
This course provides an introduction to the Number Theory, with mostly ana-
lytic techniques. Topics include: primes in arithmetic progressions, zeta-function,
prime number theorem, number fields, rings of integers, Dedekind zeta-function,
introduction to analytic techniques: circle method, sieves.

Here is the some references (to be completed and extended):

1. S. J. Miller and R. Takloo-Bighash, An Invitation to Modern Number Theory.

2. A.Karatsuba, Basic Analytic Number Theory.

LECTURE 1

1 Primes in arithmetic progressions
The goal of this section is to prove the Dirichlet theorem:

Theorem 1.1 (Dirichlet). Every arithmetic progression

a, a+ q, a+ 2q, . . .

in which a and q have no common factor, includes infinitely many primes.

1.1 Euler’s identity and existence of infinitely many primes

The series
∑

n≥1 n
−s converges uniformly for s in a compact in the half-plane Re s >

1, so that it defines an analytic function

ζ(s) =
∑
n≥1

1

ns

(introduced by Riemann in 1859.)

Proposition 1.2. The infinite product∏
p prime

(1− p−s)−1

converges uniformly on any compact in the half-plane Re s > 1 and defines an
analytic function verifying

ζ(s) =
∏
p

1

1− p−s
.

Proof. We express 1
1−p−s as a sum of a geometric series

1

1− p−s
=

∑
m≥0

1

pms
.
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Let X be a sufficiently big integer. Multiplying the identities above for primes ≤ X
we obtain: ∏

p≤X

1

1− p−s
=

∏
p≤X

∑
m≥0

1

pms
=

∑
n∈N(X)

1

ns
,

where N(X) is the set of positive integers having all prime factors ≤ X. Then for
Re s = t > 1 we have

|ζ(s)−
∏
p≤X

1

1− p−s
| ≤

∑
n/∈N(X)

1

ns
≤

∑
n>X

1

nt
.

To verify that the Euler product converges in remains to show that it is nonzero.
Let us show that ζ(s) 6= 0 for Re s > 1. We use the Talyor series expansion for the
principal definition of the complex logarithm: ln(1− p−s) = −

∑
m≥1

p−ms

m
, so that for

Re s > 1 we obtain
ζ(s) = exp(

∑
p

∑
m≥1

p−ms

m
)

is nonzero.

The expression above provides a method to show the infinity of prime numbers.
Write

ln ζ(s) =
∑
p

∞∑
m=1

m−1p−ms. (1)

Since ζ(s)→∞ as s→ 1 from the right, and since∑
p

∞∑
m=2

m−1p−ms <
∑
p

∞∑
m=2

p−m =
∑
p

1

p(p− 1)
< 1.

it follows that
∑

p p
−s → ∞ as s → 1 from the right. This proves the existence of

an infinity of primes and, moreover, that the series
∑
p−1 diverges.

The proof Dirichlet theorem is inspired by the same idea, but with more involved
techniques. We first investigate some additional properties of the zeta function.

1.2 Zeta function

Proposition 1.3. Assume s > 1. Then lims→1(s− 1)ζ(s) = 1.

Proof. We have

(n+ 1)−s <

∫ n+1

n

t−sdt < n−s.

Taking the sum from 1 to ∞, one obtains

ζ(s)− 1 <

∫ ∞
1

t−sdt =
1

s− 1
< ζ(s).
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Hence 1 < (s− 1)ζ(s) < s. We ontain the result taking limit as s→ 1.

Corollary 1.4.
lnζ(s)

ln(s− 1)−1

s→1→ 1.

Proof. Denote r(s) = (s− 1)ζ(s). Then ln(s− 1) + lnζ(s) = ln r(s), so that

lnζ(s)

ln(s− 1)−1
= 1 +

ln r(s)

ln(s− 1)−1
.

By the proposition above, r(s) → 1 as s → 1. Hence ln r(s) → 0 and we deduce
the result.

Proposition 1.5.
lnζ(s) =

∑
p

p−s +R(s)

where R(s) is bounded as s→ 1.

Proof. By proposition 1.2, we have ζ(s) =
∏

p≤N(1 − p−1)−1aN(s), with aN(s) →
1, N →∞.

We then have

lnζ(s) =
∑
p≤N

N∑
m=1

m−1p−ms + ln aN(s)

and, taking the limit for N →∞,

lnζ(s) =
∑
p

p−s +
∑
p

∞∑
m=2

m−1p−ms,

where the second sum is less than
∑

p

∑∞
m=2 p

−ms =
∑

p p
−2s(1 − p−s)−1 ≤ (1 −

2−s)−1
∑

p p
−2s ≤ 2ζ(2).

If s ∈ C, from the definition we see that ζ(s) is convergent for Re s > 1.

Proposition 1.6. The function ζ(s) − (s − 1)−1 can be continued to an analytic
function on {s ∈ C, Res > 0}.

Proof. Assume Re s > 1. Then, using the lemma below, one can write

ζ(s) =
∞∑
n=1

n−s =
∞∑
n=1

n(n−s − (n+ 1)−s) = s

∞∑
n=1

n

∫ n+1

n

x−s−1dx =

= s

∞∑
n=1

∫ n+1

n

[x]x−s−1dx = s

∫ ∞
1

[x]x−s−1dx = s

∫ ∞
1

x−sdx− s
∫ ∞

1

{x}x−s−1dx =
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= s
s−1
− s

∫∞
1
{x}x−s−1dx, where [x] is the integral part of a real number x and

{x} = x − [x] is its fractional part. Since 0 ≤ {x} ≤ 1 the last integral converges
and defines an analytic function for Re s > 0 and the result follows. We obtain

ζ(s)− s

s− 1
= 1− s

∫ ∞
1

{x}x−s−1dx.

Lemma 1.7. Let (an), (bn) be two sequences of complex numbers such that
∑
anbn

converges. Let An =
∑n

1 ai and suppose Anbn → 0, n→∞. Then
∞∑
n=1

anbn =
∞∑
n=1

An(bn − bn+1).

Proof. Let SN =
∑N

n=1 anbn and A0 = 0. Then

SN =
N∑
n=1

(An−An−1)bn =
N∑
n=1

Anbn−
N∑
n=1

An−1bn =
N∑
n=1

Anbn−
N−1∑
n=1

Anbn+1 = ANbN+
N−1∑
n=1

An(bn−bn+1).

