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Abstract
NonstationaryGaussian processmodels can capture complex spatially varying dependence structures in spatial data. However,
the large number of observations in modern datasets makes fitting such models computationally intractable with conventional
dense linear algebra. In addition, derivative-free or even first-order optimization methods can be slow to converge when
estimating many spatially varying parameters. We present here a computational framework that couples an algebraic block-
diagonal plus low-rank covariance matrix approximation with stochastic trace estimation to facilitate the efficient use of
second-order solvers for maximum likelihood estimation of Gaussian process models with many parameters. We demonstrate
the effectiveness of these methods by simultaneously fitting 192 parameters in the popular nonstationary model of Paciorek
and Schervish using 107,600 sea surface temperature anomaly measurements.

Keywords Nonstationary · Spatial analysis · Optimization · Statistical computing

1 Introduction

Gaussian processes are a prevalent class of models in spatial
and spatiotemporal statistics. This is due in part to the fact that
the model is completely specified by the first two moments
of the Gaussian distribution, so that a practitioner needs to
select only a mean function and covariance function. Let
Z(x) be a Gaussian process with mean function μ(x) = 0
and covariance function

Cov(Z(x), Z(x′)) = k(x, x′|θ) (1)

observed at locations {xi }ni=1 corresponding to measure-
ments yi = Z(xi ) with xi ∈ � ⊂ R

d . Here k(·, ·) is
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a parametric covariance function with parameters θ . Then
defining the vector y = [y1, ..., yn]� ∈ R

n , we have

y ∼ N
(
0,�(θ)

)
, (2)

where the covariance matrix �(θ) ∈ R
n×n is defined by

�(θ)i j = Cov(yi , y j ) = k(xi , x j |θ). (3)

A primary objective after selecting a parametric covariance
model is to estimate θ from the data. One can then predict
the value of the process at unobserved locations by treating
the estimated parameters as the true parameters. A standard
parameter estimation method is to compute the maximum
likelihood estimator (MLE), denoted θ̂ , which minimizes the
mean zero Gaussian negative log-likelihood function

− �(θ) = 1

2
logdet�(θ) + 1

2
y��(θ)−1 y + n

2
log(2π).

(4)

For the remainder of this paper we will suppress the depen-
dence of � on θ for notational clarity.

Computing (4) for large spatial datasets is computation-
ally challenging, since the determinant and linear solve
operations have cubic time complexity and quadratic space
complexity using conventional dense linear algebra. Thus,
for large n, evaluating the log-likelihood directly becomes
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prohibitively expensive. In response to the first of these com-
putational challenges, a number of approximations have been
proposed, includingVecchia and “nearest-neighborGaussian
process" methods (Vecchia 1988; Stein et al. 2004; Katz-
fuss and Guinness 2021; Guinness 2021), matrix tapering
(Furrer et al. 2006), and Markov random field approxima-
tions (Lindgren et al. 2011), which each approximate � or
�−1 using a sparse or block-sparsematrix. Low-rank updates
to a diagonal matrix have also been considered (Cressie
and Johannesson 2008; Banerjee et al. 2008; Eidsvik et al.
2012; Katzfuss and Cressie 2012; Solin and Särkkä 2020),
although they suffer from limitations for nonsmooth fields or
when including a nugget term is not an appropriate model-
ing assumption (Stein 2014). Approaches using hierarchical
matrices have also been proposed (Börm and Garcke 2007;
Ambikasaran et al. 2015; Chen and Stein 2021; Minden et al.
2017; Litvinenko et al. 2019), which use rank-structured
matrix arithmetic to efficiently evaluate (4).

In spite of the development of these scalable methods,
minimizing the negative log-likelihood remains challenging
depending on the covariance function and its parameteriza-
tion. Even for covariance functions with few parameters, for
example the stationary isotropic Matérn covariance

Mν(
∥∥xi − x j

∥∥) = σ 2

�(ν)2ν−1

(
2
√

ν
∥∥xi − x j

∥∥

ρ

)

Kν

(
2
√

ν
∥∥xi − x j

∥∥

ρ

)
, (5)

where ν is a positive constant smoothness parameter and
Kν(·) is the modified Bessel function of the second kind of
order ν, simultaneously estimating the scale σ 2 and range ρ

parameters poses a significant challenge (Zhang 2004). The
likelihood surface is far from convex, and even first-order
methods may become trapped in nearly flat nonellipsoidal
regions of the likelihood surface and fail to make meaningful
progress.While a few relatively recent articles attempt to treat
the optimization problem more seriously (Guinness 2021;
Minden et al. 2017; Geoga et al. 2019), the norm in practice
is to use derivative-free or first-order methods with finite
difference derivatives.

For more complicated covariance functions that pro-
vide more flexibility and thus require more parameters, the
optimization problem becomes even harder, and second-
order optimization can mean the difference between an
optimizer stagnating and successfully reaching the MLE
(Guinness 2021;Geoga et al. 2022). The computational prob-
lem posed in this setting is that efficient linear solves and
log-determinants with� are no longer sufficient. Derivatives
∂�
∂θ j

need to be computed and applied scalably; and if the gra-
dient and Fisher matrix are computed directly, matrix-matrix
products of the form �−1 ∂�

∂θ j
need to be computed effi-

ciently. Even for data sizes in which� does not require some
form of approximation, with sufficiently many parameters
the computational burden of the matrix-matrix operations
necessary for the gradient alone can be problematic. In this
work we address the problem of second-order optimization
for a covariance function with many parameters, using as our
motivating example a nonstationary spatial model, which we
introduce now.

