¢ and yora(xg) = d. Since (¢,d) # O and

d # 0, we have that r3(zg) # 0 is well defined and yy = ﬁ‘io). We then have
that the cardinal of S’ equals to the number of elements zy € k such that
p(zo) = cq(xo). Since deg (p(x) — cq(x)) = deg (), it is enough to show that
the polynomial p(x) — ¢q(x) has simple roots. If not, there exists x; € k such
that p(x1) = cq(zy), p'(z1) = ¢¢'(21), so x1 is a root of polynomial p'q — pqg’
(since ¢ # 0), so that ¢ € r(S), contradiction with the choice of ¢. We then
have that #S" = #ker(a) = deg a.

(ii) This case is similar to (i), the difference is that the polynomial p(z) — cq(x)
could have multiple roots, so that #ker(a) < deg a.
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]

Proposition 4.3.4. Let a be a nonzero endomorphism of an elliptic curve E. Then
a: E — E 1s a surjective map.

Proof. The point P = Op is the image of Op. Let P = (¢,d) be a point of F
different from Op. We are looking for (x,y) such that a(x,y) = (¢,d). We write «
in the form (4.1). Let h(z) = p(z) — cq(z). We have two cases:

1. If h(x) is not a constant polynomial, let xy be a root of h. If g(xy) = 0,
then p(zo) = 0 and we get a contradiction with the fact that p and ¢ have no
common roots. We then have q(zy) # 0. Let yo be a root of zj + azy + b.
Using (4.2), we get a(xg,yo) = (¢,d') for d’ € k. Since (¢, d') is a point of E,
we have d = +d', so that (¢, d) = a(x, Lyo).

2. Assume that h(z) is a constant polynomial. The fraction % is not constant
(in fact, ker(«) is finite by previous proposition, F/(k) is infinite, we then
have a finite number of points with image by « a fixed point). We deduce
that there is at most one element ¢ € k such that p(z) — cq(x) is a constant
polynomial. By the previous case, we then have at most two points (¢, d) and
(¢, —d) not in the image of a (with d*> = ¢® +ac+1b). Let (¢1,d;) € E(k) such
that (c1,dy) + (¢,d) # (¢, £d'). We get that (c1,dy) and (¢1,dy) + (¢, d) are in

the image of «, so that (¢, d) as well since « is an endomorphism.

]

Note that given an endomorphism « : £ — FE, it could be quite difficult to
determine the degree of o, and also if « is separable. If o, 8 : E — E are two endo-
morphisms, then one defines their sum by the formula (a + §8)(P) = «(P) + 5(P).
Since addition of points on an elliptic curve is given by rational fractions, we see
that a + ( is indeed an endomorphism of F. Similarly, one defines a linear combi-
nation of d’endomorphisms. We have the following formula to determine the degree
(see exercises for the proof) :

Proposition 4.3.5. Let «, 8 be two nonzero endomorphisms of an elliptic curve
E. Let r,s be two integers. Then

degra + s = r*deg o+ s*deg B+ rs(dega + 5 — deg a — deg 3).

In the following examples we discuss some applications, admitting the facts on
separability and the computations of the degree.
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4.3.1 Frobenius endomorphism and Hasse theorem

Let k be an algebraic closure of a finite field IF, with ¢ = p" elements. = The
Frobenius morphism ¢, on k is the map x +— z?. For x,y € k we have (x+y)? =
294y, so that ¢, ia indeed a homomorphism (of additive groups). In addition, by
construction, the field F, is the field of decomposition of the polynomial 29 — z, so
that

reF, & ¢,(zr) = (4.3)

Let E : y* = 2° + ax + b be an elliptic curve defined over F,. Since a? = a and
b? = b, we have for all P = (z,y) € E(k),
Y = (2° +axr +b)? =23 +ax? +b, ie. (29,97 € E(k).

Using the formulas of the explicit group law (Proposition 3.1.5), one can show
that ¢, induces an endomorphism of £

¢q(1,y) = (2%, y7)
that we also call Frobenius endomorphism. Condition (4.3) gives
P e EF,) < ¢,(P)=P.
We then see that
E(F,) = ker(¢q — 1). (4.4)

By definition, the Frobenious endormorphism ¢, is not separable and deg ¢, = q.
More generally, let 7, s be two nonzero integers. One can show that the endomor-
phism r¢, — s est separable if and only if p does not divide s.

Using the results on the endomorphisms above, one can now give a proof of
Hasse theorem.

Proof of theorem 4.0.1.
We have E(F,) = ker(¢, — 1) by (4.4). Since the morphism ¢, — 1 is separable,
proposition 4.3.3 gives deg(¢, — 1) = #ker(¢, — 1) Let

ag=q+1—#E(F,) =q+1—deg(p, —1).

Let r, s be two integers with (s, q) = 1. We have that the endomorphism r¢, — s is
separable of degree (see proposition 4.3.5)

degro, — s =1r°q+ s> +rs(deg (¢, — 1) —q—1) = r’q + s* — rsa,.

Since degr¢, — s > 0 for all r, s, we have

Ty r
e ol v1>o0.
q(s) aq8+ Z

But the rational numbers £ with (s,q) = 1 are dense in R. We then have gz —

agr +1 >0 for all x € R. We get for the discriminant :

a2_4QSO,
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so that |a,| < 2,/g, which finishes the proof of Hasse theorem. O

Let £ : y* = 2® + ax + b be an elliptic curve over F,. By investigating the
properties of the Frobenius map, one manages to estimate the number of points

E(F;) for any extension of F,. We have the following result (for the proof see
exercise 6) :

Theorem 4.3.6. Let E be an elliptic curve defined over a finite field F, and let
ag=q+1—#E(F,).

1. We have ¢} — aqpq +q = 0.

2. Let a, B be the roots of the polynomial x* — a,x + q. Then «, 3 are conjugate
complex numbers with absolute value \/q. For any n > 0 one has

#E[Fp) =¢" +1— (" +6").

3. The zeta function of the curve E

[o¢] Tn
2(B[FyT) = exp(d_ #EFy)70)
15 a rational function %‘

Complement. Let X be a projective variety defined over a finite field F,. As
for plane curves, one can give a definition if the variety X is smooth. Similarly,
there is a notion of dimension (for plane curves, the dimension is 1.) Assume that
X est smooth, of dimension n. One defines the zeta function of X by

Z(X/F,, ) = exp(} #X () ).

The Weil conjecture claims that the function above is a rational function :
Z(X/F,,T) € Q(T) verifying:

1. (functional equation) Z(X/F,,1/¢NT) = £¢"</?*T<Z(X/F,,T) for some inte-
ger €;

2. (Riemann hypothesis) Z(X/F,, T) = piiep 0 with Py(T) = 1 -
bi

T,Pon(T) =1—¢"T et P(T) = [[(1 —;;T), 0 < i < 2N, with |ay;| = ¢'/%.

J=1

These conjectures have been established by Deligne in the 1970%.
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4.3.2 Torsion points

Let E be an elliptic curves over a filed k (we still assume that the field k is al-
gebraically closed). Let n > 2 be an integer. The multiplication by n gives an
endomorphism -n : £ — E. Similarly as for the multiplication by 2, one can give
the explicit recursive formulas expressing nP = (z,p, ynp) in terms of P = (zp,yp).
More precisely, one has the following statement (see exercise 8):

Proposition 4.3.7. (i) There exists polynomials ¢y, Y, wn with (¢n, V) = 1

such that
Pn(z) wa(z,y)
wn(z)y Yn(z)3

(i) The highest order term of ¢,(x) is 2", the highest order term of Un(x) is
n2zn L,

nP = (

).

(i1i) One has nP = Og < i, (z) = 0.

We then see that the degree of the endomorphism of multiplication by n on F is
n? and that this morphism is separable if and only if n is prime to the characteristic
of k. One defines the group of points of n-torsion of F:

E[n]={P € E,nP = Og}.
It is a remarkable fact, that one can determine the group structure of E[n] for
any elliptic curve, independently of the (algebraically closed) field :
Theorem 4.3.8. (i) If (n,car.k) =1, then Eln]| =Z/n & Z/n.
(i1) If p = car.k|n, then E[n] = Z/n'®Z/n’ or E[n| = Z/n®Z/n', wheren = p'n’
and (n',p) = 1.
Proof. (i) Using the properties above and proposition 4.3.3, E[n] = deg (-n) = n?.

The group E[n| is a finite abelian group of order n®. Using the structure
theorem of the finite abelian groups, one gets

En|=Z/n ®Z/ne® ... B ZL/ng

with n;|n;11,1 <i<s—1. Let [ be a prime dividing n;. Then [* divides the
order of E[n]. But #E[l] = [?. One gets s = 2 and

E[n] = Z/m @D Z/ng, nl\ng.

This group is also killed by n, so that ny|n. Since #E[n] = n? = nin,, we
deduce that ny = ny = n.

(ii)) We will first determine the group structure of E[p®] for all s > 0. Since the
multiplication by p map is not separable, #FE[p] < p*. Any element of E[p]
is of order 1 or p, we then have that #F[p| is a power of p, so that it is 1 or
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p. If #E[p] = 1, then #FE[p°] = 1 for all s > 0 (one uses that if Q € E[p®],
then p*~'Q € Elp]). Assume #E[p] = p. Let Q € E[p°]. One then have
pQ € E[p*~']. By induction, E[p] is cyclic of order p°.

Let us write n = p"n’. We then have E[n] = E[n’]| & E[p"]. Since E[n'] =
Z/nW®Z/n, Elp]l=1or Z/p" and Z/n' & Z/p" ~ Z/n'p" = Z/n, the result
follows.