The result follows taking the limit as N →∞.

The following formula will be useful:

Corollary 1.8. For Re s > 0, N ≥ 1

ζ(s) =
N∑
n=1

1

ns
+
N1−s

1− s
− 1

2
N−s + s

∫ ∞
N

ρ(x)x−s−1dx,

with ρ(x) = 1
2
− {x}.

Proof. Write

ζ(s)− (
N∑
n=1

1

ns
+
N1−s

1− s
− 1

2
N−s + s

∫ ∞
N

ρ(x)x−s−1dx) =

=
s

s− 1
−

N∑
n=1

1

ns
− N1−s

1− s
+

1

2
N−s − s

∫ N

1

(x− [x])x−s−1dx+

∫ ∞
N

(−s)x−s−1

2
dx =

=
s

s− 1
−

N∑
n=1

1

ns
− N1−s

1− s
+

1

2
N−s −

∫ N

1

sx−sdx+
N−1∑
n=1

n(
1

ns
− 1

(n+ 1)s
)− 1

2
N s =

=
s

s− 1
−

N∑
n=1

1

ns
− N1−s

1− s
+
sN−s+1

s− 1
− s

s− 1
+

N−1∑
n=1

1

ns
− N − 1

N s
= 0.
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1.3 Statement of Dirichlet theorem

Definition 1.9. Let S and T be two sets of positive integers, with T infinite. The
upper natural density and lower natural density of S in T are defined as

limsupN→∞
#{n ∈ S, n ≤ N}
#{n ∈ T, n ≤ N}

and liminfN→∞
#{n ∈ S, n ≤ N}
#{n ∈ T, n ≤ N}

.

If the upper and lower densities coincide, the common value is called the natural
density of S in T .

Definition 1.10. Let S and T be two sets of positive integers, with
∑

n∈T n
−1

divergent. The upper Dirichlet density and lower Dirichlet density of S in
T are defined as

limsups→+1

∑
n∈S n

−s∑
n∈T n

−s and liminfs→+1

∑
n∈S n

−s∑
n∈T n

−s .

If the upper and lower densities coincide, the common value is called the Dirichlet
density d(S) of S in T .

Note that Proposition 1.5 implies that a subset S of the set of all primes P has
Dirichlet density if

lims→1

∑
p∈S p

−s

ln(s− 1)−1

exists.
The following properties are straightforward:

Proposition 1.11. Let S ⊂ P.

(i) If S is finite, then d(S) = 0;

(ii) If S consists of all but finitely many primes, then d(S) = 1;

(iii) If S = S1 ∪ S2, where S1 and S2 are disjoint and d(S1) and d(S2) both exist,
then d(S) = d(S1) + d(S2).

We will prove a more precise statement of the Dirichlet theorem:

Theorem 1.12 (Dirichlet). Let a, q ∈ Z, (a, q) = 1. Let

P(a, q) = {p prime , p ≡ a mod q}.

Then d(P(a, q)) = 1
φ(q)

, in particular, this set is infinite.

5



1.4 Characters

Let A be an abelian group.

Definition 1.13. A character on A is a group homomorphism A→ C∗. The set
of characters is denoted by Â.

Note that Â is an abelian group: if χ, ψ ∈ Â we define χψ by a 7→ χ(a)ψ(a).
The trivial character χ0, defined by χ0(a) = 1 for all a ∈ A, is the neutral element
of the group. Finally, for χ ∈ Â we define χ−1 as the character given by a 7→ χ(a)−1.

If A is a finite group of order n, we have an = e for any a ∈ A hence the values
of χ are the roots of unity and χ(a) = χ(a)−1 = χ−1(a).

Proposition 1.14. Let A be a finite abelian group. Then A ' Â.

Proof. Suppose first that A is cyclic, generated by an element g of order n. Then
any character χ is uniquely defined by its value χ(g). Since χ(g) is a root of unity,
there are at most n characters. Now, if ξn = e2πi/n and λ is a character such that
λ(g) = ξn, we obtain that the powers λk, k = 1, . . . n are distinct characters, hence
Â is a cyclic group generated by λ. In the general case, since any finite abelian
group is a direct product of cyclic groups, it is enough to check that if A ' A1×A2,
then Â ' Â1 × Â2, that we leave as an exercise.

Proposition 1.15. Let A be a finite abelian group and χ, ψ ∈ Â, a, b ∈ A. Then

(i)
∑

a∈A χ(a)ψ(a) = nδ(χ, ψ)

(ii)
∑

χ∈Â χ(a)χ(b) = nδ(a, b).

Proof. (i) We have
∑

a∈A χ(a)ψ(a) =
∑

a χψ
−1(a). It is enough to show that∑

a χ0(a) = n and
∑

a χ(a) = 0 if χ 6= χ0. The first assertion follows from the
definition of χ0. For the second, we have that there is b ∈ A, χ(b) 6= χ0(b) = 1.
Then

∑
a χ(a) =

∑
a χ(ba) = χ(b)

∑
a χ(a) and the result follows.

(ii The proof is similar to (i), using that if a is nonzero in A, there is a character
ψ such that ψ(a) 6= 0. We leave it as an exercise.

Definition 1.16. A Dirichlet character mod m is a character for A = (Z/mZ)∗

the group of units in the ring Z/mZ.

Note that Dirichlet characters mod m induce, and are induced from the charac-
ters χ : Z→ C∗ such that

(i) χ(n+m) = χ(n) for all n ∈ Z;

(ii) χ(kn) = χ(k)χ(n) for all k, n ∈ Z;
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(iii) χ(n) 6= 0 if and only if (n,m) = 1.

Since the order of the group (Z/mZ)∗ is the value of Euler’s function φ(m), there
are φ(m) Dirichlet characters mod m. The proposition above gives in this case:

Proposition 1.17. Let χ and ψ be Dirichlet characters modulo m and a, b ∈ Z.
Then

(i)
∑m−1

a=0 χ(a)ψ(a) = φ(m)δ(χ, ψ)

(ii)
∑

χ χ(a)χ(b) = φ(m)δ(a, b).

1.5 L-functions

Let χ be a Dirichlet character modulo m.

Definition 1.18. The Dirichlet L-function associated to χ is

L(s, χ) =
∞∑
n=1

χ(n)n−s.

Note that since |χ(n)n−s| ≤ n−s, the function L(s, χ) converges and is continu-
ous for s > 1.

