HOMEWORK 9 MATH-GA 2350.001 DIFFERENTIAL GEOMETRY I (due by December, 9, 2016)

- 1. Let M be a manifold of dimension $n \ge 2$ and x a point of M. Show that the inclusion $M \setminus \{x\} \to M$ induces an isomorphism in de Rham cohomology $H^k(M) \simeq H^k(M - \{x\})$, for any $k \ne n, n-1$.
- 2. (a) Let U be an open in \mathbb{R}^n . Show that $H^*(\mathbb{R} \times U)$ is isomorphic to $H^*(U)$.
 - (b) Let $A \subset \mathbb{R}^n$ be a strict closed set (i.e. $A \neq \mathbb{R}^n$.) We embed A in \mathbb{R}^{n+1} via the map $x \mapsto (x, 0)$. Show that
 - i. $H^{p+1}(\mathbb{R}^{n+1} A) \simeq H^p(\mathbb{R}^n A)$ for $p \ge 1$; ii. $H^1(\mathbb{R}^{n+1} - A) \simeq H^0(\mathbb{R}^n - A)/\mathbb{R}$; iii. $H^0(\mathbb{R}^{n+1} - A) \simeq \mathbb{R}$.
- 3. Let M be a smooth manifold. Show that TM is orientable.
- 4. Let M, N be smooth compact oriented manifolds of dimension $n \ge 1$ with N connected and let $f: M \to N$ be a smooth map.
 - (a) Show that there is a unique real number r such that the induced map $f^*: H^n(N) \to H^n(M)$ is a multiplication by r. We call $r = \deg f$ the degree of f.
 - (b) Show that the degree of a constant map is zero.
 - (c) Show that if f is not surjective, then deg f = 0.
 - (d) Show that degree is a homotopy invariant.
 - (e) Show that any vector field on the sphere S^{2n} has at least one zero:
 - i. Assume there is a nonwhere vanishing vector field X on S^{2n} . Show that we could assume that X(x) is of norm 1, for any point $x \in S^{2n}$.
 - ii. Consider the following map

$$h: S^{2n} \times [0,1] \to S^{2n}, (x,t) \mapsto (\cos\pi t)x + (\sin\pi t)X(x).$$

Show that h is a homotopy between id and -id.

iii. Conclude.