

MATH-GA 2420.006 : Homework 2; due by Thursday February 18 morning (before 10am), late submission implies -50% of this homework grade; send the solutions to pirutka@cims.nyu.edu

1. Let E be an elliptic curve over a finite field \mathbb{F}_q . Show that the group $E(\mathbb{F}_q)$ is either a cyclic group \mathbb{Z}/n for some $n \geq 1$, or the group $\mathbb{Z}/n_1 \oplus \mathbb{Z}/n_2$ with $n \geq 1$ and $n_1, n_2 \geq 1$ integers, $n_1 \mid n_2$.
2. Let E be an elliptic curve over a finite field \mathbb{F}_q of characteristic p . Assume $E(\mathbb{F}_q) = \mathbb{Z}/n \oplus \mathbb{Z}/n$.
 - (a) Show that $(n, p) = 1$.
 - (b) Show that $E(\overline{\mathbb{F}}_q)[n] \subset E(\mathbb{F}_q)$. Deduce that $\mu_n \subset \mathbb{F}_q$.
 - (c) Let $a = q + 1 - \#E(\mathbb{F}_q)$. Deduce that $a \equiv 2 \pmod{n}$.
 - (d) Show that $q = n^2 + 1$ or $q = n^2 \pm n \pm 1$ or $q = (n \pm 1)^2$.
3. (a) Let α be an endomorphism of E and $(n, \text{char.}k) = 1$.
 - i. Show that α induces an endomorphism α_n of $E[n]$.
 - ii. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ the matrix of α_n in the base $\{T_1, T_2\}$. Show that

$$\deg \alpha \equiv \det(\alpha_n) \pmod{n}$$

(one could express $\zeta^{\deg \alpha}$ in terms of a, b, c, d .)

- (b) Let α, β be two endomorphisms of E and r, s two integers.

- i. Show that

$$\det(r\alpha_n + s\beta_n) - r^2 \det \alpha_n - s^2 \det \beta_n = rs(\det(\alpha_n + \beta_n) - \det \alpha_n - \det \beta_n)$$

(one can start by showing that $\det(\alpha_n + \beta_n) - \det \alpha_n - \det \beta_n = \text{Trace}(\alpha_n \beta_n^*)$, where β_n^* is the adjoint matrix : if $\beta_n = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, then $\beta_n^* = \begin{pmatrix} t & -y \\ -z & x \end{pmatrix}$).

- ii. Deduce that

$$\deg r\alpha + s\beta = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta).$$

4. (a) Let E be an elliptic curve defined over a finite field \mathbb{F}_q , $q = p^r$, and let $a_q = q + 1 - \#E(\mathbb{F}_q)$. As before, we denote ϕ_q the Frobenius morphism on E and for any integer m prime to q one denote $(\phi_q)_m$ the endomorphism induced by ϕ_q on $E(\overline{\mathbb{F}}_q)[m]$. Show that

$$\det(\phi_q)_m \equiv q \pmod{m} \text{ and } \text{Trace}(\phi_q)_m \equiv a_q \pmod{m}$$

(One could use that $\#\text{Ker}(\phi_q - 1) = \deg(\phi_q - 1) = q + 1 - a_q$, see the proof of Hasse theorem. Also use the formulas for \det and Trace from the previous exercise)

- (b) Deduce that the endomorphism $\phi_q^2 - a_q\phi_q + q$ is identically zero on $E(\overline{\mathbb{F}}_q)[m]$.
- (c) Show that the kernel of the map $\phi_q^2 - a_q\phi_q + q$ is infinite; deduce that the polynomial $g(x) = x^2 - a_qx + q$ annihilates ϕ_q .
- (d) Assume that b is an integer such that the polynomial $x^2 - bx + q$ annihilates ϕ_q . Deduce that $(a_q - b)$ annihilates $E(\overline{\mathbb{F}}_q)$ and finally that $a_q = b$.
- (e) Let α, β be the roots of the polynomial $g(x)$ and let $g_n(x)$ be the polynomial

$$g_n(x) = x^{2n} - (\alpha^n + \beta^n)x^n + q^n.$$

Show that $g(x)$ divides $g_n(x)$ for all n . Deduce that

$$(\phi_q^n)^2 - (\alpha^n + \beta^n)\phi_q^n + q^n = 0.$$

- (f) Deduce that $E(\mathbb{F}_{q^n})$ has cardinality $q^n + 1 - (\alpha^n + \beta^n)$.
- (g) We define the zeta function of the curve E by

$$Z(E/\mathbb{F}_q, T) = \exp\left(\sum_{n=1}^{\infty} \#E(\mathbb{F}_{q^n}) \frac{T^n}{n}\right).$$

Show that $Z(E/\mathbb{F}_q, T)$ is a rational function

$$\frac{1 - a_q T + q T^2}{(1 - T)(1 - q T)}.$$

Additional exercise (DO NOT SUBMIT WITH THE HOMEWORK):

Let E be an elliptic curve $y^2 = x^3 + ax + b$ defined over a field k , $\text{char}(k) \neq 2, 3$.

One defines the *division polynomials* $\psi_m(x, y)$ in a recursive way : $\psi_0 = 0$, $\phi_1 = 1$,

$$\psi_2 = 2y$$

$$\psi_3 = 3x^4 + 6ax^2 + 12bx - a^2$$

$$\psi_4 = 4y(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b^2 - a^3)$$

$$\psi_{2m+1} = \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3, m \geq 2$$

$$\psi_{2m} = [\psi_m(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2)]/2y, m \geq 3.$$

1. Show that ψ_n is a polynomial in x, y^2 if n is odd and that $y\psi_n$ is polynomial in x, y^2 , if n is even.
2. One defines $\phi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1}$
 $\omega_m = [\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2]/4y$. Show that ϕ_n is a polynomial in x, y^2 , that ω_n is a polynomial in x, y^2 if n is odd, and that $y\omega_n$ is a polynomial in x, y^2 if n is even.
3. By the previous question, one can define the polynomials $\phi_n(x)$ and $\psi_n^2(x)$ by replacing y^2 by $x^3 + ax + b$ in the polynomials $\phi_n(x, y)$ and $\psi_n^2(x, y)$. Show that $\phi_n(x)$ is the sum of x^{n^2} and the terms of lower degree, and that $\psi_n(x)^2$ is the sum of $n^2x^{n^2-1}$ and the terms of lower degree.
4. Show that for $P = (x, y)$ a point of E , one has

$$nP = \left(\frac{\phi_n(x)}{\psi_n(x)^2}, \frac{\omega_n(x, y)}{\psi_n(x)^3} \right)$$

5. Show that the polynomials $\phi_n(x)$ and $\psi_n(x)^2$ are relatively prime. Deduce the multiplication by n map is of degree n^2 .