Proposition 1.19. (i) L(s, χ) =
∏

p(1− χ(p)p−s)−1;

(ii) L(s, χ0) =
∏
p|m

(1− p−s)ζ(s).

(iii) lims→1(s− 1)L(s, χ0) = φ(m)/m. In particular, L(s, χ0)→∞ as s→ 1.

Proof. The statement (i) follows as in proposition 1.2. For(ii) write

L(s, χ0) =
∏

(p,m)=1

(1− χ0(p)p−s)−1 =
∏
p|m

(1− p−s)
∏
p

(1− p−s)−1 =
∏
p|m

(1− p−s)ζ(s)

using proposition 1.2 again. To establish (iii) we use proposition 1.3 and we obtain

lims→1(s− 1)L(s, χ0) =
∏
p|m

(1− p−1) = φ(m)/m.

Proposition 1.20. Let χ be a nontrivial Dirichlet character modulo m. Then
L(s, χ) can be continued to an analytic function for Re s > 0.
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Proof. Let S(x) =
∑

n≤x χ(n). By lemma 1.7, we have

L(s, χ) =
∞∑
n=1

S(n)(n−s − (n+ 1)−s) = s

∞∑
n=1

S(x)

∫ n+1

n

x−s−1dx =

= s
∫∞

1
S(x)x−s−1dx. By lemma below, |S(x)| ≤ φ(m) for all x. Hence the above

integral converges and defines an analytic function for Re s > 0.

Lemma 1.21. Let χ be a nontrivial character modulo m. For any N > 0

|
N∑
n=0

χ(n)| ≤ φ(m).

Proof. Let N = qm+ r, 0 ≤ r < m. Since χ(n+m) = χ(n) and
∑m−1

n=0 χ(n) = 0 by
the orthogonality relations, we obtain

|
N∑
n=0

χ(n)| = |q
m−1∑
n=0

χ(n) +
r∑

n=0

χ(n)| ≤ |
r∑

n=0

χ(n)| ≤
m−1∑
n=0

|χ(n)| = φ(m).

We now study Gauss sums associated to Dirichlet characters.

Definition 1.22. For χ a Dirichlet character we defineG(s, χ) =
∑

p

∑
k≥1

χ(pk)p−ks

k
.

Note that since |χ(pk)p−ks

k
| ≤ p−ks and ζ(s) converges for s > 1, the same holds

for G(s, χ).

Proposition 1.23. (i) For s > 1, expG(s, χ) = L(s, χ);

(ii) G(s, χ) =
∑

(p,m)=1

χ(p)p−s +Rχ(s), where Rχ(s) is bounded as s→ 1;

(iii) ∑
χ

χ(a)G(s, χ) = φ(m)
∑

p≡a(m)

p−s +Rχ,a(s), (2)

where Rχ,a(s) is bounded as s→ 1.

(iv) lims→1G(s, χ0)/ln(s− 1)−1 = 1.

Proof. Note that for z ∈ C, |z| < 1 one has

exp(
∞∑
k=1

zk

k
) = (1− z)−1.

So that, for z = χ(p)p−s we obtain exp(
∑∞

k=1
χ(pk)p−ks

k
) = (1 − χ(p)p−1)−1 and we

deduce (i).
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The proof of (ii) is similar to propostion1.5. To get (iii), we multiply the both
sides of (ii) by χ(a) and sum over all Dirichlet characters modulo m:∑

χ

χ(a)G(s, χ) =
∑

(p,m)=1

p−s
∑
χ

χ(a)χ(p) +
∑
χ

χ(a)Rχ(s).

By proposition 1.17, we obtain∑
χ

χ(a)G(s, χ) = φ(m)
∑

p≡a(m)

p−s +Rχ,a(s),

where Rχ,a(s) is bounded as s→ 1, as required.
For (iv), we use that L(s, χ0) =

∏
p|m

(1− p−s)ζ(s). Hence G(s, χ0) =
∑

p|m ln(1−

p−s) + lnζ(s), so that the statement follows from Proposition 1.3.

In particular, from (i) we obtain that the series G(s, χ) provides a definition
for lnL(s, χ), with no choice of branch involved. Understanding the behaviour
of G(s, χ) for χ non trivial is the crucial technical step in the proof of Dirichlet
theorem. In lecture 3 we present a proof due to de la Vallée Poissin (1896).

Proposition 1.24. Let F (s) =
∏

χ L(s, χ) where the product is over all Dirichlet
characters modulo m. Then, for s real and s > 1 we have F (s) ≥ 1.

Proof. By definition, G(s, χ) =
∑

p

∑
k≥1

χ(pk)p−ks

k
. Summing over χ and using

Proposition 1.17, we obtain∑
χ

G(s, χ) = φ(m)
∑

pk≡1(m)

1

k
p−ks.

The right-hand side of this equation is positive, taking the exponential, we obtain∏
χ L(s, χ) ≥ 1.

Theorem 1.25. Let χ be a nontrivial Dirichlet character modulom. Then L(1, χ) 6=
0.

Proof. We first consider the case when χ is a complex character. By definition, for
s real, we have L(s, χ) = L(s, χ̄). Letting s → 1 we see that L(1, χ) = 0 implies
L(1, χ̄) = 0. Assume L(1, χ) = 0. Since L(s, χ) and L(s, χ̄) have zero at s = 1,
L(a, χ0) has a simple pole at s = 1 by Proposition 1.19(iii) and the other factors
are analytic at around s = 1 we obtain F (1) = 0. But from Proposition 1.24, for s
real and s > 1 we have F (s) ≥ 1, contradiction.

The case when χ is nontrivial real character (i.e. χ(n) = 0, 1 or −1) is more
difficult. For such character assume L(1, χ) = 0 and consider

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
.
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Note that ψ(s) is analytic for Res > 1/2: in fact, the zero of L(s, χ) at s = 1
cancels the simple pole of L(s, χ0) and the denominator is analytic for Re s > 1/2.
Moreover, since L(2s, χ0) has a simple pole at s = 1 we have that ψ(s)→ 0, s→ 1/2.

Lemma 1.26. For s real and s > 1 we have ψ(s) =
∑∞

n=1 ann
−s where a1 = 1,

an ≥ 0 and the series is convergent for s > 1.