For large spatial datasets it is often unrealistic to assume
that process parameters are constant over the entire domain,
in other words, that the process is stationary. Therefore non-
stationary covariance functions in which the parameters vary
in space become necessary in order to accurately capture the
dependence structure of the data. One such covariance func-
tion thatwewill use here is derivedbyPaciorek andSchervish
(2006) as a modification of the stationary Matérn covariance
(5) and is frequently used in the nonstationary Gaussian pro-
cess literature (Li and Sun 2019; Risser and Calder 2015;
Banerjee et al. 2008; Sang and Huang 2012; Huang et al.
2021). We use the following anisotropic version,

k(xi , x j ) = σ 2 |�(xi )| 14
∣∣�(x j )

∣∣
1
4

∣∣
∣
�(xi )+�(x j )

2

∣∣
∣
1
2

Mν

(√

(xi − x j )�
(

�(xi ) + �(x j )

2

)−1

(xi − x j )

)
, (6)

where �(·) is a spatially varying function that assigns a
positive definite local anisotropy matrix at each location.
In fact, Stein (2011) gives an extension of this nonstation-
ary covariance that allows for spatially varying scale σ(·)
and smoothness ν(·) functions. However, jointly estimating
range and scale parameters can be challenging even in the
simplest stationary settings (Zhang 2004), and robustly com-
puting the derivatives ofKν(·) in the smoothness parameter
ν is numerically challenging, although progress on this topic
has been made recently (Geoga et al. 2022). Thus we restrict
our investigations in this work to models that have only non-
stationary local ranges via the anisotropy parameters. While
many options exist to parameterize �(·), in this work we
demonstrate a basis function strategy detailed in Sect. 4.1.

As one might expect, however, a basis function expan-
sion of �(·) for a highly nonstationary process on a large
domain requires many parameters, which makes fitting the
entire globalmodel a difficult high-dimensional optimization
problem forwhich derivative-free and evenfirst-order solvers
are often ineffective. A number of past works using the
covariance model of Paciorek and Schervish circumvent this
difficulty by fitting parameters only locally and subsequently
smoothing or regressing them into a globalmodel (Li andSun
2019; Risser and Calder 2015; Huang et al. 2021). Without
considering all the basis coefficients simultaneously, how-
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ever, relationships between parameters in adjacent regions
are ignored, and it can be difficult to verify the quality of the
global model fit. The primary goal of our work is to present a
computational framework in which this global model fitting
is tractable and to consider its benefits.

We emphasize here that the two computational chal-
lenges of large data size and large parameter dimension are
intimately linked. Large data collected over extensive spa-
tiotemporal domains can require complex models in order to
accurately characterize their dependence structure, and, con-
versely, complex models often require large data in order
to accurately estimate their many parameters. Therefore,
considering these two problems together is imperative to
developing effective practical methods.

In this vein, we introducemethods to control the computa-
tional complexity of second-order optimization. Further, we
provide and discuss an application to high-resolution sea sur-
face temperature measurements, fitting a dataset of 107,600
measurements to a model with 192 parameters. The results
of this application demonstrate that there can be substantial
gains by estimating the entire global model jointly.

Our contribution is two-fold. First, we provide the nec-
essary ingredients for second-order optimization by giving
detailed accounts of the computation of gradients, Hessians,
and expected Fisher information matrices in linear time and
storage complexity using the block full-scale approximation
(Snelson and Ghahramani 2007; Sang et al. 2011) with or
without a nugget, which to our knowledge do not exist in the
literature. Second, we show that the symmetrized stochas-
tic trace estimation method of Geoga et al. (2019) allows us
to estimate the gradient and expected Fisher matrix using
a single pass over the derivative matrices, which demon-
strates significant performance gains in practice and makes
possible the simultaneous optimization of all parameters.
With these strategies, despite the computational burden of
a highly expensive covariance function, we demonstrate that
fitting large datasets with many-parameter models can be
done effectively.

2 Block full-scale approximation

While a number of past works have approximated the covari-
ance matrix as the sum of a diagonal matrix and a low-rank
matrix (Cressie and Johannesson 2008; Banerjee et al. 2008;
Eidsvik et al. 2012; Katzfuss and Cressie 2012; Solin and
Särkkä 2020), these models often fail to capture short-range
behavior of the data. To improve the model fit, one can add a
banded or block diagonal matrix to the low-rank approxima-
tion. We consider here a particular algebraic approximation
of this type referred to as the partially independent condi-
tional approximation by Snelson and Ghahramani (2007)
or the block full-scale approximation by Sang et al. (2011).

This approximation allows one to modulate the block size
and off-diagonal rank independently to capture both smooth
long-range dependence and rough local dependence while
still allowing computations that scale linearly in the number
of observations.

Let N = {1, 2, ..., n} indicate the index set of all observa-
tions, and take I and J to be subsets of N . Let � I J denote
the submatrix of � corresponding to rows I and columns
J . We start by ordering the observation locations using a
k-d tree—a binary space partitioning tree that iteratively
bisects Rd along axis-aligned hyperplanes (Bentley 1975).
We then use the k-d tree ordering to choose a set of p land-
mark points X P = {xi }i∈P indexed by P ⊂ N that are
roughly equispaced over the spatial domain, and we con-
struct the low-rank Nyström approximation to � given by
�N P�−1

PP��
N P ∈ R

n×n . We note that the landmark points
X P used in the Nyström approximation need not be observa-
tion points, and could be any arbitrary “knot” locations in the
domain, but for the remainder of this paper we assume we
are using observation locations as they are simple to choose
and result in concise block matrix expressions.

Next, using the same k-d tree, we partition the data into
disjoint blocks of observations at nearby spatial locations. Let
block � consist of observations indexed by B� ⊂ N for � =
1, ...,m, where m is the total number of blocks, and denote
the collection of these block index sets as B = {B1, ..., Bm}.
For a matrix A ∈ R

n×n, define the block diagonalization
operator with block structure B as

[
blkdiagB(A)

]

i j
=
{
Ai j fori, j ∈ B� for some �

0 otherwise.
(7)

We use this operator to construct a block diagonal correc-
tion term that takes the Nyström approximation to the exact
values. This yields our approximate covariance matrix

�̃ = �N P�−1
PP��

N P + blkdiagB
(
� − �N P�−1

PP��
N P

)
,

(8)

where the block diagonal structure allows us to capture
short-range covariances exactly within disjoint local neigh-
borhoods.Alternatively, one can view this approximation as a
two-level approximation to the covariance function given by

k̃(xi , x j )

=

⎧
⎪⎨

⎪⎩

k(xi , x j ) for i, j ∈ B� for some �

k(X P , xi )�

k(X P , X P )−1 k(X P , x j ) otherwise.