[l

Similarly, one can show the structure theorem on points of an elliptic curve over
a finite field :

Theorem 4.3.9. Let E be an elliptic curve over a finite field F,. One has
E(F,) =2Z/n or Z/ny & Z/ny
where n > 1 and ny,ny > 1 are integers with ny | n.

The following statement is very useful for the study of elliptic curves :
Theorem 4.3.10. Let k be an algebraically closed field and let n be an integer
prime to the characteristic of k. Let E be an elliptic curve over k. There exists a
pairing

en : E[n] x E[n] — p,
that we call Weil pairing, such that
1. e, is a bilinear:
en(Sl + 827 T) = €n<Sl7 T>€n<527 T)7 en(S7 Tl + T2) = €n(S, Tl)en(S7 TQ)

and non degenerate map :

en(S,T) =1VT € E[n] = S = Og, and e,(5,T) =1VS € E[n| =T = Og;

2. e,(T,T) =1 and e,(T,S) = e,(S,T)"' VS, T € E[n];

3. if o € Autk fizes the coefficients a and b of the curve E, then e,(cS,0T) =
o(e,(S,T));

4. if a: E— E is an endomorphism, then
en(a(S), a(T)) = (ea(S,T))* .
The proof of this statement needs more developed algebraic geometry tools.

Remarks.

1. If S = (z,y) € E(k) and if 0 € Autk, the point ¢S is defined by oS =
(ox,0y).
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2. Let E be an elliptic curve defined over a non algebraically closed field k£ and
let k& be an algebraic closure of k. We denote E[n] = E(k)[n]. We then get
the Weil pairing on E[n]. If now P,Q € E(k), then for any o € Aut, k one
has oP = P and ¢T = T. Using the property 3 above, e,(S,T) is fixed by
any such automorphism o and in particular e, (S,T) € k.

Proposition 4.3.11. Let k be an algebraically closed field, let n be an integer
(n,car.k) = 1. Let E be an elliptic curve k. Let {T1,T5} be the base of E[n] =
Z/n®Z/n. Then e,(Ty,Ty) is a primitive n'™ root of unity

Proof. exercise. O]

Corollary 4.3.12. Let E be an elliptic curve defined over Q. We write E[n] for the
group of n-torsion points of E over an algebraic closure Q of Q. Then Eln] € E(Q)
ifn > 3.

Proof. By theorem 4.3.10.3 and proposition 4.3.11 above, if E[n] C E(Q), then
tn C Q, which is not possible if n > 3. O]

4.3.3 Automorphisms

Let E : 4> = 23+ ax+b be an elliptic curve defined over an algebraically closed field
k (we always assume that car(k) # 2,3). One can show that any automorphism
6 of E is given by the changing of variables z = u?2’,y = u®y’ with v € k* and
uw*a = a, u% = b. Recall that the j-invariant of E is defined as

4a3

= () = 1728— &
J=3(E) =1T28 5 05

We then have

1. if j # 0,1728, the group of automorphisms Aut(FE) of E is the finite group
Z/2 = (id, P — —P);

2. if j = 1728, Aut(E) ~ Z/4;
3.if j =0, Aut(E) ~ Z/6.

4.4 Additional exercises 3

1. (a) Let o be an endomorphism of E.

i. Show that a induces an endomorphism «,, of E[n].
ii. Let (%) the matrix of o, in the base {T7,T>}. Show that

deg a = det(a,)(mod n)

(one could express (%9¢ in terms of a, b, ¢, d.)
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2.

(b) Let a, 8 be two endomorphisms of F and r, s two integers.

1. Show that
det(ray, +sB,) —r’deta, — s*det B, = rs(det(ay, +B,) —deta, —det3,,)

(one can start by showing that det(o, + B,) — deta,, — detB, =
Trace(a, ), where % is the adjoint matrix : if 8, = (”ZC @t’), then
Br=(L72))

ii. Deduce that

degra + sB = r’dega + s’deg B + rs(deg (a4 3) — deg oo — deg B).

(a) Let E be an elliptic curve defined over a finite field F,, ¢ = p", and let
ag = q+1—#E(F,). Asbefore, we denote ¢, the Frobenius morphism on
E and for any integer m prime to ¢ one denote (¢,),, the endomorphism

induced by ¢, on E(F,)[m]. Show that
det(¢q)m = q (mod m) and Trace(dq)m = a4 (mod m)
(One could use that #Ker(¢p, —1) = deg (¢, — 1) = ¢+ 1 — a4, see the
proof of Hasse theorem)
(b) Deduce that the endomorphism ¢ — aq¢, + ¢ is identically zero on
E(Fg)[m].

(c) Show that the kernel of the map ¢2 — a,¢, + q is infinite; deduce that
the polynomial g(z) = 2 — a,o + ¢ annihilates ¢,.

(d) Assume that b is an integer such that the polynomial 2% — bx + ¢ an-

nihilates ¢,. Deduce that (a, — b) annihilates E(F,) and finally that
ag = b.

(e) Let a, 8 be the roots of the polynomial g(x) and let g,(z) be the poly-
nomial
Show that g(z) divides g, (x) for all n. Deduce that

(03)" = (" + 8"y +¢" = 0.
(f) Deduce that E(F,») has cardinality ¢" + 1 — (o™ + 8").
(g) We define the sets function of the curve E by

Z(E[F,.T) = exp(3_ #B(E) ).

Show that Z(E/F,,T) is a rational function

1—a, T+ qT?
(1-=T)(1—qT)
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3. Let E be an elliptic curve y? = 2*+ax+b defined over a field k, char (k) # 2, 3.
One defines the division polynomials ¥, (x,y) in a recursive way : ¢y = 0,
1 =1, 12 =2y
s = 3zt + 6ax? + 120z — a?

g = dy(a® + Saz? + 20bx® — Sa*x? — 4abr — 8b* — a?)
Vomi1 = Vo, — ¢m71¢21+1> m > 2

Yom = [wm(merQw?nfl - wmfzwfnﬂ)]/Qy, m > 3.

(a) Show that v, is a polynomial in x,%? if n is odd and that yi, is poly-
nomial in x,¥?, if n is even.

(b) One defines ¢,,, = 292 — Yy 1Vm_1
Wi = [Ymio2_1 — Ym—2v?% 1]/4y. Show that ¢, is a polynomial in z, y?,
that w,, is a polynomial in x, y? if n is odd, and that yw, is a polynomial
in z,9? if n is even.

(c) By the previous question, on can define the polynomials ¢, (z) and ¥ (z)
by replacing y? by 23 + ax + b in the polynomials ¢, (x,y) and ¥?2(z,y).
Show that ¢,(z) is the sum of 2”° and the terms of lower degree, and
that ¢, ()2 is the sum of n22™*~! and the terms of lower degree.

(d) Show that for P = (x,y) a point of E, one has

Pn(z) wi(T,y)

"= @ o)

)

(e) Show that the polynomials ¢, (z) and ¢, (x)? are relatively prime. De-

duce the the multiplication by n map is of degree n?.
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Chapter 5

Elliptic curves algorithms

5.1 Factorisation

For N an integer we are interested in factorizing /N into prime factors. This problem
is still technically very difficult in practice (when N is large), which is fundamental
for many modern cryptosystems. In this section we will discuss an approach that
uses the elliptic curves : the algorithm ECM ("Elliptic Curve Method"), introduced
by H. Lenstra in 1980 and developped by R. Brent, P. Montgomery and others.
This algorithm is the most efficient one, in terms of the size of the factors of N (and
not N itself) : its running time is exp(cy/log p(loglog p)), where p is the smallest
factor of V. One of the latest examples is a factor with 74 digits : it is the following
factor of 12284 + 1 found on October, 26, 2014 by B. Dodson :

26721194531973848954767772351114152203083577206813943149484875628623309473

5.1.1 Pollard’s p — 1 algorithm

To start with, we recall the (p— 1) Pollard’s algorithm, the same ideas are also used
for the ECM algorithm. Assume that N has a prime factor p such that

€1 €2

p—1l=q"¢’ ... q7".

If the factors g; verify
¢ <B1<i<r

we say that p — 1 is B-smooth. The following algorithm allows to find a factor p
if p — 1 is B-smooth.

1. We take 2 < a < N and we set z = a.
2. Fori=1,2,...s:

(a) z — 2* mod N (here we compute a* mod N)
(b) d:=(x—1,N)
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(c) if 1 <d < N, we found a factor d of N
3. go back to the first step.

Let s = maxejg;. Then qjj divides s!, that is (p — 1)|s!. We then have a* =
1 mod p. It is not very likely that a* = 1 mod N, so that we hope to find a factor
of N.

5.1.2 Algorithm ECM

Elliptic curves modulo N

Let E be an elliptic curve given by a homogeneous equation Y27 = X3 +aX Z%+
bZ?* where the coefficients coefficients a,b € Z/N and the determinant A(FE) are
invertibles. We define

E(Z/N)={(X:Y :2),X,Y,Z € Z/N,pgcd(N,X,Y, Z) =1, Y?Z = X*+aX Z*+bZ*}.

If N were prime, on could always find a sum P+(@ for two points P, ) € E(Z/N)
using the formulas of the explicit group law (Proposition 3.1.5). In these formulas
we need to invert xp — x¢g. If this is not possible, and if zp # 2z, we necessarily
have that (zp — zg, N) > 1 i.e. we found a factor of N. We then obtain the fol-
lowing algorithm. For more efficience, one often uses many curves at the same time.

The algorithm

1. We fix an integer m (often 10 < m < 20) and an integer B (for example, of
order 108).

2. We choose m random elliptic curves E; modulo N :
E,:Y*Z =X34a,XZ*+b,2°

and a point P; € FE;. In order to do this, we randomly choose a;, P; = (x;0, Yi0)
and we set b; = yﬁo — Ig’,o — ax; .