Proof. We have

ψ(s) =
∏
p

(1−χ(p)p−s)−1(1−χ0(p)p−s)−1(1−χ0(p)p−2s) =
∏
p-m

1− p−2s

(1− p−s)(1− χ(p)p−s)
.

If χ(p) = −1, the p-factor is equal to 1. Hence

ψ(s) =
∏

χ(p)=1

1 + p−s

1− p−s
.

We have 1+p−s

1−p−s = (1 + p−s)
∞∑
k=0

p−ks = 1 + 2p−s + 2p−2s + . . . . Applying lemma 1.27

below yields the result.

Expanding ψ(s) (as a function of a complex variable) as a power series around
s = 2, we obtain

ψ(s) =
∞∑
m=0

bm(s− 2)m.

Since φ(s) is analytic, the radius of convergence of this power series is at least 3/2.
We have

bm = ψ(m)(2)/m! =
∞∑
n=1

an(−ln n)mn−2 = (−1)mcm, cm ≥ 0.

Hence φ(s) =
∑∞

n=0 cm(2 − s)m and c0 = ψ(2) =
∑∞

n=1 ann
−2 ≥ a1 = 1. Hence for

s real in (1
2
, 2) we have ψ(s) ≥ 1, contradiction with ψ(s) → 0 as s → 1/2. This

finishes the proof of the theorem.

Lemma 1.27. Let f be a nonnegative function on Z such that f(mn) = f(m)f(n)
for all (m,n) = 1. Assume that there is a constant c such that f(pk) < c for all
prime powers pk. Then

(i)
∑∞

n=1 f(n)n−s converges for all real s > 1;

(ii)
∑∞

n=1 f(n)n−s =
∏

p(1 +
∑∞

k=1 f(pk)p−ks).

Proof. Let s > 1 and a(p) =
∑∞

k=1 f(pk)p−ks. Then

a(p) < cp−s
∞∑
k=0

p−ks = cp−s(1− p−s)−1,
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so that a(p) < 2cp−s. Since for x > 0 we have 1 + x < exp x we deduce∏
p≤N

(1 + a(p)) <
∏
p≤N

expa(p) = exp
∑
p≤N

a(p) < exp(2c
∑
p

p−s) := M.

By the definition of a(p) and the multiplicativity of f we deduce
∞∑
n=1

f(n)n−s <
∏
p≤N

(1 + a(p)) < M.

Since f is nonnegative, we obtain (i). We deduce (ii) similarly to Proposition
1.2.

We now deduce as a corollary:

Proposition 1.28. If χ is a nontrivial character modulo m, then G(s, χ) remains
bounded as s→ 1 through real values s > 1.

Proof. Since L(1, χ) 6= 0 by theorem 1.25, there is a disk D around L(1, χ), not
containing 0. Let ln z be a single-valued branch of the logarithm, defined on D.
Let δ > 0 be such that L(s, χ) ∈ D for s ∈ (1, 1 + δ). Then for s in this interval
the exponential of both functions lnL(s, χ) and G(s, χ) is L(s, χ). Hence, there is
an integer N such that for s ∈ (1, 1 + δ) one has

G(s, χ) = 2πiN + lnL(s, χ),

so that lims→1G(s, χ) exists and is equal to 2πiN + lnL(1, χ), in particular G(s, χ)
is bounded.

1.6 Proof of Dirichlet theorem

Recall the identity (2):∑
χ

χ(a)G(s, χ) = φ(m)
∑

p≡a(m)

p−s +Rχ,a(s),

where Rχ,a(s) is bounded as s→ 1. We divide this identity by ln(s− 1)−1 and take
the limit as s → 1. By Proposition 1.28, the limit of the left-hand side is 1, and
the limit of the right-hand-side is φ(m)d(P(a,m)). We obtain d(P(a,m)) = 1

φ(m)

as claimed.

2 Zeta function
Deeper properties concerning the distribution of primes are related to the properties
of the zeta function. We continue investigating these properties using tools from
real and complex analysis.
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2.1 Fourier analysis

Definition 2.1. If f ∈ L1(R) we denote

f̂(y) =

∫
R
f(x)e−2πixydx.

Examples:

• (Fourier inversion formula) If f, f̂ ∈ L1(R), then f(x) =
∫
R f̂(y)e2πixydx.

• for f(x) = e−πx
2 one has f̂(y) = e−πy

2
, i.e. one could think about this function

as being ’self-dual’.

Let L ⊂ L1(R) be the vector space of twice continuously differentiable functions,
such that the functions f, f ′, f ′′ are rapidly decreasing (i.e. as x−(1+η) for some
η > 0.)

Theorem 2.2. (Poisson summation formula) For f ∈ L, we have∑
m∈Z

f(m) =
∑
n∈Z

f̂(n).

For the proof, see for example section 11.4.2 in [S. J. Miller and R. Takloo-Bighash,
An Invitation to Modern Number Theory]. The formula holds under weaker assump-
tions, but the version above is enough for applications here.

Recall that the Γ-function is defined for Re(s) > 0 by

Γ(s) =

∫ ∞
0

ts−1e−tdt.

One has the following properties (see the next section for some of proofs):

• Γ(n+ 1) = n! and Γ(1) = 1.

• Γ(s) has a meromorphic continuation to the entire complex plane with simple
poles at s = 0,−1,−2, . . . and the residue at s = −k is (−1)k

k!
.

• (reflexion formula) Γ(s)Γ(1− s) = π
sin(πs)

.

• (functional equation) Γ(s+ 1) = sΓ(s).

• (duplication formula) Γ(s)Γ(s+ 1
2
) = 21−2sπ

1
2 Γ(2s), s ∈ C \ Z.

• (Stirling’s formula) logΓ(s) = (s− 1
2
)log(s)− s+ log

√
2π +O( 1

|s|).

• −Γ′(s)
Γ(s)

= 1
s

+ γ +
∑∞

n=1[ 1
n+s
− 1

n
.]

As a consequence,
Γ′(n)

Γ(n)
= −γ +

n−1∑
k=1

1

k
.

12



Definition 2.3. For Re(s) > 1 define ξ(s) = 1
2
s(s− 1)Γ( s

2
)π−s/2ζ(s).

The following analytic continuation theorem is of high importance.