(9)

This approximation is equivalent to assuming that obser-
vations in different neighborhoods are conditionally inde-
pendent given the observations at the landmark points X P
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(Snelson and Ghahramani 2007). Considering this condi-
tional structure, one can also see this approximation as a
special case of the Vecchia approximation (Katzfuss and
Guinness 2021).

To leverage recent advances in scalable hierarchical
matrix operations and factorizations, Geoga et al. (2019)
used the Nyström approximation to compress off-diagonal
blockswithin a hierarchical off-diagonal low-rank (HODLR)
approximation to the covariance matrix that could be assem-
bled and factorized in quasilinear time and storage complex-
ity. In that work, a set of p landmark points X P = {xi }i∈P

are selected from the data and indexed by P ⊂ N , and each
off-diagonal block is approximated using the low-rank Nys-
tröm scheme �̃ I J = � I P�−1

PP��
J P . Crucially, the set P

of landmark points is fixed and used in every off-diagonal
block. Looking entrywise, this approach induces the two-
level matrix approximation

�̃i j =
{

�i j for i, j ∈ B� for some �

��
Pi�

−1
PP�P j otherwise,

(10)

where the block diagonal entries are exactly the entries of
the full covariance matrix� and the nonleaf entries are given
by a low-rank approximation. This is precisely the two-level
approximation (8). The simplification from aNyström-based
hierarchical covariance to a two-level covariance is also dis-
cussed by Chen et al. (2017).

3 Linear complexity computations

Here we discuss how to exploit the two-level covariance
approximation described above to obtain direct linear com-
plexity computations of the likelihood and its derivatives.We
derive complexity estimates in terms of the rank of the Nys-
tröm approximation and the block sizes in the block diagonal
term. We can tune these rank and block size parameters to
trade off between approximation accuracy and computational
complexity.

For the remainder of this paper, we assume that the mean
function of the model is zero everywhere and focus exclu-
sively on covariance matrices. As in the real data application
in Sect. 4, it is fairly common to study anomaly fields of cli-
matological variables and treat these as having mean zero
for a mean function specified up to some vector of unknown
linear parameters. The matrix calculus for derivatives with
respect to these parameters is much simpler and poses no
computational concern.

3.1 Computing the log-likelihood

In order to performmaximum likelihood estimation, our first
concern is to efficiently compute the negative log-likelihood

using our approximate covariance matrix �̃, given up to an
additive constant by

− �(θ) = 1

2
logdet �̃ + 1

2
y��̃

−1
y. (11)

This requires the computation of the determinant of �̃ aswell

as the linear solve �̃
−1

y. For this purpose, one might hope
to use the matrix determinant lemma

det
(
A + UV�) = det

(
I + V�A−1U

)
det
(
A
)

(12)

and the Sherman-Woodbury-Morrison formula

(A + UV�)−1 = A−1 − A−1U(I + V�A−1U)−1V A−1

(13)

which take advantage of the low-rank update structure for
A ∈ R

n×n and U, V ∈ R
n×p to reduce the complexity

of these computations. Note, however, that for the Nyström
approximation (8) we have �̃PP = �PP�−1

PP��
PP = �PP .

In other words, the Nyström approximation is exact on
rows and columns corresponding to landmark points, so
blkdiagB

(
� − �N P�−1

PP��
N P

)
is zero on these rows and

columns. In particular it is not invertible, and thus we can-
not use formulas (12) and (13). Previous works add a nugget
σ 2 I to �̃, circumventing this issue (Snelson andGhahramani
2007; Sang et al. 2011). However, this is not strictly neces-
sary. We can remedy the rank deficiency without a nugget
by defining a matrix�which permutes the landmark indices
P to the last p indices {N − p + 1, ..., N }, leaving all non-
landmark points in the same order. Let Q = N \P denote the
index set of non-landmark indices, and let B ′ = [B ′

1, ..., B
′
m]

be a new collection of block index sets which partition Q and
thus contain no Nyström points. One method of constructing
B ′ is to simply remove any Nyström indices from B, namely
B ′

� = B� ∩ Q. Then we have

�̃ = ��
[
�QP�−1

PP��
QP + blkdiagB′

(
�QQ − �QP�−1

PP��
QP

)
�QP

��
QP �PP

]

�.

(14)

We note that the Nyström rank p 	 n, and thus the
(n− p)×(n− p) upper left block of the permutedmatrix con-
tains the vast majority of the covariance information between
observations, and the other blocks are small dense matrices.

This permuted representation yields efficient and con-
venient computations, since the block diagonal correction
matrix in the upper left block is now full rank. For ease of
notation, we will write this matrix as

D = blkdiagB′
(
�QQ − �QP�−1

PP��
QP

)
. (15)
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Returning to the determinant of �̃, we see that the block diag-
onal correction matrix is the Schur complement of �PP in
the permuted matrix, and thus we can compute the determi-
nant of the approximate covariance matrix using the matrix
determinant lemma as

det
(
�̃
) = det(D) det(�PP ). (16)

Here and for the remainder of this section we will assume for
ease of analysis that the block structure B ′ consists of equally
sized blocks of sizeb = ∣∣B ′

�

∣∣ for all � = 1, ...,m.Wewill also
assume we have factorized �PP and D as a precomputation
step requiring O(p3 + nb2) work. Therefore, computing the
determinant of �̃ requires computing the determinant of one
factorized p × p matrix and n/b determinants of factorized
b × b blocks, yielding O(n) complexity overall.

The linear solve �̃
−1

y can also be computed in a conve-
nient way that leverages Schur complements. Defining the
permuted vector z = � y, we solve the permuted linear sys-
tem

[
w1

w2

]
=
[
�QP�−1

PP��
QP + D �QP

��
QP �PP

]−1 [
z1
z2

]

w1 =D−1
(
z1 − �QP�−1

PP z2
)

w2 =�−1
PP

(
z2 − ��

QPw1

)

�̃
−1

y = ��w, (17)

which requires O(np + nb) work to perform the matrix–
vector products and solve the linear systems. Continuing on
to study derivatives of (11) in much the same way, we show
that even matrix-matrix products with this rank structure can
beworkedwith conveniently and efficiently, fromwhich scal-
ability of all the required linear algebra follows.

