HOMEWORK MATH-GA 2350.001 DIFFERENTIAL GEOMETRY I

(1, 2, 4 are due by September, 19, 2016, 3, 5, 6 are due by September, 26, 2016)

- 1. Show that a topological manifold M is connected iff M is path-connected.
- 2. Let $\mathbb{R}P^n$ be the *n*-dimensional projective space, with the atlas given by the following functions

$$\phi_i: U_i \to \mathbb{R}^n, [x_1, \dots, x_{n+1}] \mapsto (\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}),$$

where U_i , i = 1, ..., n + 1 are open subsets $\{[x_1, ..., x_{n+1}], x_i \neq 0\}$.

- (a) Show that (U_i, ϕ_i) is a smooth atlas.
- (b) Show that $\mathbb{R}P^1$ is diffeomorphic to S^1 .
- (c) Let $\pi : S^2 \to \mathbb{R}P^2$ be a map that sends a point (x, y, z) to a unique line through this point. Show that π is smooth and that π is local diffeomorphism: for any point $p \in S^2$ there exists an open neighborhood $U \subset M$ such that $\pi_U : U \to \pi(U)$ is a diffeomorphism on an open subset of $\mathbb{R}P^2$.
- 3. Let $0 < r \le m \le n$. Let $V_r \subset M_{n \times m}(\mathbb{R})$ be the set of matrices of rank r. Show that V_r is a smooth submanifold of $M_{n \times m}(\mathbb{R})$ and compute its dimension.
- 4. Let M be a manifold of class C^k . Let $A, B \subset M$ be closed subsets such that $A \cap B = \emptyset$. Show that there is a function $f \in C^k(M)$ with values in [0, 1] and such that f is identically 0 on A and identically 1 on B.
- 5. Is product of two smooth manifolds with boundary a smooth manifold with boundary?
- 6. Let n > 0 be an integer and let \langle , \rangle be the euclidean scalar product on \mathbb{R}^{n+1} , and $S^n := \{x \in \mathbb{R}^{n+1}, ||x|| = 1\}$. If $x \in \mathbb{R}^{n+1} \setminus 0$, we denote by [x] the corresponding point of \mathbb{RP}^n .
 - (a) Show that the map $f: S^n \times S^n \to \mathbb{R}$ defined by $(x, y) \mapsto \langle x, y \rangle$ is smooth. Find all points were it is a submersion.
 - (b) Let $M \subset S^n \times S^n$ consists of orthogonal couples. Show that M is a smooth submanifold¹ of $S^n \times S^n$.
 - (c) Let $M' \subset \mathbb{RP}^n \times \mathbb{RP}^n$ consists of couples of orthogonal lines (L, L') of \mathbb{R}^{n+1} . Show that M' is a smooth submanifold of $\mathbb{RP}^n \times \mathbb{RP}^n$.
 - (d) Let *E* be the set of triples (x, x', y) of $S^n \times S^n \times \mathbb{R}^{n+1}$ such that $\langle x, x' \rangle = \langle x, y \rangle = \langle x', y \rangle = 0$ and $\pi : E \to M$ be the map $(x, x', y) \mapsto (x, x')$. Show that π is a smooth vector bundle over *M*.

¹A subset $M \subset N$ of a smooth *n*-manifold N is a smooth submanifold if for any point $p \in M$ there is a chart (U, ϕ) of N at p such that $\phi(U \cap M)$ is a submanifold of $\phi(U) \subset \mathbb{R}^n$ in the sense of one of the four equivalent definitions given during the lecture

- (e) Let E' be the set of couples ([x], y) of $\mathbb{RP}^n \times \mathbb{R}^{n+1}$ such that $\langle x, y \rangle = 0$ and $\pi' : E' \to \mathbb{RP}^n$ be the map $([x], y) \mapsto [x]$. Show that π' is a smooth vector bundle.
- (f) Let E'' be the set of couples (([x], y), ([x'], y')) of $E' \times E'$ such that $\langle x, x' \rangle = 0$ and y = y' and let $\pi'' : E'' \to M$ be the map defined by $(([x], y), ([x'], y')) \mapsto ([x], [x'])$. Show that π'' is a is a smooth vector bundle.