HOMEWORK VIII MATH-UA 0248-001 THEORY OF NUMBERS

due on Nov, 10, 2017

1. Solve the following quadratic congruence equation:

 $3x^2 + 9x + 17 \equiv 0 \pmod{13}$.

- 2. If $ab \equiv r \pmod{p}$, where r is a quadratic residue of the odd prime p, prove that a and b are both quadratic residues of p or both nonresidues mod p.
- 3. If a and b are both quadratic residues of the odd prime p or both nonresidues, show that the congruence $ax^2 \equiv b \pmod{p}$ has a solution. (Hint: multiply by a' with $aa' \equiv 1 \mod p$).
- 4. Use Gauss' Lemma to compute
 - (a) $(\frac{7}{13});$
 - (b) $(\frac{6}{31})$.
- 5. If $p \equiv 1 \pmod{8}$, show that $p \mid 2^{\frac{p-1}{2}} 1$ (hint: use the expression of $\left(\frac{2}{p}\right)$).