Theorem 2.4. (Analytic continuation of the zeta function) The function ξ(s) has
an analytic continuation to an entire function and satisfies the functional equation

ξ(s) = ξ(1− s).
Proof. By change of variables in the definition of the Gamma function we get∫ ∞

0

x
1
2
s−1e−n

2πxdx =
Γ( s

2
)

nsπ
s
2

.

Summing over n ∈ N, for Re(s) > 1, we obtain

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

x
1
2
s−1(

∞∑
n=1

e−n
2πx)dx =

∫ ∞
0

x
1
2
s−1w(x)dx,

where w(x) =
∞∑
n=1

e−n
2πx. Note that the absolute convergence of the sum justifies

that one could exchange the order sum-integral in the first equality.
Diving the last integral into two pieces for x > 1 (resp. x < 1) and changing

variables by x 7→ x−1 in the second we obtain:

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞
1

x
1
2
s−1w(x)dx+

∫ ∞
1

x−
1
2
s−1w(

1

x
)dx.

By lemma below, one deduces from the functional equation for w(x) that

π−
s
2 Γ(

s

2
)ζ(s) =

1

s(s− 1)
+

∫ ∞
1

(x
1
2
s−1 + x−

1
2
s− 1

2 )w(x)dx.

Since w(x) is rapidly decreasing, the integral on the right converges absolutely for
any s and defines an entire function of s. The remaining assertions follow from
the location of poles of 1

s(s−1)
and the invariance of the right hand side of the last

equality under the change s 7→ 1− s.

Lemma 2.5. The function w(x) =
∞∑
n=1

e−n
2πx satisfies the functional equation

w(
1

x
) = −1

2
− 1

2
x

1
2 + x

1
2w(x).

Proof. Write w(x) = θ(x)−1
2

with θ(x) =
∑+∞

n=−∞ e
−πn2x. Note that this series is

converging rapidly for x > 0. By the Poisson summation formula, we have

θ(x−1) =
+∞∑

n=−∞

e−πn
2x−1

=
+∞∑

m=−∞

∫ +∞

−∞
e−πt

2x−1+2πimtdt = x
1
2 θ(x)

and the functional equation for w(x) easily follows.

13



Remark 2.6. Using the duplication and the reflexion formulas for the Γ-function,
one could obtain the functional equation for the zeta function in the following form:

ζ(s) =
1

π
(2π)ssin

πs

2
Γ(1− s)ζ(1− s).

Corollary 2.7. ζ(−2m) = 0 for all m ∈ N.

Proof. The result follows from the analytic continuation and the fact that the Γ-
function has poles at −m, m ∈ N.

The zeros −2m of the zeta function given in the corollary above are called the
trivial zeros. For 0 ≤ Re(s) ≤ 1 the functional equation implies that zeros must
lie symmetrically around the critical line Re(s) = 1

2
. The Riemann Hypothesis

asserts that all zeros s of the zeta function with 0 ≤ Re(s) ≤ 1 lie on the critical line.

Later we will establish:

Theorem 2.8. (de la Vallée Poussin) There exists a constant c > 0 such that the
zeta function has no zeros for

Re(s) = σ ≥ 1− c

log(|t|+ 2)
.

Corollary 2.9. Let T ≥ 2 and c > 0 a constant. Then for

σ ≥ 1− c

2 log(T + 2)
, 2 ≤ |t| ≤ T

one has an estimation | ζ
′(s)
ζ(s)
| = O(log2T ), where s = σ + it.

3 Distribution of primes
Let π(x) =

∑
p prime ,p≤x

1. We will be interested in the asymptotic description of this

function. First we need some facts on the Dirichlet sums.

Definition 3.1. The Dirichlet series is a series of the form

f(s) =
∞∑
n=1

an
ns
, (3)

where the coefficients an are complex numbers and s = σ + it.
To the Dirichlet series one associates the function

Φ(x) =
∑
n≤x

an.

14



Theorem 3.2. [Tauberian theorem] Assume that the series (3) converges for σ > 1,
|an| ≤ A(n) where A(n) > 0 is a monotonic, increasing function and for σ → 1 + 0
one has

∞∑
n=1

|an|n−σ = O((σ − 1)−α), α > 0.

Then for any b > 1, T ≥ 1, x = N + 1
2
the following formula holds

Φ(x) =
∑
n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds+O(

xb

T (b− 1)α
) +O(

xA(2x)log(x)

T
).

In addition, the constant in the O-sign depends only on b0.

Proof. First we prove that

1

2πi

∫ b+iT

b−iT

as

s
ds = ε+O(

ab

T |log(a)|
) (4)

where ε = 1 if a > 1 and ε = 0 if 0 < a < 1. Let us consider the case a > 1 (we
left the case 0 < a < 1 as an exercise). Consider U > b and the rectangular path Γ
with sides [−U + iT,−U − iT ], [−U − iT, b− iT ], [b− iT, b+ iT ], [b+ iT,−U + bT ].

By Cauchy theorem, 1
2πi

∫
Γ
asds
s

= 1, so that

1

2πi

∫ b+iT

b−iT

asds

s
= 1 +R (5)

where R is the opposite of the integral on the left, upper and bottom sides. The
integrals on the upper and bottom sides have the same absolute value, so that on
each of these sides we have

1

2π
|
∫
asds

s
| ≤ 1

2π

∫ b

−U

aσdσ√
T 2 + σ2

≤ ab

T log(a)
.

Also we have for the left side

1

2π

∫
asds

s
≤ 1

2π

∫ +T

−T

a−Udt√
U2 + t2

= O(a−U)→ 0

for U →∞. Passing to the limit in (5) when U →∞, we obtain the formula (4).
The series (3) is absolutely convergent for s = b+ it. We obtain, exchanging the

integral-sum:

1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds =

∞∑
n=1

an(
1

2πi

∫ b+iT

b−iT
(
x

n
)s
ds

s
) =

∑
n≤x

an +R,

where

R = O(
∞∑
n=1

|an|(
x

n
)bT−1|log x

n
|−1).
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Note that, since x = N + 1/2, we have x/n 6= 1 for an integer n. We divide the
sum under the O-sign into two parts. For the first part, take x

n
≤ 1

2
or x

n
≥ 2,

so that |log x
n
| ≥ 2. From the assumptions

∑∞
n=1

|an|
nb

= O( 1
(b−1)α

), the first sum is
O( xb

T (b−1)α
). The remaining part is∑

1
2
x<n<2x

|an|(
x

n
)bT−1|log x

n
|−1| ≤ T−1A(2x)2b

∑
1
2
x<n<2x

|logN + 0.5

n
|−1.