3.2 Computing the gradient

To employ gradient-based optimization algorithms for max-
imum likelihood estimation, we must compute the gradient
of the negative log-likelihood (4). Each component of the
gradient is

[− ∇�(θ)
]
j = 1

2
tr

[
�̃

−1
(

∂�̃

∂θ j

)]

−1

2
y��̃

−1
(

∂�̃

∂θ j

)
�̃

−1
y. (18)

Alternative rank-structured approximations to � are often
constructed using early-terminating pivoted factorizations
and are thus not differentiable with respect to the kernel
parameters. As a result, one must introduce an additional

approximation to the derivative matrices ∂�(θ)
∂θ j

. For exam-
ple, the hierarchical matrix method by Minden et al. (2017)
computes an independent hierarchical approximation to each
�(θ)−1 ∂�(θ)

∂θ j
in order to compute the trace term in the gradi-

ent of the log-likelihood. In contrast, Geoga et al. (2019) use
an algebraic hierarchical covariance matrix approximation
for which the derivatives matrices ∂�(θ)

∂θ j
can be computed

exactly in quasilinear complexity, but they must use stochas-
tic estimators to compute the trace term efficiently.

The key observation for efficient computation of the gra-

dient for the block full-scale approximation is that ∂�̃
∂θ j

has a

similar rank structure to �̃. Since the Nyström factors �QP

and �PP are simply submatrices of the covariance matrix
�, we can compute the derivatives of these factors using
the derivatives of the covariance function. Following basic
matrix differentiation, we have

∂

∂θ j

(
�QP�−1

PP��
QP

)
=
(

∂�QP

∂θ j

)
�−1

PP��
QP−

�QP�−1
PP

(
∂�PP

∂θ j

)
�−1

PP��
QP + �QP�−1

PP

(
∂�QP

∂θ j

)�
.

(19)

Since the second term on the right side shares a factor with
each of the others, the derivative of the rank-p Nyström
approximation has rank at most 2p.

The derivative of the approximate covariance matrix �̃ is
then given by

∂�̃

∂θ j
= ��

⎡

⎢⎢
⎣

∂

∂θ j

(
�QP�−1

PP��
QP

)
+ ∂D

∂θ j

∂�QP

∂θ j
∂��

QP

∂θ j

∂�PP

∂θ j

⎤

⎥⎥
⎦�,

(20)

which has the same block rank structure as �̃ except that the
low-rank portion of the upper left block has at most double
the rank.

Given this shared rank structure, we can compute the

matrix-matrix linear solve �̃
−1

( ∂�̃
∂θ j

) with Schur comple-
ments as follows:

[
W1 W3

W2 W4

]
=
[
�QP�−1

PP��
QP + D �QP

��
QP �PP

]−1

×
⎡

⎢
⎣

∂

∂θ j

(
�QP�−1

PP��
QP

)
+ ∂D

∂θ j

∂�QP
∂θ j

∂�QP
∂θ j

� ∂�PP
∂θ j

⎤

⎥
⎦

W1 = D−1
(

∂

∂θ j

(
�QP�−1

PP��
QP

)
+ ∂D

∂θ j
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− �QP�−1
PP

∂�QP

∂θ j

�)

W2 = �−1
PP

(
∂�QP

∂θ j

�
− ��

QPW1

)

W3 = D−1
(

∂�QP

∂θ j
− �QP�−1

PP
∂�PP

∂θ j

)

W4 = �−1
PP

(
∂�PP

∂θ j
− ��

QPW3

)

�̃
−1
(

∂�̃

∂θ j

)
= �W��. (21)

This requires only linear solves and matrix-matrix products
involving n × n block diagonal matrices, n × p low-rank
factors, and p× p matrices, resulting inO(np2 +nb2) com-

plexity. In addition, the resulting matrix �̃
−1

( ∂�̃
∂θ j

) has the

same permuted block diagonal plus low-rank structure as �̃,
whereW1 ∈ R

(n−p)×(n−p) is amatrix of rank atmost 2p plus
a block diagonal termandW2 ∈ R

(n−p)×p,W3 ∈ R
p×(n−p),

and W4 ∈ R
p×p are small dense matrices. The preservation

of this rank structure under linear solves will prove useful for
computing second-order information in the next section.

The remaining inner product term in the gradient of the
negative log-likelihood (18) can be computed inO(np+nb)
time by using Eq. (17) along with a straightforward block
matrix–vector product. This allows us to compute each entry
of the gradient in linear complexity in n.

3.3 Computing the Fisher matrix

We can employ the linear solve method above to compute
the entries of the expected Fisher information matrix given
by

I jk = 1

2
tr

[
�̃

−1
(

∂�̃

∂θ j

)
�̃

−1
(

∂�̃

∂θk

)]
. (22)

Computing the terms �̃
−1

( ∂�̃
∂θ j

) and �̃
−1

( ∂�̃
∂θk

) using equation
(21), applying a straightforward block matrix-matrix prod-
uct, and computing the trace of the resulting rank-structured
matrix, we obtain O(np2 + nb2) complexity per entry. Effi-
cient methods for computing I facilitate the use of Fisher
scoring algorithms to obtain the MLE and can be used to
produce confidence intervals for estimated parameters. Anal-
ogous methods can be used to compute the Hessian of the
negative log-likelihood for use in Newton-based optimiza-
tion routines. See the appendix.

3.4 Symmetrized trace estimation

Although the above

computations of the gradient and the Fisher and Hessian
matrices have the desired linear scaling in the data size n, the
matrix-matrix solves and products in the trace terms require
a large number of intermediate allocations, which are com-
putationally expensive in practice. To provide fast unbiased
estimates of these trace terms, we rely on a sample average
approximation based on the Hutchinson estimator (Hutchin-
son 1989)

tr(A) ≈ 1

s

s∑

�=1

u�
� Au� (23)

with s samples, where u� are independent symmetric
Bernoulli vectors, although alternatives exist (see Stein et al.
2013). In particular, factorizing the approximate covariance
as �̃ = WW�, one can use the symmetrized estimator pre-
sented by Stein et al. (2013), which is given by

tr

[
�̃

−1
(

∂�̃

∂θ j

)]
= tr

[
W−1
(

∂�̃

∂θ j

)
W−�

]

≈ 1

s

s∑

�=1

u�
� W

−1
(

∂�̃

∂θ j

)
W−�u�. (24)

Stein et al. (2013) prove a bound on the variance of this esti-
mator that is at least as strong as the variance bound on the
nonsymmetrized version, and Geoga et al. (2019) provide
numerical results that indicate greatly improved accuracy
with the symmetrized estimator compared with the standard
Hutchinson procedure.