3. For all i we successively compute (B!)P; on E;. If one of the inversion opera-
tions is impossible, we found a factor of N.

4. If not, we change B or the curves F; and we come back to the first step.

The inversion operation fails if B!P, = O in E;(IF,) where p is a prime factor of
N. It is the case if the order #FE;(F,) divides B!l. But #E;(F,) varies in the interval
lp+1—2\/p,p+1+2,/p[, which is better than in the Pollard’s method where p—1
is fixed. So that we expect that the algorithm is more efficient.
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5.2  Schoof’s algorithm

Let E be an elliptic curve defined over a finite field FF,. By the 4.0.1 theorem, the
number #E(F,) satisfies the inequality

[#EF,) —q—1]<2/4q.

In this section we will describe an algorithm by Schoof, that allows to compute
#E(F,) with the running time O((log ¢)°), for ¢ some constant. Let

ag=q+1—#E(F,).

To determine a, we will determine a, modulo ¢ for many primes /.

We take ¢ a prime. Let P € E(FF,)[¢]. Using the theorem 4.3.6, we have
a40(P) = ¢5(P) + qP,

where ¢, is the Frobenius morphism. Since P = Op, we have

lagle 6o(P) = ¢3(P) + [aleP, (5.1)

where [a,]; and [g]; are the rests modulo ¢. In addition, the equality 5.1 determines
[a4]¢ in a unique way.

Using the proposition 4.3.7, we have P € E(F,)[(] < 1y(P) = O for a polyno-
mial ¢, defined in a recursive way. This polynomial is of degree 52771
find the multiples of P, we need to work in the ring

Ry = F, [, )/ (th(x), v — &* — az )
2-3
o,

so that we never have powers of y” for r > 1 and of x" for r > ===
We can now describe Schoof’s algorithm.

. In order to

The algorithm
1. Let A=1,/0=23.
2. if A <4,/q:
(a) for n =0,...¢ — 1 one verifies the equality (in the ring Ry) :
(27, y") + [ale(w,y) = n(a?,y")

If the equality is satisied, we save n, = n and we go to the next step.

(b) We change A — (A, and we change ¢ by the next prime number.

3. We find q, as a unique integer |a,| < 2¢ such that a, = n, pour tout ¢.

Remark. At the last step of the algorithm we use the theorem on chinese rests
in order to find a satisfying the conditions a, = ny. Since A = [[/ > 4,/q and
aq €] —2,/q,+2,/q[ by the Hasse theorem, such integer is unique.
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5.3 Primality

The elliptic curves are also used in order to test (and prove) that some big integers
(more than 20000 digits) are prime. One of the most recent records is the number

(283339 + 1)/3

which is prime and has 25088 digits. This algorithm runs in time O((log N)*).

We discuss here the primality test of Goldwasser-Kilian. We will need the fol-
lowing two statements.

Proposition 5.3.1. Let N be an integer prime to 6 and let E be a curve with
coefficients in Z/N. Assume that there exists

(i) an integer m and a prime q, glm and ¢ > (VN +1)%;

(ii) a point P € E(Z/N) such that mP = Og and (m/q)P = (z : y : z) with z
invertible in Z/N .

Then N is prime.

Proof. Assume that N is not prime : we then have a prime factor [ of NV such that
| < v/N. We denote E the curve obtained by reducing the coefficients a,b of E
modulo [. The reduction modulo ! of the point P gives a point P of E of order
divisible by ¢ (using the condition (ii)). We then have ¢ < #E(F,) < (V1 + 1)?
by the Hasse theorem. But [ < V/N. We then obtain a contradiction with the
condition (4). O

Proposition 5.3.2. Let N be a prime, (N,6) = 1 and let E be an elliptic curve
given by the equation Y27 = X3 + aXZ? + bZ? where the coefficients a,b € Z/N
and the derminant A(F) are invertible. Let m = #FE(Z/N). Assume there exists
a prime number q such that glm and q¢ > (VN + 1)2. Then there exists a point
P € E(Z/N) such that mP = Og and (m/q)P = (z : y : z) with z invertible in
Z/N.

Proof. Assume that for any point P of E(Z/N) we have (m/q)P = Og. Hence
the order of E(Z/N) divides m/q. Using the theorem 4.3.9 we have E(Z/N) =
Z/dy & Z)dy, dy|dy, so that do|(m/q). Since m < d3, we get m < (m/q)?. Since
m < (\/N +1)? by Hasse theorem, we get the contradiction with the hypothesis on
q. O

As a consequence of the properties above, we get that if we find an elliptic curve
E such that the order m of E(Z/N) has a big prime factor ¢ (i.e. ¢ > (VN 4 1)?),
then N is prime iff there exists a point P € E(Z/N) such that mP = Op and

(m/q)P = (x : y : z) with z invertible in Z/N. For a given elliptic curve, one can
use Schoof’s algorithm to determine its order m. Then, in order to test if g is prime,
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we do reiterate the procedure again. We then get the following algorithm.

The algorithm

1. We choose an elliptic curve E and we compute m = #FE(Z/N).

2. We devide m by the small prime numbers, that we denote mg the product
and we are looking for ¢ = m/my verifying ¢ > (v'N + 1)? and that passes
the classical primality tests. If it is not the case, we go back to the first step.

3. We choose = € Z/N such that 2° + ax + b is a square in Z/N. So that we get
a point P on a curve E. We check if mP = 0g and (m/q)P = (z : y : z) with
z invertible in Z/N. If it is the case we know that N is prime if ¢ is prime.
We then go back to the first step with ¢ at the place of N. If not, we change
the point P and we continue.

5.4 Cryptography with elliptic curves

One generally considers the following context for the public keys cryptographical
systems: two persons, Alice and Bob, want to exchange some messages in a secured
way. Eva wants to read their messages, she has an access to a public transmission
channel for the messages of Alice and Bob. In this system, one distinguishes three
basic algorithms: keys exchange, the coding and the numerical signature. At the
step of keys exchange, Alice and Bob produce a common key (known just by them-
selves), that they willl use later. The numerical signature allows Bob to check that
the message he gets comes indeed from Alice. The methods we describe here could
actually be used in any group, but we describe special aspects related to the elliptic
curves.

5.4.1 Keys exchange: Diffie-Hellman’s protocol

1. Public data: E an elliptic curve over a finite field F, and a point P € E(F,)
of a sufficiently big order.

2. Secret choice of Alice: an integer a.

3. Secret choice of Bob: an integer b.

4. Alice sends P, = aP to Bob.

5. Bob computes P, = bP and sends to Alice;

6. Alice computes aP, = abP and Bob computes bP, = abP. The common key
is some function of the point abP.

Definition 5.4.1. The Diffie-Hellman problem is the following question:
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Given P,aP and bP in E(F,), find abP.

This problem is (technically) very difficult to solve, which garantees the security
of the Diffie-Hellman’s protocol.

5.4.2 ElGamal cryptosystem

To receive a message from Alice, Bob takes an elliptic curve E over a finite fieldi IF,
and a point P € E. He chooses also a secret integer s and he computes B = sP.
The public data is

E. P B.

The secret Bob’s key is the integer s.
To encode the message, Alice uses the following algorithm :

1. She represents her message as a point M € E(F,).

2. She chooses a random secret integer k and she computes M; = kP, M, =
M+ kB.

3. Alice sends the points My, M5 to Bob.

To decode the message, Bob computes

My — sMy; = (M + kB) — s(kP) = M + k(sP) — skP = M.

5.4.3 Numerical signature

The numerical signature principle is somehow inverse to the coding : everybody
could verify that the signature is correct, but only Alice could sign the document.
We give here an algorithm that is used in the ECDSA standard.

In order to sign her document, Alice chooses an elliptic curve E over a finite
field I, such that #E(F,) = fr, where r is a big prime number and f is an integer,
in general, f = 1,2 or 4. She chooses a point P € E of order r. She also chooses a
secret integer s and she computes () = sP. The data of

E7 r? P7 Q
is public.
In order to sign the message m (that one views as an integer this time), Alice

chooses a random integer k and she computes R = kP = (z,y) and z = k' (m +
sz) mod r. Then Alice signes her document by

m, R, z.

In order to verify the signature, Bob does the following:
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1. He computes u; = 2~ 'm mod r and uy = 22 mod r.
2. He computes V = u; P 4+ usQ.
3. He decides that the signature is correct if V' = R.

It is an exercice to check that V = R if the document is signed by Alice.

5.5 Discret logarithm

Definition 5.5.1. Let GG be a group. In the discret logarithm problem in G, for
given x,y € G we are looking for an integer m such that ™ = y (if it exists).

The fact that technically this problem is very difficult to resove for G = E(F,) is
the base of the security of the algoritms above. In general, if G is a group of order
n, all known algorithms to resolve this problem have O(v/N) running time (which
is a lot!).

We briefly discuss two general algorithms for the discrete logarithm problem, as
well as an algorithm, due to Menezes, Okamoto and Vanstone, that one could apply
to some elliptic curves, it uses the Weil pairing.

5.5.1 Babystep-Giantstep
Let G be a group, z,y € G and let n be the order of x. Let N be the integer
N =1T[yn].

The algorithm

1. we save the following list of elements of G: z, 22, 23,...2";

M=l and we save yz,yz% yz3, .. .y,

2. we set z = (x
3. we check for collisions: if 2 = yz/, we found y = x**/V.

The problem with this algorithm is that one has to save the two lists. Pollard’s
method allows to solve this problem.