The summands with n = N − 1, N,N + 1 in the last sum are of order O(x) and for
the remaining part r we obtain

r ≤
∫ N−1

x/2

(log
N + 0.5

u
)−1du+

∫ 2x

N+1

(log
u

N + 0.5
)−1du = O(x logx).

and the theorem follows.

Now we are ready to prove the prime number theorem. Define Λ(n) = log(p) if
n = pk and Λ(n) = 0 otherwise.

Theorem 3.3. There exists a constant c > 0 such that

ψ(x) =
∑
n≤x

Λ(x) = x+O(xe−c
√
ln(x));

π(x) =

∫ x

2

du

ln(u)
+O(xe−

c
2

√
ln(x)).

Proof. For Re(s) > 1, using the Euler product argument (1) we write

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
.

Using theorem 2.4, in the previous theorem we could take α = 1, A(n) = log(n).
Consider b = 1 + 1

log(x)
,T= e

√
log(x). Then

ψ(x) =
1

2πi

∫ b+iT

b−iT
(−ζ

′(s)

ζ(s)
)
xs

s
ds+O(

xln2x

T
).

By theorem 4.14 and its corollary, for some constant c1 > 0, the zeta function has
no zeros with Re(s) = σ ≥ σ1 = 1 − c1

2log(T+2)
, |t| ≤ T , and ζ′(s)

ζ(s)
= O(log2T ) for

s = σ ± it. Consider the integral

J =
1

2πi

∫
Γ

(−ζ
′(s)

ζ(s)
)
xs

s
ds

along the rectangle Γ with sides [σ1 + iT, σ1 − iT ], [σ1 − iT, b − iT ], [b − iT, b +
iT ], [b+ iT ; , σ1 + iT ].
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Since the only nontrivial pole inside Γ of the function (− ζ′(s)
ζ(s)

)x
s

s
is s = 1 with

residue x, we have
1

2πi

∫ b+iT

b−iT
(−ζ

′(s)

ζ(s)
)
xs

s
ds = x+R

with R the sum of integrals along the left, upper and bottom sides. We will estimate
these integrals. For the upper and bottom sides we have

| 1

2π i

∫ b+iT

σ1+iT

−ζ
′(s)

ζ(s)
)
xs

s
ds| ≤

∫ b

σ1

|ζ
′(σ + iT )

ζ(σ + iT )
)|x

σ

T
dσ = O(

xlog2T

T
),

and the integral by the left side is

| 1

2π i

∫ σ1+iT

σ1−iT
−ζ
′(s)

ζ(s)

xs

s
ds| = | 1

2π i

∫ T

−T

ζ ′(σ1 + it)

ζ(σ1 + it)
)
xσi+it

σ1 + it
dt| =

= O(xσ1log2T (

∫ 1

0

dt

σ1

+

∫ T

1

dt

t
)) = O(xσ1log3T ).

From the inequalities above, the definition of T and σ1 we deduce the first
assertion of the theorem.

Consider
S =

∑
n≤x

Λ(n)

log(n)
=

∑
p≤x

1 +
∑

n=pk,k≥2

Λ(n)

log(n)
.

In the second sum k ≤ log(x) and for a fixed k we have at most
√
x summands,

≤ 1. We deduce
S = π(x) +O(

√
xlog(x)). (6)

In the lemma 3.4 below we put cn = Λ(n), f(x) = 1
log(x)

, i.e. C(x) =
∑

n≤x cn =

ψ(x) = x+O(xe−c
√
log(x)), f ′(x) = − 1

xlog2x
, so that we obtain

S =

∫ x

2

ψ(u)

ulog2u
du+

ψ(x)

log(x)
=

∫ x

2

du

log2u
+

x

log(x)
+R

with

R = O(

∫ x

2

e−c
√
log u du

log2u
+ xe−c

√
log x) =

= O(

∫ √x
2

du+

∫ x

√
x

e−c
√
log udu+ xe−c

√
log x) = O(xe−

c
2

√
ln(x))

and∫ x

2

du

log2u
+

x

log(x)
= − u

log(u)
|x2 +

∫ x

2

du

log(u)
+

x

log(x)
=

∫ x

2

du

log(u)
+

2

log 2
.

The theorem follows from this equality and (6).

17



Lemma 3.4. (Abel transform) Let f(x) be a continuously differentiable function
on the interval [a, b], cn be complex numbers and

C(x) =
∑
a<n≤x

cn.

Then ∑
a<n≤b

cnf(n) = −
∫ b

a

C(x)f ′(x)dx+ C(b)f(b).

Proof. We have

C(b)f(b)−
∑
a<n≤b

cnf(n) =
∑
a<n≤b

cn(f(b)− f(n)) =

=
∑
a<n≤b

∫ b

n

cnf
′(x)dx =

∑
a<n≤b

∫ b

a

cng(n, x)f ′(x)dx,

where g(n, x) = 1 for n ≤ x ≤ b and g(n, x) = 0 for x < n. To finish the proof of
the lemma we exchange the order integral-sum in the last sum and notice that∑

a<n≤b

cng(n, x) =
∑
a<n≤x

cn = C(x).

4 Zeros of the zeta-function

4.1 Entire functions

In this section we discuss properties of entire functions with prescribed set of zeros.
More details could be found in [A.Karatsuba, Basic Analytic Number Theory.]

Theorem 4.1. Let a1, . . . an, . . . be an infinite sequence of complex numbers with

0 < |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ . . .

and limn→∞
1
|an| = 0. Then there exists an entire function g : C → C whose set of

zeros coincide with set {an} (with multiplicities).

Proof. For n = 1, 2, . . . we set

un = un(s) = (1− s

an
)exp(

s

an
+

1

2
(
s

an
)2 + . . .+

1

n− 1
(
s

an
)n−1).

Consider the infinite product
∏∞

n=1 un(s). Let us show that the product converges
for any s 6= an, and defines an entire function g(s) with zeros a1, . . . an, . . .. Consider
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a disk of radius |an| and the product
∏∞

r=n ur(s). It is enough to establish that this
product converges to an analytic function inside the disc |s| < |an|: in fact then the
product

∏∞
n=1 un(s) is an analytic function in this disk, having only zeros ai with

|ai| < |an| and since |an| → ∞, we deduce the theorem.
For |s| < |an|, r ≥ n we have

ln ur(s) = ln(1− s

ar
) +

s

ar
+

1

2
(
s

ar
)2 + . . .+

1

r − 1
(
s

ar
)r−1.

