MATH-GA 2210.001: Homework Local Fields 2

1. Show that in \mathbb{Q}_2

$$1+2+\ldots+2^n+\ldots$$

converges to -1.

- 2. Let K be a filed and | | a nonarchimedean absolute value on K.
 - (a) Recall that an open disk centred at a of radius r is defined as $B(a, r) = \{x \in K, |x a| < r\}$. Show that B(a, r) = B(b, r) for any $b \in D(a, r)$. Deduce that if two disks meet, then the large disk contains the smaller.
 - (b) Assume K is complete. Show that the series $\sum a_n$ converges iff $a_n \to 0$.
- 3. For which $a \in \mathbb{Z}$ the equation $7x^2 = a$ is solvable in \mathbb{Z}_7 ? For which $a \in \mathbb{Q}$ is it solvable in \mathbb{Q}_7 ?
- 4. (a) Show that $(x^2 2)(x^2 17)(x^2 34)$ has a root in \mathbb{Z}_p for every p.
 - (b) Show that $5x^3 7x^2 + 3x + 6$ has a root α in \mathbb{Z}_7 with $|\alpha 1|_7 < 1$. Find $a \in \mathbb{Z}$ such that $|\alpha a|_7 \leq 7^{-4}$.