5.5.2 Pollard’s p-method

Let G be a group, x,y € G and let n be the order of x. We search for m such that
2™ =y. We will find the integers i, 7,41, 71 such that

aly! = "yt (5.2)

We will then have 2~ = y/t=7 that allows us to find m if j — j; is prime to the
order of x in G (we always can assume it up to restricting to the case when x has
prime order).
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Let G = AU B UC be a partition, where A, B, C' are of the same cardinal (up
to few elements). Let f : G — G be the function

xz z€A
f(z) =<2 zeB
yz zeC.

Let 2o = x € G. For any ¢ > 1 we define z; = f(x;_1). Let ¢t be the biggest
integer such that z,_; appears only once in the sequence (z;);>0 and let [ be the
smallest integer such that x;,; = x;. Then, one can show that ¢ 4+ [ is of order
O(y/n) and that there exists 1 < i < ¢ + [ such that z5; = z;, so that we can find
the collision 5.2.

5.5.3 The MOV attack

In the algorithm of Menezes, Okamoto and Vanstone one reduces to the discret
logarithm problem in E(F,) to the discrete logarithm problem in F,« for some d.

Definition 5.5.2. Let m be an integer. The embedding degree of m in the finite
field F, is the smallest integer d such that

¢* = 1( mod m).

Remark. The condition above is equivalent to the condition g, C [Fya.

Lemma 5.5.3. Let E be an elliptic curve other a finite field F, and let m > 1 be
an integer prime to q and to ¢ — 1. Let d be the embedding degree of m in F,. If
E(F,) contains a point of exact order m, then E[m] C E(F ).

Proof. Let P be a point of exact order m and let T" € E(F,)[m] such that {P, T}

is a base of E(F,)[m] =Z/m & Z/m. Let ¢, be the Frobenius endomorphism. One
has
¢q(P) = P,¢y(T) = uP +vT,u,v € Z/m.

Using the properties of the Weil pairing, we have
en(PTY! = ep(64(P), 64(T)) = em(P, P)em(P.T)" = en(P,T)".

Since e,,(P,T) is {-th primitive root of unity (proposition 4.3.11), we deduce that
v = ¢ (mod m), i.e.
¢q(T) = uP +qT.

We then get
¢a(T)=u(l+q+q*+...+q¢ P+ ¢'T.

By definition of d, one has ¢¢ = 1 (mod m), so that ¢T =T and (1+q+¢*+...+
¢*)P = Op. We deduce ¢ a(T) =T, so that T € E(F ).
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The algorithm
Let E be an elliptic curve over a finite field F, and let m be an integer, (m,q) = 1.
Let P, (@ be two points of order m and let d be the embedding degree of m in F,.

1. Let T € E(F,)[m] such that P, T generate E[m] (see 4.3.8 ). Using the Lemma
above, T' € E(F ).

2. By proposition 4.3.11, e,,(P,T) is m-th primitive root of unity. Using the
definition of d, we get e,,(P,T") € [F,a. There exists algorithms to compute the
Weil pairing (in E(F) ) : so that we find e,,(Q,T). Since e,,(P,T) is n-th
primitive root of unity , we get

Q=rP<e,(QT)=en(P,T).

So that the problem is reduced to the discrete logarithm problem in F .

5.5.4 Supersingular curves

Let E be an elliptic curve over a finite field F, of characteristic p > 5. Recall (see

theorem 4.3.8) that the group E(FF,)[p] is either reduced to Og, or E(F,)[p] ~ Z/p.

Definition 5.5.4. We say that E is supersingular if E(F,)[p] = {Og}.

Proposition 5.5.5. Let a = ¢+ 1 — #E(F,). The following are equuvalent :
(i) E is supersingular;
(1) a =0 (mod p);

(111) #E(F,) =1 (mod p).

Proof. Let o, 3 be the roots of tha polynomial 22 — ax + ¢ = 0. Let s, = o™ + 5"
We have sq = 2,51 = a and we check by induction:

Sp41 = ASp — (Sp—1.

Using the definition of a, we have (ii) < (ii7).

Assume (i7). We then have s, = 0 (mod p), so that #FE(F;») = 1 (mod p) for
any n (see theorem 4.3.6). So that we do not have a point of order p in the group
E(F;), and we get ().

Assume F is supersingular. Assume that a # 0 (mod p). We have s,,1 =
as,(mod p) and

#E[F,)=q¢"+1—s,=1—a" (mod p).

For n = p — 1 we then get that p|#E(F,) so that E is not supersingular. Contra-
diction. O
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Corollary 5.5.6. An elliptic curve E over IF,, is supersingular iff #E(F,) = p+ 1.

Proof. By the Hasse theorem, |a| < 2,/p. In the previous proposition we then have
a=0sa=0(modp) < #E(F, =p+1. O

Corollary 5.5.7. Assume that p = 2 (mod 3). Let b € F, non zero. The elliptic
curve y? = x3 + b over F,, is supersingular.

Proof. By the results in section 4.2.1, the condition (iii) in the proposition above is
satisfied. O

There are very efficient algorithms for the arithmetic operations on a supersin-

gular elliptic curve. Assume a = 0. We then have for any P = (z,y) € E(F,):

2 2

q(z,y) = —dg(z,y) = (27, —y*).
Let m be an integer. In order to compute mP, we proceed as follows:

1. we decompose m = mgy + miq + mag® + ... +m,q" with 0 < m; < ¢;

24

2. we compute m; P = (z;,y;), and then ¢'m;P = (x| (—l)iyg%), and finally we
compute the sum of all these points.

On the other hand, the proposition above shows that the attack MOV could be
applied to F, so that the discret algorithm problem for F could be reduced to the
descret logarithm problem for 2, which is much more easy.

Proposition 5.5.8. Let F be a supersingular elliptic curve over F, and let N > 0
be an integer. Assume a = q+ 1 — #E(F,) = 0. If there exists a point P € E(F,)

of order N, then E(F,)[N] C E(F,).

Proof. Let Q € E(F,)[N]. Since #E(F,) = q + 1, we have N|g+ 1. Since E is
supersingular and a = 0, we have (bZ(S) = —¢S = S. Hence @ is fixed by ¢, so
that @) € E(]FqQ). ]
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Chapter 6

Elliptic curves over number fields

6.1 Generalities on the number fields

6.1.1 Some facts on the number fields and its ring of integers
Definition 6.1.1. A number field is a finite algebraic extension of the field of
rational numbers Q.

In this section we fix a number field K.

By the primitif element theorem one can write K = Q(«) with [K : Q] =n =
deg P, where P is the minimal polynomial of o. Assume that P has r; real roots
aq, ..., and 7o pairs of complex roots 41, 41, -y Oytry, Qpytry. We then
have r; embeddings of K in R defined by ;(a) = o; and 75 pairs of embeddings of
K in C: 0j(a) = oy, 4 and 7(a) = @, 1j. We say that K has r; real embeddings
and ry pairs of complex embeddings. We then define a canonical embedding

Tk - K = R xC"™

(@) = (03(2))i=1,..ri 12
Definition 6.1.2. The ring of integers of K is the ring
Ok = {z € K is a root of a unitary polynomial with integer coefficients}.

Examples.

1. If K = Q(v/d), where d has no square factors, then Oy = {

2

2. More generally, if [K : Q] = n, then one can find ey, ...e, € Ok such that

OK:Z€1@...@Z€71.
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3. Assume that K has r; real embeddings and ry pairs of complex embeddings. If
T2

a € Ok, then the polynomial xo,x = [[;L,(z — 0i(a)) [[}Z, (z — 07,45 () (7 —
0r,+5()) has integral coefficients: xax € Z[x].

We have the following fundamental result:

Theorem 6.1.3. The image Tx(Ok) is a lattice in R™ x C™.

In other words, D := 7x(Of) is a discret subgroup of V= R"™ x C™ (i.e. for
any real r > 0 the set {v € D,|v| < r} is finite) and generates V' as an R-vector
space.

Definition 6.1.4. Let I, J be two ideals in Ox. We say that I and J are equivalent
if there exist o, f € Ok non zero, such that

al = BJ.

Theorem 6.1.5. Any ideal I of Ok is invertible: there exists a« € Ok and an ideal
J C Ok such that IJ = aOg. The set of ideal classes is a group Clyg. This group
is finite.

Theorem 6.1.6. (i) Any nonzero prime ideal of Ok is mazimal.

(i1) Any ideal I of O could be decomposed in a unique way (up to a permutation)
as a product of prime ideals.

Remark.

1. One shows that the ring Ok is a Dedekind ring: it is a noetherian integrally
closed ring, such that any nonzero prime ideal is maximal.

2. Let p be a prime ideal of Ok. The unicity of the decomposition in (i7) implies
in particular that the inclusions p™*! C p™ are strict.

In particular, if p is a prime, one could write

p@sz;”l... f);"

with p;, ¢ = 1,...,m distinct prime ideals and e; > 1. The field Ok /p; is a finite
extension of the field F,, we set f,, = [Ok/p; : F,]. In particuliar,

Np; := card(Og /p;) = p'¥:.
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Recall that if n = [K : QJ, then

m

n = Zeifm-

i=1
In fact, this follows from the identity

Let I be an ideal of Ok and let p a prime ideal of O. Theorem 6.1.6 allows to
define
ordy(I) = max{n > 0|1 C p".}

If x € Ok, one defines ord,(z) as an oder at p of the ideal (x) and one extends this
notion to any r € K.

6.1.2 Absolute values
Definition 6.1.7. Let K be a field. An absolute value v on K is a map
| o K= Ry
such that
(i) |z|, =0 iff z = 0;
(i) |2ylo = [z[o]y|, for any =,y € K;

(iii) there exists a constant C' > 0 such that |z + y|, < Cmax{|z|,, |y|,} for any
x,y € K. If C' =1, we say that the absolute value is ultrametric.

Remark. One easily verifies that if | - |, is an absolute value on a field F', then
| - | is also an absolute value on F' for any a > 0.

