Algebra I. Homework 9. Due on December, 4, 2020.

- 1. Let $K = \mathbb{Q}[\sqrt{2}]$ and $L = \mathbb{Q}[\sqrt{4 + 2\sqrt{2}}]$.
 - (a) Show that $4 + 2\sqrt{2}$ is not a square in K.
 - (b) Compute the degree $[L:\mathbb{Q}]$.
 - (c) What is the minimal polynomial of $\sqrt{4+2\sqrt{2}}$ over \mathbb{Q} ?
 - (d) What is the minimal polynomial of $\sqrt{4+2\sqrt{2}}$ over K?
 - (e) Show that $4 2\sqrt{2} \in L$. Deduce that L/\mathbb{Q} is Galois.
 - (f) Show that there is a unique element $g \in Gal(L/\mathbb{Q})$ such that $g(\sqrt{4+2\sqrt{2}}) = \sqrt{4-2\sqrt{2}}$.
 - (g) What is the order of g?
 - (h) Describe all the subfields of L.
- 2. Let k be a field and let $P \in k[x]$ be a polynomial of degree n > 0.
 - (a) Show that if P is not irreducible, then P has a root in an extension of k of degree at most n/2.
 - (b) Assume that $k = \mathbb{F}_p$ is the finite field with p elements. Show that P is irreducible if and only if P has no roots in \mathbb{F}_{p^d} with $d \leq n/2$. Deduce that P is irreducible if and only if $(P, x^{p^d} x) = 1 \quad \forall 1 \leq d \leq n/2$.
- 3. Let $P = x^5 x + 3 \in \mathbb{Q}[x]$ and let G be the Galois group of P over \mathbb{Q} .
 - (a) Show that P is separable. Deduce that G is isomorphic to a subgroup of S_5 .
 - (b) Let Q be the image of P under the reduction mod 3 map $\mathbb{Z}[x] \to \mathbb{F}_3[x]$. Factorize Q in $\mathbb{F}_3[x]$.
 - (c) Let R be the image of P under the reduction mod 5 map $\mathbb{Z}[x] \to \mathbb{F}_5[x]$. Show that R is irreducible in $\mathbb{F}_5[x]$.
 - (d) Show that G is isomorphic to S_5 :
 - you can admit that a 5-cycle and a transposition generate S_5 .
 - you can use the theorem announced in class: Let $P \in \mathbb{Z}[x]$ be a monic irreducible separable polynomial of degree n. Let p be a prime number and denote by \bar{P} the image of P in $\mathbb{F}_p[x]$. Assume \bar{P} is separable. Then $G = Gal(P, \mathbb{Q})$ has a subgroup isomorphic to $Gal(\bar{P}, \mathbb{F}_p)$. In particular, if \bar{P} is irreducible, $G \subset S_n$ has a cycle of length n