An analogous symmetrized estimator for the trace terms
in the Fisher matrix and Hessian that require only a small
number of linear solves with W and matrix–vector products

with ∂�̃
∂θ j

is constructed in Geoga et al. (2019). The Fisher
matrix estimator can be written as

I jk ≈ 1

4s

s∑

�=1

u�
� W

−1
(

∂�̃

∂θ j
+ ∂�̃

∂θk

)
�̃

−1
(

∂�̃

∂θ j
+ ∂�̃

∂θk

)

W−�u� − 1

2
I j j − 1

2
Ikk, (25)

where the diagonal terms I j j and Ikk can be estimated in
a trivially symmetric way. This gives fast stochastic esti-
mators of all quantities necessary for gradient-based and
second-order optimization solvers,which can be computed in
O(snp+snb) complexity per entry sincematrix–vector prod-

ucts with ∂�̃
∂θ j

and linear solves with W require O(np + nb)
work, which we now show.

3.5 Symmetric factor computation

The remaining
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concern is to obtain a rank-structured symmetric factor
W for our two-level approximate covariance matrix �̃. The
principal challenge is the upper left block, which we hope to
factorize as

�QP�−1
PP��

QP + D =
(
XY� + B

)(
XY� + B

)�
(26)

for X,Y ∈ R
(n−p)×p and B a block diagonal matrix with

the same block structure B ′ as D. As discussed in Sect. 2, our
matrix structure is a two-level special case of the HODLR
format; thus we use a single step of the symmetric factoriza-
tion algorithm of Ambikasaran et al. (2014), which can be
written concisely by computing Cholesky factors

BB� = D

LL� = (B−1�QP
)�(B−1�QP

)

MM� = I + L��−1
PPL

X = �QP

Y = L−�(M − I
)
L−1(B−1�QP

)�
. (27)

This requires only Cholesky factorizations of block diagonal
matrices and p × p matrices, as well as linear solves and
matrix-matrix products involving p × p and (n − p) × p
matrices, and thus can be computed in O(np2 + nb2) time.
The symmetric factor W is then given by

W = ��
[
XY� + B 0

Z� G

]
� (28)

where the remaining blocks are defined by

Z =
(
XY� + B

)−1
�QP

GG� = �PP − Z�Z (29)

with Z ∈ R
(n−p)×p, G ∈ R

p×p. Since W maintains the
same permuted block diagonal plus low-rank structure as �̃,
we can compute matrix–vector products and linear solves
with W in O(np + nb) time using the Sherman-Woodbury-
Morrison formula. This facilitates the SAA approximations
to the gradient, Fisher matrix, and Hessian discussed above
and provides a fast sampling method for the process.

3.6 Prediction and conditional distributions

In addition to fast likelihood computations, the rank structure
of �̃ facilitates fast kriging and results in a conditional covari-
ance matrix with the same rank structure as �̃. Given a set of
locations {x∗

i }n∗
i=1 indexed by N∗ with corresponding process

values y∗
i = Z(x∗

i ), we define the vector y∗ = [y∗
1 , ..., y

∗
n∗ ]

and wish to compute the conditional distribution

y∗| y ∼ N (�̃
�
∗ �̃

−1
y, �̃∗∗ − �̃

�
∗ �̃

−1
�̃∗). (30)

where
(
�̃∗
)
i j = k̃(xi , x∗

j ) and
(
�̃∗∗
)
i j = k̃(x∗

i , x
∗
j ). We

assign each point x∗
i to a block from the observed data,

for example by taking the block with centroid nearest to
x∗
i , resulting in a collection of block index sets B∗ =

[B∗
1 , ..., B∗

m] that partition N∗. To simplify the discussion of
computational complexity, we assume this results in blocks
of equal size b∗ = ∣∣B∗

�

∣∣. Recalling the permutation � that
orders the landmark points to the last indices, we obtain
covariance matrices of the form

�̃∗∗ = �N∗P�−1
PP��

N∗P + blkdiagB∗(
�N∗N∗ − �N∗P�−1

PP��
N∗P
)

(31)

�̃∗ = ��

⎡

⎢
⎣

�QP�−1
PP��

N∗P + blkdiagB′B∗(
�QN∗ − �QP�−1

PP��
N∗P

)

��
N∗P

⎤

⎥
⎦ , (32)

where the nonsymmetric block diagonalization operator is
defined by

[
blkdiagB ′B∗(A)

]

i j
=
{
Ai j fori ∈ B ′

�and j ∈ B∗
� for some�

0 otherwise.

(33)

We see that these covariance matrices have rank structures
that are minor variations on the block diagonal plus low-
rank structure we have used in the observed data covariance
matrix, its derivatives, and its symmetric factor.

To compute the term �̃
−1

y in the conditional mean,
we use the linear solve (17) followed by a straightforward
block matrix–vector product with �̃∗, which has complexity
O(nb∗ + np + n∗ p).

To compute the term �̃
−1

�̃∗ in the conditional covari-
ance, we use the first column of the structured matrix-matrix
solve (21). This yields a matrix with the same block structure
as (32). We then compute the block matrix-matrix product

with �̃
�
∗ , which has complexityO(n b2∗+np2+n∗ p). Impor-

tantly, the resulting conditional covariance matrix is a block
diagonal plus amatrix of rank at most 4p. Thus we can afford
to compute and store it, facilitating further computations such
as symmetric factorization using (27) and thus yielding con-
ditional simulations in linear complexity.

