HOMEWORK III MATH-UA 0248-001 THEORY OF NUMBERS

due on September, 29, 2017

- 1. Prove each of the following assertions:
 - (a) If $a \equiv b \pmod{n}$ and $m \mid n$ then $a \equiv b \pmod{m}$.
 - (b) If If $a \equiv b \pmod{n}$ and c > 0, then If $ca \equiv cb \pmod{cn}$.
- 2. Find the remainders when 2^{50} and 41^{65} are divided by 7.
- 3. Prove that for any positive integer n, the following congruences hold:
 - (a) $2^{2n} \equiv 1 \pmod{3}$.
 - (b) $2^{3n} \equiv 1 \pmod{7}$.
 - (c) $2^{4n} \equiv 1 \pmod{15}$.
- 4. Prove that, if p is an odd prime, then
 - (a) $1^{p-1} + 2^{p-1} + 3^{p-1} + \ldots + (p-1)^{p-1} \equiv -1 \pmod{p};$
 - (b) $1^p + 2^p + 3^p + \ldots + (p-1)^p \equiv 0 \pmod{p}$.
- 5. Establish that if a is an odd integer, then

$$a^{2^n} \equiv 1 \pmod{2^{n+2}}.$$

(Hint: proceed by induction on n)