FINAL EXAM MATH-GA.2130-001 ALGEBRA I

December, 17, 2020, 7.10-9pm CLASS NOTES AND BOOKS ARE AUTHORIZED.

- 1. Let G be an abelian group of order #G = n and let $H \subset G$ be a subgroup of order #H = m. Assume that $\frac{n}{m} = d_1d_2$ where $(d_1, d_2) = 1$. Show that the quotient group G/H is isomorphic to $C_1 \oplus C_2$ with $\#C_i = d_i$, i = 1, 2.
- 2. Let k be a field, let A = k[y] be the ring of polynomials in one variable over k, and let L = k(y) be its field of fractions. Let $X = V(x^3 y) \in \mathbb{A}^2_k$, $k[X] = k[x,y]/(x^3 y)$ and let F = Frac(k[X]) be the field of fraction of k[X]. For each of the following statements, determine if
 - the statement is always true (give proof)
 - the statement is always false (give a counterexample or proof)
 - the statement could be both true or false (give examples for both cases)
 - (a) The ring k[X] is factorial.
 - (b) X is an irreducible variety.
 - (c) [F:L] = 3.
 - (d) F/L is a Galois extension. If so, determine the Galois group.
- 3. Let L/k be a Galois extension with the Galois group G of order 63. Show that there is a subextension $k \subset F \subset L$ such that L/F is Galois and [L:F] = 7. Is F/k Galois?
- 4. Let $P = x^5 5x^2 + 1$ and let G be the Galois group of P over \mathbb{Q} .
 - (a) Show that P is separable and that there is an injective morphism of groups $G \to S_5$.
 - (b) Show that the reduction \bar{P} in $\mathbb{F}_2[x]$ has not roots in \mathbb{F}_2 and in \mathbb{F}_4 . Deduce that \bar{P} is irreducible.
 - (c) Show that P is irreducible in $\mathbb{Z}[x]$; deduce that P is irreducible in $\mathbb{Q}[x]$.
 - (d) Show that G has an element of order 5 using a mod p reduction argument for a suitable choice of p.
 - (e) Let σ be the complex conjugation. Show that $\sigma \in G$.
 - (f) Determine G. (you can admit that a transposition and a 5-cycle generate S_5).