MATH-GA 2210.001: Homework Analytic Number Theory 2

1. Let $\omega_1, \omega_2 \in \mathbb{C}$, with $\omega_1/\omega_2 \notin \mathbb{R}$. Let f be an entire function in \mathbb{C} satisfying

$$f(z + \omega_1) = af(z)$$
 and $f(z + \omega_2) = bf(z)$

for some $a, b \in \mathbb{C}$ and all $z \in \mathbb{C}$. Then $f(z) = \alpha \cdot e^{\beta z}$ for some $\alpha, \beta \in \mathbb{C}$.

- 2. Show that $\zeta(0) = -1/2$ and $\zeta'(0) = -\frac{\ln(2\pi)}{2}$.
- 3. Show that

$$\int_0^\infty \frac{\sin(x)}{x^s} dx = \cos(\pi s/2)\Gamma(1-s).$$

- 4. Show that $\log(\Gamma(s))$ has the Taylor expansion around s = 1: $log(\Gamma(s)) = -\gamma(s-1) + \sum_{n \ge 2} \frac{(-1)^n}{n} \zeta(n)(s-1)^n$
- 5. Show that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log(n) = -1.$$