Hence for r = n, n+ 1, . . . and |s| < |an|,

ln ur(s) = −1

r
(
s

ar
)r − 1

r + 1
(
s

ar
)r+1 − . . .

and
ur(s) = exp(−1

r
(
s

ar
)r − 1

r + 1
(
s

ar
)r+1 − . . .).

Hence it is enough to establish that the series

∞∑
r=n

[
1

r
(
s

ar
)r +

1

r + 1
(
s

ar
)r+1 + . . .] (7)

is absolutely convergent for |s| < |an|. But for any 0 < ε < 1
2
and |s| ≤ (1− ε)|an|

we have

|1
r

(
s

ar
)r +

1

r + 1
(
s

ar
)r+1 + . . . | ≤ 1

r
(1− ε)r +

1

r + 1
(1− ε)r+1 + . . . <

(1− ε)r

εr
.

hence, using proposition 4.2 below, the series (7) is absolutely convergent for |s| ≤
(1 − ε)|an|, so that we obtain that

∏∞
n=1 un(s) is analytic on C and we finish the

proof of the theorem.

Proposition 4.2. Let un(s), n ≥ 1 be an infinite sequence of analytic functions on
the domain Ω, such that

• un(s) 6= −1 for all n and s ∈ Ω;

• |un(s)| ≤ an for all n and s ∈ Ω and the series
∞∑
n=1

an converges.

The the infinite product
∞∏
n=1

(1 + un(s))

converges for any s ∈ Ω and defines an analytic function v(s) on Ω, such that
v(s) 6= 0 for s ∈ Ω.
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Remark 4.3. If
∑∞

n=1
1

|an|1+s <∞, then the function

g(s) =
∞∏
n=1

(1− s

an
)exp(

∞∑
j=1

1

j
(
s

an
)j)

satisfies the conditions of the theorem above.
One could also show that any entire function has the form

g(s) = eh(s)sm
∞∏
n=1

(1− s

an
)exp(

∞∑
j=1

1

j
(
s

an
)j)

with h entire. This expression is more precise for functions of finite order.

Definition 4.4. Let g(s) be an entire function and letM(r) = Mg(r) = max|s|=r|g(s)|.
We say that g is an entire function of finite order if there exists a > 0 such that
M(r) < exp(ra) for r > r0(a) for some constant r0(a). We then call α = inf a the
order of g(s). If such a does not exists, we say that g is of infinite order.

Definition 4.5. Let s1, . . . sn be a sequence of complex numbers, such that

0 < |s1| ≤ |s2| ≤ . . . ≤ |sn| ≤ . . . .

If there exists b > 0 such that
∑∞

n=1 |sn|−b < ∞ then we say that (sn) has a finite
order of convergence, and we call β = infb the order of convergence. If such b does
not exist, we say that the order of convergence of (sn) is ∞.
We have the following properties:

Theorem 4.6. Let g(s) be an entire function of finite order a, such that g(0) 6= 0
and let s1, . . . , sn be zeros of g with 0 < |s1| ≤ |s2| ≤ . . . ≤ |sn| ≤ . . . . Then

(i) the sequence sn has a finite convergence order β ≤ α;

(ii) g(s) = eh(s)
∏∞

n=1(1− s
sn

)exp(
∑p

j=1
1
j
( s
an

)j), where p ≥ 0 is the smallest integer
such that

∑∞
n=1 |sn|−(p+1) < ∞ and h(s) is a polynomial of degree d ≤ α and

α = max(d, β).

(iii) If, in addition, for any c > 0 there is an infinite sequence r1, . . . rn, . . . with
rn →∞ such that

max|g(s)| > exp(crαn), |s| = rn, n = 1, 2 . . .

then α = β and the series
∑∞

n=1 |sn|−β diverges.

4.2 Theorem of de la Vallée Poussin

Let ξ(s) be defined as in theorem 2.4.

Theorem 4.7. • The function ξ(s) is an entire function of order 1 with in-
finitely many zeros ρn such that 0 ≤ Reρn ≤ 1;
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• the series
∑
|ρn|−1 diverges;

• the series
∑
|ρn|−1−ε converges for any ε > 0;

• the zeros of ξ(s) are nontrivial zeros of ζ(s).

Proof. For Re(s) > 1 the zeta function, and, hence, the function ξ(s) has no zeros.
Theorem 2.4 implies that ξ(s) 6= 0 for Re(s) > 0 as well. Since ξ(0) = ξ(1) 6= 0,
zeros of ξ(s) coincide with nontrivial zeros of ζ(s).

To determine the order of ξ(s), we consider |s| → ∞. By corollary 1.8, ζ(s) =
O(|s|) for Re(s) ≥ 1

2
. Since |Γ(s)| ≤ ec|s| |ln|s|, the order of ξ is at most one. But for

s → +∞, lnΓ(s) ≡ s ln(s), so that the order of ξ(s) is 1. Theorem 4.6 imply that∑
|ρn|−1, where ρn are zeros of ξ(s) is divergent. In particular, ξ(s) has infinitely

many zeros, and the series
∑
|ρn|−1−ε is convergent for any ε > 0.

Corollary 4.8. (i) ξ(s) = eA+Bs
∏∞

n=1(1− s
ρn

)e
s
ρn ;

(ii) nontrivial zeros of zeta-function are symmetric with respect to the lines Re(s) =
1
2
and Im(s) = 0.

In what follows we enumerate zeros of zeta function in an increasing order (with
respect to the absolute value).

Proposition 4.9.

ζ ′(s)

ζ(s)
= − 1

s− 1
+
∞∑
n=1

(
1

s− ρn
+

1

ρn
) +

∞∑
n=1

(
1

s+ 2n
− 1

2n
) +B0,

where ρn are all nontrivial zeros of ζ(s) and B0 is a constant.

Proof. It is enough to take the logarithmic derivative in corollary 4.8(i).

