HOMEWORK 6 MATH-GA 2350.001 DIFFERENTIAL GEOMETRY I (due by November, 14, 2016)

- 1. Let G be a Lie group. Show that there is a Lie group structure on the tangent bundle TG, such that the inclusion map $T_eG \to TG$ (where we view T_eG as an additive Lie group on the vector space T_eG) and the projection $TG \to G$ are Lie group morphisms.
- 2. Let G be a Lie group and \mathfrak{g} be its Lie algebra. The goal of this exercise is to show that, for any $u \in \mathfrak{g}$, one has

$$T_u exp = T_e L_{exp\,u} \circ \theta(ad(-u)),$$

where $L_g: G \to G, x \mapsto gx$ is the left translation and $\theta: z \mapsto \frac{e^z - 1}{z}$ is the series $\sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}$. Let $s, t \in \mathbb{R}, u, v \in \mathfrak{g}$.

- (a) Show that exp(s+t)u = exp(su)exp(tu).
- (b) Denote, for $g, h \in G, w \in T_h G$

$$g \cdot w = T_h L_g(w)$$
 and $w \cdot g = T_h R_{g^{-1}}(w)$.

Show that

$$(s+t)T_{(s+t)u}exp(v) = sT_{su}exp(v) \cdot exp(tu) + texp(su) \cdot T_{tu}exp(v).$$

(c) Deduce that, if $f : \mathbb{R} \to End(\mathfrak{g})$ is the function

$$f_u(s)(v) = s \exp(-su) \cdot T_{su} \exp(v),$$

then

$$f_u(s+t) = e^{ad(-tu)} \circ f_u(s) + f_u(t).$$

- (d) Deduce that $f'_u(s) = Id ad(u) \circ f_u(s)$.
- (e) Check that the function $s \mapsto s\theta(s \, ad(-u))$ is also a solution of the differential equation in (d). Deduce that $f_u(s) = s\theta(s \, ad(-u))$.
- (f) Deduce that $T_u exp = T_e L_{expu} \circ \theta(ad(-u))$.