MATH-GA 2150.001: Homework 5

- 1. Let E be an elliptic curve defined over a finite field \mathbb{F}_q .
 - (a) Show that a map α from $E(\mathbb{F}_p)$ to itself is injective if and only if it is surjective (α is not necessarily an endomorphism).
 - (b) Show that if $E(\mathbb{F}_q)$ has no point of order *n*, then $E(\mathbb{F}_q)/nE(\mathbb{F}_q) = 0$.
- 2. Let $E: y^2 = x^3 + ax + b$ be an ellptic curve defined over a finite field \mathbb{F}_p , $E(\mathbb{F}_p) = \mathbb{Z}/m \oplus \mathbb{Z}/M, \ m|M$. For $d \in \mathbb{F}_p$ non square we define a *twist* of Eas an elliptic curve E' given by the equation $y^2 = x^3 + ad^2x + bd^3$. Let $a = p + 1 - \#E(\mathbb{F}_p)$ and $a' = p + 1 - \#E'(\mathbb{F}_p)$. We also write $E'(\mathbb{F}_p) = \mathbb{Z}/n \oplus \mathbb{Z}/N$, where n|N.
 - (a) Show that after a linear change of coordinates one can write E' as $dy^2 = x^3 + ax + b$. Deduce that a = -a'.
 - (b) Show that $(m^2, n^2)|2a$.
 - (c) Show that $a \equiv 2 \pmod{m}$ and that $a \equiv -2 \pmod{n}$ (one could use that $E(\overline{\mathbb{F}}_p)[m] \subset E(\mathbb{F}_p)$).
 - (d) Deduce that $(m^2, n^2)|4$.
 - (e) Show that the restriction of the Frobenius ϕ_p to $E'(\overline{\mathbb{F}}_p)[n^2]$ is given by a matrix

$$\begin{pmatrix} 1+sn & tn \\ un & 1+vn \end{pmatrix}$$

with $a \equiv 2 + (s+v)n \pmod{n^2}$ and

$$p \equiv 1 + (s+v)n \pmod{n^2}.$$

Deduce that $4p \equiv a^2 \pmod{n^2}$.

- (f) Show that $\frac{m^2n^2}{4} \le 4p a^2$.
- (g) Deduce that for p sufficiently big, either the curve E or the curve E' has a point of order bigger than $4\sqrt{p}$.