Finite places. For any prime ideal p of the number field K one defines an

absolute value on K by
|x|p _ Np—ordp(z)

We denote X, (K) the set of these absolute values. One verifies that these abso-

lute values are ultrametric.

Places of K. Assume that K has r; real embeddings and 7, pairs of complex
embeddings. For g; : K — R, ¢ =1,...71, one defines an absolut value by

|z]o; = |ou()]
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and for o; : K — C,j = 1,...75 one defines an absolute value

[2lo, = loj ()"

We denote ¥ (K) the set of these r; + ro absolute values.
We set X(K) = Xpini(K) U X (K) the set of places of K.

Theorem 6.1.8. [Product formula] Let x € K*. Then we have

I Izl =1

veX(K)

Proof. Assume first that K = Q. We could then write x = £p{" ... p¢" with p; prime
and e; € Z\ {0},i=1,...m. We then have |z|,, = p;“ for all finite places, for the
place oo corresponding to the embedding Q C R, we have |z| = |z| = p* ... pc.
We then get

H lzly =p1® oo oop st = 1
veX(Q)

In the general case let p be a prime ideal of Of. Let us write
pOk =pi* ... pyr

Let € K* ans let Ng/g(z) € Q be the norm of z. We then have

[T 1zl = [Ni/o(@)lp- (6.1)

plp

In fact, one verifies that Ny g(x) = £N(2Ok), so that

NK/Q(ZL') == H Npordp(m) = + szﬂp prrdp(a:)'
p

We then deduce

|Nig(x)|, = p~ Zvip Foorde(® — H Np~orde(@) — H ],

plp plp

and we get (6.1).
For the places at infinity we also have

H lo = |Nk/o(@)]s-

VEX o (K)

In fact, by the definition of the norm Ny q(z) = [[;L, oi(z) [T}Z, 0i1j(2)Fi4;(x), s0

that
Nejo(@)lw =[] |2l

VEX o0 (K)
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We then have:

by the first case when K = Q.

6.2 Heights

6.2.1 Weil height on P"(Q)

The notion of height is designed in order to 'measure’ the size of points in a pro-
jective space or in a projective algebraic variety defined over a number field K.

Definition 6.2.1. Let K be a number field and let P = (2o : ... : x,) be a point
of P%. One define the height of P relatively to the field K by the formula

Hi(P)= ] max(|zolo, .. |zalo)-

veEX(K)

Remark.

1. Using the product formula 6.1.8, this definition does not depend on a choice
of projective homogeneous coordinates of the point P.

2. If K = Q, one could find coordinates P = (z¢ : ... : x,) with x; relatively
prime integers. We then get Ho(P) = max(|zol, ..., |xal|).

Lemma 6.2.2. Let L/K be a finite extension of number fields of degree d. If
P e P"(K), then
H.(P) = Hg(P)"

Proof. Left as an exercise. O]

The lemma above allows to define the Weil height on P™*(Q).

Definition 6.2.3. The Weil height on P*(Q) is a map

H:P"(Q) —» R
P € PY(K) +— Hg(P)YIEQ

We set h = logH and h = logH.
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Definition 6.2.4. If K is a number field and € K, one defines
H(z)=H(1:z).

Theorem 6.2.5. [Northcott, Kronecker| Let d > 1, C' > 0.

(i) The set -
{PeP"(Q),[Q(P): Q] <d H(P)<C}
s finite.
(i1) One has H(P) > 1, unless P = (xq : ... : x,) is such that for any i either x;
1s a root of unity or x; = 0.

Proof. (i) Let P = (zo : ... : x,). Up to a permutation one can assume g 7# 0
and write P = (1:aq...: a,) avec o € Q. By definition

H(ey) < H(P) et [Q(v) : Q] < [Q(P) : Q.
We deduce that it is enough to show that the set
S={acQ[Q):Q <d H(a)<C}

is finite. By (ii) of the lemma below, the coefficients of the minimal polynomial
are bounded for any « € S, which shows that the set S is finite.

(ii) We write P = (1: ;... : ) as above. If H(P) < 1, then ||, < 1 for any

© and any v. This last condition is also satisfied by o;" for all m > 0. Using

(7) we get that the set {(1: af*...:a/")} is finite, so that «; are the roots of
unity.

[

Lemma 6.2.6. (i) [Gauss Lemma/ Let K be a number field and let P, Q) € K|z].
Let v be an absolute value corresponding the the prime ideal p of K and let
|| P||, be the norm sup of the coefficients of P. Then ||PQ||, = || P||.||Q]]v-

(i) Let o € Q and let K = Q(a). Let P € Z[x], P(z) = ag(x — ay) ... (z — aq)
be the minimal polynomial of cc. Then

d
Hicla) = Jag| T ma{1, o]}
=1

Proof. (i) Let m € p \ p? (see remark after the theorem 6.1.6 to insure that this
set is nonempty). We have in particular ordy(7) = 1. Up to multiplying the
coefficients of P and @) by some power of 7, we can assume that ||P||, =
||Q||, = 1. In particular, the images P and @ of P and Q in the ring O/p|x]
are nonzero. Since O/p|r] is an integral ring, we then deduce that PQ = PQ
is nonzero which means that ||PQ||, = 1.
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(i) Let L = Q(av,...,aq). By definition we have:

Hy(o)"" = Hy(o) = ] max(1]efs) H max(1, |al,).  (6.2)

For the places at infinity we have:

d
H max 1 |Oz’ H max(17 |O“v)[L:K] — (H max(l, ’Ozi’))[L:K],

wWEX o (L) VEY oo (K) i=1

(6.3)
Let w € X¢i(L). Using the Gauss lemma (i) for P we have

d
L =[Pl = laols | [ max(1,]asl.,)-

In addition, by the product formula,

IT laolw = lao/ .

WEX fini(L)

For the finite places we then have:

1= J] laok ] T] mex(1leilw)=lao ™ J[ max(1,|al.)"

WEX fin; (L) =1 weXfini(L) wWED fini(L)
(6.4)
We then deduce the result from (6.3), (6.4) and (6.2):
d
Hie(0) 55 = Jag] (] T mas(L, )40,
i=1
[l

Theorem 6.2.7. Let (Py,...Py,),P; € Q[xg,...x,],i = 0,...m be a family of
projective homogeneous polynomials of degree d. Let Z = V, (P, ... Py,) C IP’” and

let U = IP’" \Z. LetV C IP’” be a projective variety such that VN Z = @ One
defines

d:UQ) — Pm
= (Bo(x) : ... B ().

Then there are constants cy, ca, c3 depending only on ® and such that

(i) for any x € U(Q) one has H(®(z)) < ¢ H(x)%;
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(ii) for any x € V(Q) one has coH(x) < H(®(x)) < csH (v)?;

Proof. (i) Let z € U(Q). There exists K a number field such that » € U(K). We

(i)

write P;(z) = E;\le a;;z7 where N is the number of monomials 27 = xy ...z
of degree d. Let v € ¥(K). By the triangular inequality for v, there exists a

constant N, such that

lyr + ...+ ynle < Nomax(|yiv, - - [Un]o)- (6.5)
Note that one could take N, = 1 for any finite place v. We then get
|Pi(2)], < Nymax;|ag;|,max;|z|%. (6.6)

Let A, = max; ;|a;;|. Note that A, = 1 but for a finite number of places v.
We get

Hy (®(x)) = [ [ max;|Pi(x)], < [ NoAvmax;|zi| = (] [ NoAw) Hr (2)°

so that ¢; = (], NoA,)Y Y works.

Let V =V(Q1,...,Q,). Since VN Z = (), by porjective Nullstellensatz, there
exists M > 0 and polynomials A;; and B;; such that

z}l = Z AP+ Z B;;Qi.

Note that one can assume that the polynomials A;; are homogeneous of degree
M — d. Up to replacing K by a fintie extension, one could also assume that
the polynomials in the equality above have their coefficients in K. We then
have, for any = = (z¢,...2,) € V:

252" = 1) APy < (m+ 1)ymaxi| Ay ()|, maxi | P(2)].,

where (m + 1), are constants defined as in (6.5). We apply the inequalities
6.6 to the homogeneous polynomials A;; of degree M — d, so that one could
write

’Mfd
v

2,1 < Almafal ¥~ max, | P (2)],

for some constants A/ such that A) =1 but in a finite number of places. We
deduce
max;|z;[; < Aymaxi| Bi(z)],,

and we get the result by taking the product over v.

Remark. In the theorem above one could write h(®(z)) = dh(x) + O(1).
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6.2.2  Weil height on an elliptic curve

Let E C IP% be an elliptic curve defined by
Y7 = X3 +aXZ? + 0275 (6.7)
For P € E(Q) one defines
h P#0
h(P) — (.TP), # E
0, P =0g.
Theorem 6.2.8. There exists a constant ¢, such that for any P € E(Q) one has
—c1 < h(2P) — 4h(P) < ¢;.
Proof. The statement is immediate if P = 0 or a 2-torsion point. Assume xop # 0.
By lemma 6.2.10 below, the polynomials Py(T, X) = 4T(X? + aXT? + bT?) and
P (T, X) = X*—2aX?T? —8bXT? + a*T* have no common roots in P!. We apply
theorem 6.2.7(i) to ® : P! — P!, & = (P, : P;). Since ®(1 : zp) = (1 : z9p), we

deduce
h(2P) = h(1 : xp) = h(P(1,2p)) = 4h(P) + O(1).

Theorem 6.2.9. (i) h(P) = h(—P);
(i) h(P + Q) + h(P — Q) = 2h(P) + 2h(Q) + O(1).