3.7 Numerical verification ofO(n) complexity

Before applying the methods developed above to a nonsta-
tionary process, we demonstrate their linear scaling using a
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simple stationary process. We consider fitting n observations
at locations selected uniformly at random in [0, 1]2 using the
stationary isotropic Matérn covariance (5) with fixed ν = 1,
where θ = [σ 2, ρ] are being estimated. We fix the block size
b = 128 and theNyström rank p = 32. For various nwe then
time the computation of the approximate covariance matrix
�̃, the likelihood �, the symmetric factor W , the gradient
∇�, and the Fisher information matrix I , as well as com-
putation of the conditional distribution of y∗| y consisting of
the mean and rank-structured conditional covariance matrix
at 512 sites also selected uniformly at random in [0, 1]2. Fig-
ure1 shows that all the aforementioned computations scale
linearly as expected and gives timings for our implementa-
tions on a single core of an Intel Xeon CPU E5-2650 @ 2.00
GHz machine.

4 Numerical results

Wenow test these scalable computations in the nonstationary
setting, performing parameter estimation for both a simulated
dataset as well as a large satellite sea surface temperature
dataset. The effect of the Nystöm rank p and block size b
parameters on the approximation quality is studied, and our
approach is compared to an alternative global fitting method
(Guinness 2021) from the literature.

4.1 Covariancemodel and parameterization

Recall the nonstationary anisotropic model described in
Sect. 1, which is given by

k(xi , x j ) = σ 2 |�(xi )| 14
∣∣�(x j )

∣∣
1
4

∣∣∣
�(xi )+�(x j )

2

∣∣∣
1
2

Mν

(√

(xi − x j )�
(

�(xi ) + �(x j )

2

)−1

(xi − x j )

)
. (6)

To estimate the spatially-varying anisotropy function �(·),
we expand it in a normalized radial basis

�(x) =
m∑

i=1

φi (x) �i (39)

φi (x) = e−‖x−ai‖2/c2
∑m

j=1 e
−‖x−a j‖2

/c2
(40)

using squared exponential bases with a width parameter c,
and we estimate the positive definite matrices �i . In par-
ticular, we express the anisotropy matrices in terms of their

Cholesky factors

�i = Li L�
i (41)

Li =
[
�
(1,1)
i 0

�
(2,1)
i �

(2,2)
i

]

, (42)

which guarantees positive definiteness. We find also that it is
necessary to parameterize the log of the diagonal elements in
order to enforce uniqueness of theCholesky factors and avoid
identifiability issues. This results in the parameter vector

θ = [log �
(1,1)
1 , �

(2,1)
1 , log �

(2,2)
1 , . . . ,

log �(1,1)
m , �(2,1)

m , log �(2,2)
m ] ∈ R

3m . (43)

Since the nonnegative linear combination of positive definite
matrices is positive definite, we have obtained a parameteri-
zation in which �(x) is positive definite for all x ∈ �. We
fix the smoothness parameter ν = 1 because preliminary
estimation of a stationary Matérn model yielded an MLE
near this value, and we are interested here primarily in the
nonstationary anisotropy parameters. We estimate the scale
parameter σ 2 using the profile likelihood by fixing σ 2 = 1,
estimating the anisotropy parameters θ and then computing
the optimal scale parameter, which is given in closed form
by σ 2 = 1

n y
��̃(1, θ)−1 y.

4.2 Second order trust-region optimization

To compute theMLE for all models in the following sections,
we use our own implementation of the trust-region algorithm
adapted directly from Wright and Nocedal (1999). At iter-
ation k this algorithm minimizes a quadratic approximation
to the negative log-likelihood

min
p∈R3m

−�(θ (k)) − ∇�(θ (k))� p − 1

2
p�Bk p

s.t. ‖ p‖ ≤ �k (44)

where θ (k) are the current parameters, Bk is an approximation
to the Hessian∇2�(θ (k)), and�k is a radius parameter which
indicates the size of the region in that this quadratic objective
is a good approximation to the true negative log-likelihood.
Trust-region algorithms are known to converge to stationary
points for various approximate solutions of the subproblem
(44) and for various Hessian approximations Bk as long as
Bk is bounded. In the spirit of Fisher scoring, we use the
symmetrized stochastic estimate of the full Fisher matrix
Bk = I (θ (k)) discussed in Sect. 3.4 and solve the subprob-
lem (44) using a Newton-based iterative method (Wright and
Nocedal (1999), Section 4.3) which is inexpensive and effec-
tive for problems of this size.
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Fig. 1 Linear scaling of covariancematrix construction, symmetric factorization, and log-likelihood evaluation (left); and of gradient, Fisher matrix,
and conditional distribution computation at 512 unobserved locations (right). Dotted black lines show O(n) scaling for reference

4.3 Approximation accuracy study

In order to compare the performance of parameter estima-
tion using the block full-scale approximation with estimation
using the exact likelihood, we generate synthetic nonstation-
ary data using the covariance function (6). We fix the true
scale and smoothness σ 2 = ν = 1 and specify the true local
anisotropy �(·) using smooth functions of its rotation angle
and eigenvalues. See the appendix for the full specification.
We compute S = 10 i.i.d. samples from this model using
points on a 64 × 64 grid in [0, 1]2. To estimate �(·) from
each of these independent samples, we use the Choleksy-
based RBF model described in Sect. 4.1, fix σ 2 = ν = 1,
and place RBFs with width c = 0.2 on a 3 by 3 grid. See the
left plot in Fig. 2 for a plot of one of the sample paths with
RBF centers. This results in 27 parameters to fit with max-
imum likelihood using the trust-region algorithm described
in the previous section and the block full-scale computations
outlined in Sects. 3.1–3.3.

We provide two metrics for the quality our parameter esti-
mates as we vary the block size b and Nyström rank p in
the block full-scale approximation. For the first metric, we
generate i.i.d. samples y(s) for s = 1, ..., S from our non-
stationary spatial model and compute the approximate MLE

θ̂
(s)
b,p for each sample independently.We then compute the the

exact log-likelihood �(·) and the approximate log-likelihood

�b,p(·) evaluated at each approximate MLE θ̂
(s)
b,p. From these

log-likelihoods we obtain an estimate of the expected differ-
ence between the exact and approximate log-likelihoods at
the approximate MLE

1

S

S∑

s=1

∣
∣∣�(̂θ

(s)
b,p) − �b,p (̂θ

(s)
b,p)
∣
∣∣ ≈ E y

∣
∣∣�
(
θ̂b,p( y)

)
− �b,p

(
θ̂b,p( y)

)∣∣∣ .(45)

The second metric is based on a Monte Carlo approximation
to the expected norm of the score obtained by averaging the
gradient of the exact log-likelihood at the approximateMLEs

θ̂
(s)
b,p. These gradients should be close to zero because they

would be exactly zero if the gradients were evaluated at the
exact MLEs. Thus we consider the statistic

1

S

S∑

s=1

∥∥∥∇�
(
θ̂

(s)
b,p

)∥∥∥ ≈ E y

∥∥∥∇�
(
θ̂b,p( y)

)∥∥∥ . (46)

When the this criteria is small, it indicates that the block
full-scale approximation does not significantly influence
parameter estimation in the case of a single sample of the
process, because using the exact likelihood instead would
have little impact on gradient-based optimization.

