MATH-GA2210.001 : Final Exam, May, 11, 2016

Lecture notes are authorized.

The exam is posted online on May, 11, 2016, by 7 pm.

The copies should be sent by mail (either a scan, or a pdf file) to alena.pirutka@gmail.com

The deadline to send the corrections is May, 12, 2016, 7pm.

1. (a) Recall that

$$\psi(x) = \sum_{n \le n} \Lambda(n).$$

Show that

$$lcm\{1, 2, \dots, n\} = e^{\psi(n)},$$

where the left hand side is the least commun multiple of the integers $1, 2, \ldots, n$.

(b) Show that

$$e^{\psi(2n+1)} \int_0^1 x^n (1-x)^n \, dx$$

is a positive integer. Deduce that

$$\psi(2n+1) \ge 2n\log 2.$$

- 2. (a) Let $K = \mathbb{Q}_p(\zeta_p)$, where ζ_p is a primitive p^{th} root of unity. Show that $[K : \mathbb{Q}_p] = p 1$ and that this extension is totally ramified.
 - (b) (*) Which quadratic extensions of \mathbb{Q}_2 are ramified?
- 3. Let $K = \mathbb{Q}(\sqrt{-31})$. Let $\alpha = \frac{1+\sqrt{-31}}{2}$.
 - (a) Determine \mathcal{O}_K and $disc(\mathcal{O}_K)$.
 - (b) Determine the ideals of \mathcal{O}_K containing 2 or 3. Among these ideals, which are principal (resp. prime)?
 - (c) Decompose the ideals (2), (3), and (α) as a product of prime ideals in \mathcal{O}_{K} .
 - (d) Determine the group $Cl(\mathcal{O}_K)$.