Proof. Assertion (i) is immediate. We show (ii). We may assume @ # +P. By
3.1.6, we have:

2(xp +zg)(a+ xprg) +4b
(xp +1xg)? —dxprg

(rprg —a)? — 4b(zp + xqQ)
(xp+xg)? —dxprg

TpyQ +Tpq =

LP+Q¥rP-Q =

By theorem 6.2.7(ii) and lemma 6.2.10 we deduce that for the map

O(T,U, V) : P* - P?
(T:U:V)— (U= 4TV : 2U(aT + V) + 4bT? : (aT — V)? — 4bTU)

one has
h(®(x)) = 2h(z) + O(1).

Let
Vv (E\0g)* — P?
(P,Q) — (1:xp+ g, xprg)
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and p(P,Q) = (P + Q, P — Q). We then have 1) ot = ® 09 and by lemma 6.2.11
below

h((P,Q)) = h(zp) + h(zg) + O(1).
We deduce

h(P + Q) -+ h(P — Q) = h(l 1 TpyrQ T TP l‘p+QiL‘p,Q) + O(l) =
=h(¥opu(P,Q))+0(1) = H(®oy(P,Q)) +O(1) =
=2h(¢(P,Q)) + O(1) = 2h(P) + 2h(Q) + O(1).

]

Lemma 6.2.10. Let k be a field. Let a,b € k* with 4a® + 27b* # 0.
(i) The polynomials 2°+ax+b et z*+2az* —8bx+a* in k[z] are relatively prime.

(ii) The homogeneous polynomial U? — 4TV, 2U (aT +V ) +4bT?, (aT —V)* —4bTU
have no commun roots P%.

Proof. The statement (i) follows from :

(32% + 4a) (2" — 2a2® — 8bx + a®) — (32° — bax — 27b) (2> + ax +b) =
= 4a® + 27b*. (6.8)
The statement (ii) is trivial if 7" = 0. Assume T # 0 ans denote v = U/2T and

v = V/T. One has v —v = 2u(a +v) +4b = 0 et (v — a)? — 8bu = 0, so that
ut — 2au® — 8bu + a® = u® + au + b, contradiction with (6.8). O

Lemma 6.2.11. Let o, € Q. Then

1/2H(a)H(B) < H(L: a + 3 : af) < 2H(a)H(B).

Proof. Let K be a number field such that «, § € K. The statement follows from:
max{1, |a + B|,, |af],} = max{1, |a|, tmax{1,|8],},v € X pin:(K);
1/2max{1, |a|,}max{1,|5],} < max{1,|a+ Bl,, |ab],} <

< 2max{l, |a|, }max{1, |B|,},v € Yoo (K).

]
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6.2.3 Néron-Tate height on an elliptic curve

The goal of this section is to define a height function for the points of an elliptic
curve F which is a quadratic form.

Lemma 6.2.12. Let S be a set. Assume that we have functions h : S — R and
g: S — S such that there are constants d > 1 and ¢ > 0 such that

|h(g(x)) — dh(z)| < ¢ for any x € S.
Then for any x € S the sequence xz,, = Mg (2)) converges in R. If iz(x) 15 the limit
of the sequence (x,,), then

[h(x) = h(z)| < ¢/(d—1)
hig(x)) = dh(x).

Proof. Let us show that the sequence (z,) is a Cauchy sequence. We write the
inequality |h(g(z)) — dh(z)| < ¢ for z = ¢*(z):

c _ hg*(x) h(g" () _ c
B
We take a sum between n 4+ 1 and n + m and we get
¢ _h(g™(@)  h(g"a) _ o
ar(d—-1) —  drtm v~ dv(d—-1)

The sequence (z,) is then a Cauchy sequence, we set h(z) its limit. Passing to the
limit in the inequalities above, we get
c

—m < il(@ -

so that |h(z) — h(x)| < ¢/(d —1). In addition,

h(g(x)) = lim (g™ (2))/d" = d lim h(g"*'(2))/d""" = dh(z).

n—oo n—oo

]

Let E be an elliptic curve defined over a number field K. By theorem 6.2.8, if
we set S = F(K), h the Weil height on F and g the multiplication by 2 on F(K),
then the conditions of the previous lemma are satisfied (with d = 4). We can then
define :

Definition 6.2.13. The Néron-Tate height on F is defined by

h(P) = lim ME2e)

n—o00 4n
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Theorem 6.2.14. (i) h(P + Q) + h(P — Q) = 2h(P) + 2h(Q);
(ii) h(P) =0 iff P is a torsion point.
Proof. We get the statement (i) passing to the limit on n in inequalities

—c/4" < h(zn(ff D) | hm({;_ @ hﬁff’) - ’“f; ) < c/4"

in the theorem 6.2.9. R R R

If mP = 0, then 0 = h(mP) = m*h(P), so that h(P) = 0. Inversely, if h(P) = 0,
then h(mP) = 0 for all m. But the set {mP,m € Z} is finite, so that P is tor-
sion. [l

Corollary 6.2.15. Let E be an elliptic curve defined over a number field K. Then
the torsion subgroup E(K)ors of E(K) is a finite group.

Proof. The statement follows from the previous theorem and the fact that we have
only a finite number of points of bounded height. n

6.3 Mordell-Weil theorem

The goal of this section is to give a proof of the following famous theorem:

Theorem 6.3.1. [Mordell-Weil] Let E be an elliptic curve over a number field
K. The group E(K) is an abelian group of finite type.

In particular F(K) = E(K)ors ® Z" where the group of torsion points E(K )
of F is finite and r is by definition the rank of FE.

The proof is in two steps:

1. Let E/K be an elliptic curve defined by the equation y? = x3+ax+b such that
the polynomial Ps(z) = 2% + ax + b has three roots in K. A decent argument
and the existence of the quadratic height function h on E(K) show that
theorem 6.3.1 is a consequence of its "weak" version: le group F(K)/2E(K)
is finite.

2. In order to show the weak Mordell-Weil theorem we construct a homomor-
phism F(K) — (K*/K*?)? with kernel 2E(K) and finite image. This last
property uses in particulr the Dirichlet theorem on units in the ring of inte-
gers of a number field (see below).
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6.3.1 Descent

Proposition 6.3.2. Let G be an abelian group and let ¢ : G — R be a quadratic
form. Assume

(1) the quotient G/2G is finite;
(ii) for any c € R, the set {x € G,q(x) < c} is finite.

Then the group G is an abelian group of finite type : if S is the set of representatives
for each class of G/2G and if ¢ = max,esq(x), then the set {vr € Gq(x) < ¢}
generates G.

Proof. Note first that for any x € G one has ¢(x) > 0. In fact, if it was not the
case, we would have g(mx) = m?q(z) < 0 for any integer m > 0, contradiction with
(i1). So that we could define

|z = Vaq(z).

Since q is a quadratic form, we have |mz| = m|z| for any m > 0 and |z+y| < |z|+|y|.

Let ¢ as in the statement and let + € G with ¢(x) > ¢. One could write
x =y + 2z, for 1 € G and y; in the set of representatives of G/2G, in particular
ly1] < /c. We have

1

1
2|$0| + || < §(|$0| +/¢) < |zo|.

1
21| = §|$o -yl <
We then construct inductively the sequence (z,,) with g = x and x,, = Y41+ 2511
and |z,+1| < |z,|. By the finiteness condition (i7), there exists ng such that
|xn0| < y/c. We then get that z is a combination of y;, i < ng and and z,,,
which are in the finite set S. O

"Weak" version implies theorem 6.3.1. Let E/K an elliptic curve defined by an
equation y? = 23 + ax + b. Let L/K be a finite extension such that L contains the
decomposition field of the polynomial P(z) = x® + ax + b. We have an inclusion
E(K) C E(L), hence, if E(L) is an abelian group of finite type, then E(K) is lso
of finite type. Up to replacing K by L, we may then assume that E is given by the
equation (6.9).

The "weak" version gives the finiteness of the group E(K)/2E(K). But we also
have the Néron-Tate height h : E(K) — R which is a quadratic form and verifies
the condition that for any ¢ € R, the set {z € E(K),h(z) < ¢} is finite. By propo-
sition 6.3.2, the group E(K) is an abelian group of finite typei. O

6.3.2 Dirichlet units theoerm

In order to establish the Mordell-Weil theorem we will need to use some additional
properties of units in O.
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Definition 6.3.3. Let S be a finite set of prime ideals in Og. The ring of S-
algebraic integers of K is the ring

OK,S = {ZL’ € K, ordp(x) > OVp ¢ S}

We denote Oj 5 the set of S-units. Note that if S is empty, then O ¢ = Of.
Assume that K has r; real embeddings and ry pairs of conjugated complex
embeddings. We consider a map

. * +ro+|S
Prs: Okg— R 151

Py s(x) = H logoi(z) - Hlog |z,

i=1,...,r1+r2 veES
Lemma 6.3.4. The image O 5(Of ) is a discret subgroup of R™+r2FI5],

Proof. Since ® is a homomorphism, the image I = @ (O} ) is a subgroup of
V = R #7245 1] is enough to show that there exists a neighborhood T of 0 € V
such that 7'M I is finite. Let

T={x=(21,.. . Triproqis) €V, |2 < 1,3 < ri4r, 2| <log Np, j corresponding top € S.}

Let z = ®x g(a) € TN 1. The condition |z;| < log Np for j corresponding to a
prime p implies that |ord,(«)] < 1, so that |ord,(«r)] = 0. Hence, a € Oj. In
addition, |o;(a)| are bounded for all i = 1,...7 + ro. The finiteness of 7N I then
follows from the lemma below. O

Lemma 6.3.5. Let K be a number field havig r1 real embeddings oy,...0., and
ro pairs of conjugate complexr embeddings or, 41, 0ry41s- -+ Orytrgs Orytry- Lt a1,% =
1...,r1 + 19 be strictly positive real numbers. Let

U={a€ Ok,l|oi(a)] <a; Vi}.
Then
(1) the set U is finite;
(ii) if (a1, ...,a,) = (1,...,1), then any a € U is a root of unity.

