HOMEWORK 5 MATH-GA 2350.001 DIFFERENTIAL GEOMETRY I (due by November, 7, 2016)

- 1. Show that a (connected) topological group is generated (as a group) by any neighborhood of its neutral element. Deduce that if G is a (connected) Lie group, then $exp(\mathfrak{g})$ generates G.
- 2. Let G be a smooth manifold and assume that G has a group structure such that the map $(x, y) \mapsto xy$ is smooth. Show that G is a Lie group. (Hint: consider the map $(x, y) \mapsto (x, xy)$ in a neighborhood of (e, e).)
- 3. Show that the vector space \mathbb{R}^3 with the vector product \wedge is a Lie algebra. Consider the vector fields X, Y, Z on \mathbb{R}^3 :

$$X=z\frac{\partial}{\partial y}-y\frac{\partial}{\partial z},\ Y=x\frac{\partial}{\partial z}-z\frac{\partial}{\partial x},\ Z=y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y}.$$

Show that they generate a Lie subalgebra, in the Lie algebra $\mathfrak{X}(\mathbb{R}^3)$, isomorphic to \mathbb{R}^3 with the product structure \wedge .