HOMEWORK 8 MATH-GA 2350.001 DIFFERENTIAL GEOMETRY I

(due by November, 28, 2016)

1. Let U be an open in $E = \mathbb{R}^n$. Let $f : U \to \mathbb{R}$ be a smooth function, $X = \sum_{i=1}^n X_i \frac{\partial}{\partial x_i} \in \mathfrak{X}(U)$ be a vector field on U. Define: $\operatorname{grad} f = \nabla f$ the vector field given by:

$$x \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}$$

and div X the function

$$x \mapsto \sum_{i=1}^{n} \frac{\partial X_i}{\partial x_i}.$$

Show that

- (a) $\mathcal{L}_X(dx_1 \wedge \ldots \wedge dx_n) = (div X)dx_1 \wedge \ldots \wedge dx_n;$
- (b) $div(fX) = f divX + \langle grad f, X \rangle$.
- 2. Let A be a ring. Consider the following commutative diagram, where the maps are the maps of A-modules:

Show that it first, second, forth and fifth vertical maps are isomorphisms, then the third one is an isomorphism as well.