Proof. Let a € U and let

T2

T1
Xa,K(x) = H r— Uz H UTH—] (ZL’ - 6r1+j<a))'
i=1 j=1
We have xo.x € Z[z].We have x, k() = 0. Slnce |o;(a)| < a; Vi, the coefficients
of xa.x are bounded. We have only a finite number of such polynomials, so that
we get the finiteness of U. If (ay,...,a,) = (1,...,1), then the condition o € U
implies that a™ € U for any m > 0. Slnce U is finite, we deduce that « is a root of
unity. O
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Theorem 6.3.6. [Dirichlet-Chevalley-Hasse|Let K be a number field with ry
real embeddings and ro pairs of conjugated complex embeddings. Let S be a finite
set of prime ideals in Ok, we denote |S| its cardinaity (S could be empty). Then:

(i) the group of S-units Oj; ¢ is a groupe of finite type;

(i) the rank of the group O s equals to ry + 1y — 1+ [S].

Proof. We estalish here the part (i) of the theorem, it is enough for the applications
to elliptic curves .

By lemma 6.3.5, I := @ (O} g) is a discrete subgroup of R™2*151. By lemma
below, there exist elements vy, ...v,, € I such that

(i) vi = Prs(ug), with u; € Ok g;

(ii) for any element u € O ¢ we have u = e ], u;* with r; € Z and e € ker Qg g.
An element e € ker ®g g verifies

(*) ordy(e) =0 for any p € S, in particular, e € Ok;
(**) |oi(e)] =1 for any i.

In particular, conditions of lemma 6.3.5(ii) are satisfied, we then get that e is a root
of unity and the set of such e is finite. We deduce from (i7) above that the group
Ol s 1s a group of finite type.

O

Lemma 6.3.7. Let V' be an R-vector space of finite dimension. Let I C 'V be a
discret subgroup. Then there exist R-linearly independent vectors vy, ..., v, € V
such that

I =7vi+ ...+ Zv,.

Proof. Consider wy, ..., w, the maximal set of element of I, independent over R.
Hence I' = Zw; + ... + Zw, C I and any element a € [ could be written as
a=rw+...+r,w, with r; € R. Let

Since [ is discret, TN is finite: TNI = {ay, ..., as}. From the argument above, we
deduce that any a € I could be written as a = a; + o’ with «’ € I’. In particular, I’
is a subgroup of finite index in I, i.e. dI C I’ for some integer d. We then get that
IcC é] "and é] "is a free Z-module of rank n. Hence [ is a free Z-module of finite

rank n < m: let vy,...v,, be the generators of I. Since wy, ..., w, are independant
over R and » 7" Rw; C 377 Ruj, we deduce that n = m and that vy, ..., v, are
R-linearly independent. O
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6.3.3 Weak Mordell-Weil theorem

Let F be an elliptic curve over a number field K defined by an equation
v = (v —o)(z — ag)(x — as) (6.9)

Let P, = (;,0). We define a map ¢ = (¢, ¢a, ¢3) : E(K) — (K*/K*?)3 by

Tp— i P 7£ Pi) OE
$i(P) =< (o — 1) (i — i), P =P,

where we write P = (zp,yp) the coordinates of the point P; the indices i — 1 and
1+ 1 are modulo 3.

Proposition 6.3.8. The map ¢ is a homomorphism.

Proof. By definition, for any point P € E(K), we have
¢(P) = ¢(=P) = ¢(P)~! (6.10)
in (K*/K*2)3. Let P,Q € E(K) and let R = —(P + Q), i.e.
P+Q+R=0g.
We then have ¢(P + Q) = ¢(R) and we want to show that
¢i(P)oi(Q)di(R) = 1,i=1,2,3. (6.11)

Let f(x) = (x — aq)(z — ag)(x — a3). Let y = Ax + u the equation of the line L
intersecting F in P, (), R, so that the equation

f(@) = (O + 1) = 0
has three roots zp, xg, zr. We have the following cases to consider:
1. P,Q, R are all distinct from P; and from 0. Consider
g(x) == flz +a;) — Dz + Aoy + p)* =0,

then g(x)has three roots xzp — a;, 29 — o, g — o;. Since f(o;) = 0, the
constant coefficient of the polynomial g(z) is (Aa; + p)?. We then have

(zp — ai)(xq — @) (rr — i) = (A + p)?,
and we get (6.11) in this case.

2. One point among P, @, R is the point 0g. By (6.10), one could assume that
R = 0g. One then gets (6.11) using (6.10) again.
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3. One point among P,(Q, R is the point FP;. One can assume ¢ = 1 in order
to simplify the notations. Using (6.10), one could assume R = P;. We then
argue as in the first case: the equation of the line L is y = A(z — ;) and the
equation

fz) = N(z — ar)?
has three roots: zp, g et oy, i.e. the equation
(r — )z — a3) = N2 (2 — ay)
has two roots zp et xg. Let © = 2’ + ;. We then have that the equation
(2" + (o1 — ap)) (2" + (a1 — a3)) = N*(a)?
has two roots ¢1(P) and ¢1(Q), so that ¢1(P)é1(Q) = (a1 — ag)(ag — ag) =
¢1(R), which implies (6.11).
m

Proposition 6.3.9. The kernel of the map ¢ is 2E(K).

Proof. By the previous proposition ¢(2P) = ¢(P + P) = (¢(P))* = 1, so that
2E(K) C ker¢. It is enough to establish the inclusion ker ¢ C 2E(K). Let P €
ker ¢. We can then find z; € K*, 1 = 1,2, 3 such that

Tp— ;= 2. (6.12)

Let u, v, w such that

u+vai+wai2:zi

(in fact, u,v,w are solution of the Vandermonde linear system.) The equations
(6.12) give the following conditions :
u? — 20wb —xp =0
2uv — 2vwa — bw? +1 =0
v? + 2uw — aw? = 0,
so that v® + vw?a + bw® — w = 0. Note that w # 0 (if not, v = 0 and we get a
contradiction 1 = 0 from the second equation). We then have
(v/w)® + a(v/w) + b= (1/w)>.
We deduce that @ = (v/w, 1/w) is a point of E(K). One verifies that P = 2Q:
(v/w)* — 2a(v/w)* — 8b(v/w) +a®
4((v/w)? + a(v/w) +b) B
vt — 2av?w? — 8bvw? + a’w?

JZQQ =

4w?
(aw?* — 2uw)?® 1 ) )
R + Z(—ch — 8bvw + aw*) =

= u® — 2uwb — 3(02 —aw® + 2uw) = x. (6.13)
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Proposition 6.3.10. The image ¢(E(K)) of the map ¢ dans (K*/K*?)? is finite.

Proof. By theorem 6.1.5, the group of classes C1(Ok) is finite. One could then find
a finite set S of places of K such that Ok g is a principal ring. Up to enlarging S,
one could assume in addition that Ap = —(4a® + 270%) is in O 5. We have

Ap = (o1 — o) (o — a) (s — a3))?,

so that a; — a; € Ok g. Let P € E(K). We write zp = u/v and yp = w/t with
u,v,w,t € Ok g and

(u,v) = (w,t) =1in Ogz. (6.14)
We have

w?v? = t*(u — vay) (u — vas)(u — vas).

Using conditions (6.14), we deduce that v® = ¢?, up to a multiplicatin of v and ¢ by
units. One could then write v = 52 and t = s, so that

P = (u/s*,w/s*), w* = (u— a15)(u — aps?) (u — a3s?).

Any common divisor of (u—a;s%) and (u— ays?) divides (o —ay)s? and (o —an)u,
so that it divides (a; — as) € O 5. We then deduce that (u— a15), (u —ass?) and
(u — a3s?) are relatively prime between them, so that

2
U — ;S 9 .
Tp — @ = 2 =T € OK,S-

Hence, ¢(P) = (71,72,73). The Dirichlet-Chevalley-Hasse theorem 6.3.6 implies
that the group O ¢/(O% ¢)* is finite. We deduce that ¢(E(K)) is finite. O

Theorem 6.3.11. [Weak Mordell-Weil] Let E be an elliptic curve defined by
equation (6.9). The group E(K)/2E(K) is finite.

Proof. By proposition 6.3.9, F(K)/2E(K) ~ ¢(E(K)). This last group is finite by
proposition 6.3.10. O]

6.3.4 Computing the group E(Q).
Let E be an elliptic curve over K = QQ defined by an equation
v =2 +ar+b= (v —a1)(r —ag)(r — az).

The proof of the weak Mordell-Weil theorem give in fact a method to detemine the

group F(Q)/2E(Q): we see that Im¢ C {(y1,72,73) € (O;(’S/(O;?’S))?),’Yl’h’}/g =
1} where S = {p prime, p|Ag}. To determine the group E(Q);rs one could use the
following result:
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Theorem 6.3.12 (Lutz-Nagell). Let E be an elliptic curve y* = x3 + ax + b with
a,b € Z. Let P € E(Q) be a torsion point. Then xp,yp € Z and either yp = 0 or
yh|4a® + 2707
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Chapter 7

Elliptic curves over C

In this chapter we briefly discuss elliptic curves defined over the field C. In this
case we can use in addition some analytic methods.

7.1 Elliptic functions

Let wy,ws € C be linearly independent over R. Let A = Zw; & Zws C C be the
corresponding lattice. The fundamental domain of A is the set

H = {t1w1 + t2w270 < t1,l0 < 1}
We have a bijection
I[=c/a (7.1)
so that we can identify [ with C/A.