Figure2 indicates a number of important trends which
guide our choice of approximation parameters in the follow-
ing application to real data. Primarily, the block sizeb tends to
have a much larger impact on our metrics than the rank p. In
particular, increasing the block size from8 to 128with a fixed
rank reduces the expected gradient norm by an order of mag-
nitude, while increasing the rank from 8 to 128 with a fixed
block size yields virtually no improvement. This indicates
that for fairly rough processes, preserving local interactions
by using larger neighborhoods gives better tradeoffs in likeli-
hood approximation than preserving long range interactions
by increasing the rank or by careful selection of the Nyström
landmark points. Thus it appears a modest rank is sufficient
to couple local neighborhoods, and one should focus com-
putational effort on choosing these neighborhoods to be as
large as possible.

4.4 Sea surface temperature modeling application

To test our computational framework in the relevant setting
of nonstationary modeling with many parameters, we study
a large sea surface temperature anomaly dataset from the
NOAA Coral Reef Watch database consisting of a 40◦ ×
40◦ domain in the central Pacific Ocean. These reanalysis
data are de-meaned sea surface temperature measurements
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Fig. 2 A sample from the simulated data with RBF centers denoted
with white dots (left). The difference in exact and approximated log-
likelihoods given by Eq.45 on a log scale for various Nyström ranks

and block sizes (center). The expected score norm given in Eq.46 on a
log scale for the same combination of ranks and block sizes (right)

generated by interpolating polar-orbiting and geostationary
satellite data from multiple sources to a 0.05◦ (∼ 5km)
grid using a Kalman filter-like approach (Maturi et al. 2017;
Khellah et al. 2004). To study such a large spatial domain, we
subsample this data to a 0.1◦ grid. We then use local aver-
aging on NASA’s MODIS Cloud Mask product (Ackerman
and Frey 2015) to compute a holdout set on the 0.1◦ grid,
whichwill serve as a testing set for evaluating predictions and
uncertainties. This leaves 107,600 non-cloudy observations
for maximum likelihood estimation. See Fig. 3. These cloud-
masked data provide a realistic setting for interpolation in
atmospheric science applications.

4.4.1 Fitting disjoint local neighborhoods

We start by partitioning our data into 64 disjoint subregions
using a k-d tree, and we use the centroid of each of these
regions as the center of an RBF within the full model, as
shown in Fig. 3. To determine a suitable initial guess for our
globalmodel optimization and to compare against the current
state of the art in which locally fitted parameters are plugged
into the RBF expansion (39), we fit a local anisotropy �i in
each subregion using the trust region method described in
Sect. 4.2. Since each subregion contains only 1681 observa-
tions, we can afford to use exact linear algebra and do not
require any covariance matrix approximation.

4.4.2 Fitting the global model

Following the local fitting of anisotropy parameters, we opti-
mize the full set of global model parameters θ . Here we
consider the full data and thus require the block full-scale
approximation and accompanying computations discussed
in Sects. 2 and 3. We use the local neighborhoods around
each RBF as the blocks in the approximation and use the

k-d tree to select 72 Nyström points for the low-rank portion
that are approximately equispaced over the spatial domain.
We can therefore think of the global model as a combination
of the exact local neighborhoods on which the local param-
eters were estimated, plus a low-rank term coupling these
neighborhoods. Comparing the likelihood under a disjoint
neighborhood model using the locally estimated anisotropy
parameters (i.e. a block diagonal covariance) to the likelihood
under the Paciorek-Schervish model with the block diagonal
plus low-rank covariance approximation using the locally
estimated anisotropy parameters as the i in Eq. (39), we
observe a log-likelihood increase of 334,342 units. This large
likelihood improvement indicates that observations in adja-
cent neighborhoods are in fact highly correlated and that the
low-rank Nyström term captures some of this dependence.

Preparing for optimization of the global model parame-
ters, we choose the width parameter c of the radial basis
functions to be half of the minimum distance between RBF
centers. This choice results in bases that are fairly local-
ized, helping avoid identifiability problems between adjacent
RBFs caused by more diffuse bases with larger c values. In
principle, estimating the full parameter vector θ allows one
to also perform maximum likelihood for the parameter c,
which is impossible with local estimation. We find, however,
that if c is included as a parameter alongside the locally esti-
mated parameters, the derivative in c is much larger than the
derivatives in the anisotropy parameters in θ , and thus the
solver moves in the c direction without materially improving
the fit. If we instead fix a localized c and estimate θ only, we
find that the likelihood surface in c becomes uninformative
because the basis width does not have a large impact on the
model fit if the local parameters are well selected.

After making the block full-scale approximation and
selecting the basis width, the key to fitting these 192 param-
eters in practice using the trust-region-based Fisher scoring
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Fig. 3 Artificially cloud-masked data (top left), interpolant (top center), full data (top right), neighborhoods used for local fitting and approximation
blocks with RBF centers as white dots (bottom left), interpolant error (bottom center), and interpolant standard deviations (bottom right)

Fig. 4 Correlation functions at
three points using parameters fit
globally (top row) and locally
(bottom row), with contours at
levels 0.1, 0.2, ..., 0.9

algorithm described above lies in the use of the SAA meth-
ods discussed in Sect. 3.4 to compute the gradient and Fisher

matrix in a single pass over the derivative matrices ∂�̃
∂θ j

. The
crucial observation is that the symmetrized estimators for
both the gradient and Fisher entries (24, 25) require only

inner products of terms of the formW−�u� and ∂�̃
∂θ j

W−�u�.

