MATH-GA 2150.001: Homework 4

- 1. Let *E* be an elliptic curve over a finite field \mathbb{F}_q . Show that the group $E(\mathbb{F}_q)$ is either a cyclic group \mathbb{Z}/n for some $n \ge 1$, or the group $\mathbb{Z}/n_1 \oplus \mathbb{Z}/n_2$ with $n \ge 1$ and $n_1, n_2 \ge 1$ integers, $n_1 \mid n_2$.
- 2. Let *E* be an elliptic curve defined over an algebraically closed field *k*, *char.k* \neq 2,3. Recall that $E[n] = \mathbb{Z}/n \oplus \mathbb{Z}/n$ for any *n* prime to *car k*. Let $\{T_1, T_2\}$ be a base of E[n].
 - (a) Let $\zeta = e_n(T_1, T_2)$ and let d be an integer such that $\zeta^d = 1$. Show that $e_n(T_1, dT_2) = 1$ and that $e_n(T_2, dT_2) = 1$. Deduce that for all $S \in E[n]$ one has $e_n(S, dT_2) = 1$.
 - (b) Show that $e_n(T_1, T_2)$ is a primitive n^{th} root of unity.
- 3. Let *E* be an elliptic curve over a finite field \mathbb{F}_q of characteristic *p*. Assume $E(\mathbb{F}_q) = \mathbb{Z}/n \oplus \mathbb{Z}/n$.
 - (a) Show that (n, p) = 1.
 - (b) Show that $E(\overline{\mathbb{F}}_q)[n] \subset E(\mathbb{F}_q)$. Deduce that $\mu_n \subset \mathbb{F}_q$.
 - (c) Let $a = q + 1 \#E(\mathbb{F}_q)$. Deduce that $a \equiv 2 \pmod{n}$.
 - (d) Show that $q = n^2 + 1$ or $q = n^2 \pm n \pm 1$ or $q = (n \pm 1)^2$.