Definition 7.1.1. A A-elliptic function is a meromorphic function on C such
that
flz+w) = f(z2)Vw e A,z € C.

These functions appear in the study of elliptic integrals

/x dt
oo VIt — 1)t —N)

Often we do not specify the lattice A and we say «an elliptic function». One could
see an elliptic function f as a function on the quotient C/A, using the isomorphism
(7.1) above.

The set of all A-elliptic functions form a field that we denote M(A).

Recall that for any meromorphic function f and for any z € C, one defines the
order ord,f and the residu res,f. If f is elliptic, we have that ord.f and res,f
depend only on the class of z in C/A. We have the following properties.

Proposition 7.1.2. Let f be an elliptic function.
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1. If f has no poles, then f is constant;

2. > res,f =0;
zeC/A

3. Y. ord,f=0;
zeC/A

4. > ord,f-z€A.
z€C/A

d. if f has only one pole zy, then zy is not a simple pole.

The constant functions are obviously elliptic. One defines

)=+ 3 ()

weA\{0} (z —w) w

the Welerstrass function.

Proposition 7.1.3. 1. the function p and its derivstive p' are elliptic;

2. the field M(A) of elliptic functions is generated by p and p':
M(A) = C(p, p);
3. we have
p'(2)? = 4p(2)* — 60G4p(2) — 140G,

where Go, = Gop(A) = > ﬁ,k‘ > 2;
weA{0}

4. for
g = 60G4 and g3 = 140G6

we have g3 — 27g3 # 0.

One also verifies the addition formulas for the Weierstrass function:

1 p'(z) = p'(22) 1

plar+2) = —p(a1) = pl=) + 3 (T

p(22) = ~2p(2) +
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7.2 Properties of elliptic curves over C
7.2.1 The group of points
Proposition 7.2.1. Let E be a complex elliptic curve defined by the equation
Y27 = 4X3 — o2 X 7% — g3 73
where go and gs are defined in (7.3). We then have a biholomorphic map
V:C/A—E, z—[p(2): pl(z) : 1]

which 1s a group isomorphism.

Proof. Consider first the surjectivity. Let (z,y) € E. We then have that the
function h(z) = p(z) — = has a double pole at 0. Hence h has also a zero zy in [].

We deduce from 7.2 that p'(zo) or p'(—zp) is y. Hence, either z, or —z works.

For the injectivity assume that p(z1) = p(22) and that p'(z1) = p/(22). The goal

is to show that z; — 2o € A. We distinguish the following cases :

1. If z is the pole of p, then z; is also a pole, so that z; — 29 € A.

2. Assume that z; is not a pole of p. Note that for wy,wy and ws = wy + wy we
have p'(w;/2) = p'(—w;/2) = —p'(w;/2) (the first equality is a consequence of
the fact that p' is elliptic). We then have that p’ has three zeros w;/2 in [].
Since p’ has only one pole of order 3 in ], we get that p’ has no other zeros

in [].

If now 23 # w;/2 we introduce h(z) = p(z) — p(z1). Then h(z) = 0 for
z = z1,%y or —z;. Since h has only one double pole in [], we deduce that
29 = —z1. Hence y = p/(z2) = p/(—2z1) = —y so that p/(z;) = 0 which is not

possible from the above argument.

3. If 21 = w;/2, we find p'(z1) = 0, i.e. z; is a double root of h. But h has only

two zeros (and h(zz) = 0), so that z; = z,.

In order to show that V¥ is a group homomorphism, we use the addition formulas

for the Weierstrass function, we leave it as an exercise.

]

Remark 7.2.2. 1. Let a,b € C such that a®> — 270> # 0. The uniformization
theorem says that there is a unique lattice A C C such that go(A) = a,
g3(A) = b. Up to a linear change of coordinates, any complex elliptic curve is
given by an equation y? = 4x3 — gox — g3 with g5 — 27¢2 # 0. We can always
identify a complex elliptic curve with the quotient C/A for some lattice A.

We call such a quotient a complex torus.
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2. As a direct consequence of the proposition 7.2.1, we get the structure of the
subgroup E[n] of the n-torsion points, for a curve E defined over the field C.
In fcat, the kernel of the multiplication by n on C/A could be identified to
{z € C,nz € A}/A = (Z/n)>.

We also have another interpretation of the group of points of a complex elliptic
curve, as a groupe of divisors.

Definition 7.2.3. A divisor D on C/A is a finite formal sum
D= Znizia z € C/A.

We define the degree of D by deg(D) = > n;. A principal divisor is the divisor
D of type

D= Z (ord,f)z

zeC/A

where f is an elliptic function.

The set of all divisors on C/A is an abelian group. We denote Div(C/A) this
group, Div’(C/A) is the subgroup of divisors of degree zero and Div?(C/A) is the

subgroup of principle divisors. By proposition 7.1.2.3 above, we have Div?(C/A) C
Div°(C/A).

Theorem 7.2.4 (Abel-Jacobi). The map

Div(C/A) — C/A, Zn,zl — an - Z

mduces a group isomorphism

¢ : Div’(C/A\)/Div?(C/A) = C/L.

Proof. (sketch) By proposition 7.1.2, the map ¢ is well defined. By the définition,
it is a group homomorphism. Since ¢(z — 0) = z for any z € C/A, the map ¢ is
surjective. For the injectivity, if D is a divisor such that ¢(D) = 0, one explicitely
constructs a function f such that D = div(f). O

Corollary 7.2.5. Let E be a complex elliptic curve Y?Z = 4X3 — X 7% — g3.7°
where go and gs are defined in (7.3). We then have a group isomorphism

Div°’(C/A)/Div’(C/A) — E.

Proof. We get an isomorphism as above by composition of the map ¢ and the map
from proposition 7.2.1. O
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7.2.2 The endomorphisms

Let E be a complex elliptic curve. By remark 7.2.2, one can identify it with the
torus C/A. On the other hand, for v € C*, the multiplication by w induices an
isomorphism between C/A and C/uA. Up to multiplying by an element u € C we
can always assume that A = Z @ Z7 with 7 in the Poincaré plan ‘H (i.e. Im7 > 0.)

Proposition 7.2.6. Two complez tori C/(Z@®Zt) and C/(ZDZ1") are isomorphic

if and only if there is a matric (‘Z g) € SL(2,7Z) such that 7" = %.

Proof. Let ¢ : C/(Z & Z71") — C/(Z & Z7) be a homomorphism. Note that ¢ is in-
duced by a multiplication by an element o € C such that a(Z & Z7") C Z & Z1. We

then have a« = ¢ + d and a7’ = ar + b with a,b,c,d € Z. Hence 7" = ‘C‘TTIS
Since ¢ is an isomorphism, we have that the matrix (‘; 3) is invertible, since
Im(7') = det(24)Im(r)/|cT + d|* we get (2}) € SL(2,Z). O

Corollary 7.2.7. Let E = C/A be an elliptic curve, where A = 7 & Zt. Then

Z, [Q(7) : Q] > 2
=2.

End(E) = {Z +ZAr, [Q(7): Q]

In the second case, the integer A is the coefficient of the minimal polynomial AT? +
Bt + C of 7. We then say that E has complex multiplication.

Proof. We have End(E) = {a € C, |aA C A}. Using previous proposition we have
that o = e7 +d corresponds to the matrix (‘; Z) € SL(2,7Z) such that 7 = %. We
then get e+ (d —a)T —b=0. If [Q(7) : Q] > 2, we get c=b=0,a = d, i.e. the
multiplication by d. If [Q(7) : Q] > 2 and A7?+ B7 + C is the minimal polynomial
of 7, we find in addition ¢ = mA,d —a = mB,—b = mC, so that « = mAT+d. O

7.3 Complement : Fermat’s Last Theorem

To finish this course we will explain the role of the elliptic curves in the proof of
the Fermat’s last theorem.

Let E be an elliptic curve defined over Q. By a linear change of variables, one
can assume that E is given by an equation

v =1+ Ar + B, A,B€Z. (7.6)
For any prime p, one has a curve
Ep:y2 :$3+Apx+Bp

where A, € Z/p (resp. B,) is the reduction of A (resp. of B) modulo p. If p JAp,
the curve E, is an elliptic curve over F,. We say that £ has an additive reduc-
tion at p if A, = B, = 0. If this happens for no prime p, we say that E has a
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semi-stable reduction.

For any prime p and for any r > 0 one defines a,r =p" + 1 — #E,(F,.) if E, is
smooth. If it is not the case, one defines a,» € {—1,1,0} according to its type of
reduction. If n = [[p;* is an integer, one defines a,, = [] a,ri. To an elliptic curve
E one associates the series:

[e.9]

fE(T> = Zanqn7 q= 627ri77

n=1
convergent for any 7 € H.

Theorem 7.3.1 (Wiles, Breuil, Conrad, Diamond, Taylor).
(Taniyama-Shimura-Weil Conjecture)

Let E be the elliptic curve (7.6). The the curve E is modular : there exists an
integer N such that for any ™ € H one has

1. fp(4E) = (er+d)* fu(r), V(2}) € To(N), withTo(N) = {(2}) € SL(2,Z),c =
0 (mod N)};

2. fol—m) = £NT2p(r).

In 1994, A. Wiles established this conjecture for E semi-stable.

Let now
" +y"=2"n>3.

Assume that this equation has a nontrivial solution (a,b, ¢) with a,b,c € Z. It
is enough to consider the case n = ¢ an odd prime. In 1986, Frey introduced an
elliptic curve associated to such a solution

Eryey 1 y* = z(x — a")(z + b°).
Theorem 7.3.2 (Ribert, 1986). The curve Ep.y is not modular.

This theorem and the theorem of A.Wiles imply that a solution (a,b,c) of the
Fermat equation cannot exist.
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