Theorem 4.10. Let ρn = βn + iγn, n = 1, 2, . . . are all nontrivial zeros of ζ(s),
T ≥ 2. Then

∞∑
n=1

1

1 + (T − γn)2
≤ c log T. (8)

Proof. For s = 2 + iT , one has

|
∞∑
n=1

(
1

s+ 2n
− 1

2n
)| ≤

∑
n≤T

(
1

2n
+

1

2n
) +

∑
n>T

|s|
4n2
≤ c0 log(T ), (9)
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so that by proposition 4.9

−Re(ζ
′(s)

ζ(s)
) = Re(

1

s− 1
−B0 −

∞∑
n=1

(
1

s+ 2n
− 1

2n
))−

−Re
∞∑
n=1

(
1

s− ρn
+

1

ρn
) ≤ c1 log(T )−Re

∞∑
n=1

(
1

s− ρn
+

1

ρn
).

From the Euler product expression (proposition 1.2), we have

−ζ
′(s)

ζ(s)
) =

∑
n≥1

Λ(n)

ns
, (10)

where Λ(n) = log(p), n = pk and 0 otherwise. Hence

|ζ
′(s)

ζ(s)
| = |

∞∑
n=1

Λ(n)

n2+iT
| < c2,

so that

Re

∞∑
n=1

(
1

s− ρn
+

1

ρn
) ≤ c3 log(T ).

We deduce the theorem from the following inequalities

Re
1

s− ρn
= Re

1

(2− βn) + i(T − γn)
=

2− βn
(2− βn)2 + (T − γn)2

≥

≥ 0.5

1 + (T − γn)2

and Re1
ρ

= βn
β2
n+γ2n

≥ 0.

Corollary 4.11. The number of zeros ρn of the zeta function, such that

T ≤ |Im(ρn)| ≤ T + 1

is at most c log(T ).

Corollary 4.12. For T ≥ 2, one has
∑

|T−γn|>1

1
|T−γn|2 = O(log(T )).

Corollary 4.13. For −1 ≤ σ ≤ 2, s = σ + it, |t| ≥ 2, one has

ζ ′(s)

ζ(s)
=

∑
|t−γn|≤1

1

s− ρn
+O(log|t|).

22



Proof. The inequality 9 is valid for s = σ + it, |t| ≥ 2, −1 ≤ σ ≤ 2, so that

ζ ′(s)

ζ(s)
=
∞∑
n=1

(
1

s− ρn
+

1

ρn
) +O(log|t|).

We substract the same inequality for s = 2 + it:

ζ ′(s)

ζ(s)
=
∞∑
n=1

(
1

s− ρn
− 1

2 + it− ρn
) +O(log(|t|).

If |γn − t| > 1, then

| 1

σ + it− ρn
− 1

2 + it− ρn
| ≤ 2− σ

(γn − t)2
≤ 3

(γn − t)2
.

Now the statement follows from the previous corollaries 4.11 and 4.12.

Theorem 4.14. (de la Vallée Poussin) There exists a constant c > 0 such that the
zeta function has no zeros for

Re(s) = σ ≥ 1− c

log(|t|+ 2)
.

Proof. The function ζ(s) has a pole at s = 1, hence for some γ0 there is no zeros s
with |s−1| ≤ γ0. Let ρn = βn+iγn be a zero of ζ with |γn| > |γ0|. For Re(s) = σ > 1
we have as in (10)

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
=
∞∑
n=1

Λ(n)n−σe−it log(n),

so that

−Reζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)n−σcos(tlog(n)).

Since for all real φ we have

3 + 4cos φ+ cos 2φ = 2(1 + cos φ)2 ≥ 0,

we deduce

3(−ζ
′(σ)

ζ(σ)
) + 4Re(−ζ

′(σ + it)

ζ(σ + it)
) + (−Reζ

′(σ + i2t)

ζ(σ + i2t)
) ≥ 0. (11)

We will provide a majoration for each summand in the formula (11). By proposition
4.9 and corollary 4.11 for s = σ and 1 < σ ≤ 2 we obtain

−ζ
′(s)

ζ(s)
<

1

σ − 1
+B1,
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where B1 is a constant. For s = σ + it, 1 < σ ≤ 2, |t| > γ0 we find, again by
proposition 4.9:

−Reζ
′(s)

ζ(s)
< Alog(|t|+ 2)−

∞∑
k=1

Re(
1

s− ρk
+

1

ρk
),

where A > 0 is an absolute constant. Since 0 ≤ βk ≤ 1, we have ρk = βk + iγk we
deduce

Re
1

s− ρk
= Re

1

σ − βk + i(t− γk)
=

σ − βk
(σ − βk)2 + (t− γk)2

,

in addition Re 1
ρk

= βk
β2
k+γ2k

≥ 0. We deduce

−Reζ
′(σ + it)

ζ(σ + it)
< A log(|t|+ 2)− σ − βn

(σ − βn)2 + (t− γn)2

and
−Reζ

′(σ + 2it)

ζ(σ + 2it)
< A log(2|t|+ 2).

We now substitute these estimations in (11):

3

σ − 1
− 4

σ − βn
(σ − βn)2 + (t− γn)2

+ A1 log(|t|+ 2) ≥ 0

for A1 > 0 a constant. This inequality works for any t, |t| > γ0 and any σ, 1 < σ ≤ 2.
For instance, for t = γn, σ = 1 + 1

2A1 log(|γn|+2)
, so that

4

σ − βn
≤ 3

σ − 1
+ A1 log(|γn|+ 2),

βn ≤ 1− 1

14A1 log(|γn|+ 2)
,

and we finish the proof of the theorem.

Corollary 4.15. Let T ≥ 2 and c > 0 a constant. Then for

σ ≥ 1− c

2 log(T + 2)
, 2 ≤ |t| ≤ T

one has an estimation | ζ
′(s)
ζ(s)
| = O(log2T ), where s = σ + it.

Proof. Using corollary 4.13, we have

|ζ
′(s)

ζ(s)
| =

∑
|t−γn|≤1

1

s− ρn
+O(log(T )).

Hence
|ζ
′(s)

ζ(s)
| ≤

∑
|t−γn|≤1

1

(σ − βn) + i(t− γn)
+O(log(T )).
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Since βn ≤ 1− c
log(T+2)

and σ ≥ 1− c
2log(T+2)

, we have

|ζ
′(s)

ζ(s)
| ≤ 2

c
log(T + 2)

∑
|t−γn|≤1

1 +O(log(T )) = O(log2T ).

.
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