Thus, we can compute each ∂�̃
∂θ j

and matrix–vector prod-

ucts with W−�u� efficiently and independently in parallel.
We can then compute the necessary inner products for each
entry in the gradient and Fishermatrix.We use 150 SAAvec-
tors for this numerical experiment, which leads to a dramatic
reduction both in the computational cost, because the inner
products are less expensive than matrix-matrix products, and

in memory, because the vectors ∂�̃
∂θ j

W−�u� are significantly

smaller than the full derivativematrices ∂�̃
∂θ j

.While both exact
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and SAA computations requireO(n) time and storage, SAA
provides a dramatic reduction in prefactors. On an Intel Xeon
CPU E5-2650 @ 2.00 GHz machine, computing each Fisher
matrix entry using the exact form takes about 40 s in our

implementation after the matrices �̃
−1 ∂�̃

∂θ j
have been com-

puted, whereas each entry takes 0.05 s using SAA after the

vectors ∂�̃
∂θ j

W−�u� have been computed. As a result, the full
exact Fisher matrix requires about 206h, whereas the SAA
approximation requires only 15min. In our implementation,
parallelizing the construction of the derivatives of the covari-

ance matrix ∂�̃
∂θ j

on 16 cores leads to approximately 80s for
each of the 192 derivative matrices, resulting in a total of
about 4h. This easily dominates the computational cost at
each iteration, far more demanding than computing the SAA
gradient and Fisher matrix.

4.4.3 Comparison of local and global fits

Comparing the log-likelihoodof theglobal Paciorek-Schervish
model using the initial, locally fitted parameters with the
log-likelihood of the same model using the final, global
parameters given by our Fisher scoring trust-region algo-
rithm, we observe an increase of 48,679 units. In total,
parallelized over 16 cores, the time to optimize the local
models in disjoint subregions was about 7h, and the time to
optimize the globalmodelwhich stagnates after 16 iterations,
was about 74h. The substantial likelihood difference indi-
cates that solving thehigh-dimensional optimizationproblem
to fit all parameters simultaneously can produce a signifi-
cant improvement in model fit when compared with purely
local parameter estimation. The difference in covariance
structure can be seen in Fig. 4, which shows the estimated
correlation function obtained using local parameter estimates
versus optimized global parameter estimates. In particular,
we notice that the global model fitting captures larger east–
west correlations above and below the vortices caused by
equatorial currents and little correlation across these currents.

After maximum likelihood estimation is completed using
the inexpensive SAA gradients and Fisher matrices, we can
efficiently compute interpolants and the rank-structured con-
ditional covariance matrix. Figure3 shows the interpolation
results along with standard errors. In addition, we compute
the more expensive exact Fisher matrix at the MLE to eval-
uate parameter uncertainties. We see that the inverse Fisher
matrix contains non-negligible terms away from the diago-
nal, indicating that some interaction exists between spatially
proximal parameters. See Fig. 5, which shows the correla-
tion matrix given by normalizing the inverse Fisher matrix
to have unit diagonal entries. If one were to fit parameters
only locally, the resulting Fisher matrix would be block diag-
onal with 3 × 3 blocks, which ignores these off-diagonal
contributions (also shown in Fig. 5). Beyond the signifi-

cantly improved likelihoods, this additional second-order
information about parameter point estimates themselves is
a material advantage of the global model formulation used
here. Interpolation can be nearly optimal even with a com-
pletely misspecified covariance function (Stein 1999) and
may not be significantly improved by a global model. We
find negligible differences in the mean squared error of
interpolants computed in disjoint local neighborhoods with
stationary models and the interpolants shown in Fig. 3 that
are computed with the global nonstationarymodel. However,
uncertainties for estimated parameters can be significantly
underestimatedwhenglobal dependence is not accounted for.
Especially in an RBF model such as the one presented here,
the MLE and expected Fisher matrix from the global model
may also serve as a reasonable approximation to a Bayesian
posterior, although one needs to be careful when appealing to
asymptotic results that depend on the consistency of param-
eter estimates when working with spatial data (Zhang 2004).
The difference in parameter correlation structure can be seen
in Fig. 6, which shows the correlation between the log of
the upper left Cholesky entry log �

(1,1)
i (which serves as one

of the nonstationary model parameters, see (43)) at various
spatial locations for the global Paciorek-Schervishmodel and
the disjoint local neighborhood model. Note the meaningful
negative correlations between adjacent parameters in some
regions when using the global model, which cannot be cap-
tured by disjoint local models.

To further identify where significant likelihood improve-
ments have been made, we investigate quality of fit at the
lower tail of the spectrumof the covariancematrix. If a covari-
ance matrix � ∈ R

n×n has orthonormal eigenvectors q j and
corresponding positive eigenvalues λ j , then a vector z ∼
N (0,�) can be represented as z ∼∑n

j=1

√
λ jε jq j , where

ε j
i.i.d.∼ N (0, 1). By virtue of the orthogonality of the eigen-

vectors, it follows that under this model qTj z ∼ N (0, λ j ),

and qTj z is independent of q
T
k z for all j �= k.

Because � is inverted in the quadratic form that appears
in the likelihood, it is particularly revealing of log-likelihood
improvements to inspect these inner products for eigenvec-
tors corresponding to the smallest eigenvalues of�. Figure7
shows the quantity

Z j =
∣∣∣
∣∣
q j (θ)T z
√

λ j (θ)

∣∣∣
∣∣
, (47)

the absolute value of a standard Z -score, using the 100 small-
est eigenvalues and corresponding eigenvectors for themodel
parameters θ estimated locally in disjoint regions and simul-
taneously in the global model.

As can immediately be seen, even after taking into account
small-sample variability, the Z -scores using the local plug-in
parameters are excessively dispersed. This reflects a signif-

123



Statistics and Computing            (2023) 33:84 Page 13 of 17    84 

Fig. 5 Inverse Fisher matrix normalized to have unit diagonal entries
for the disjoint local neighborhood model (left) and for the global
Paciorek–Schervishmodel (center) shownwith a reduced color range to

emphasize off-diagonal elements, as well as the logs of the magnitudes
of the entries of the latter Fisher matrix (right). Parameter blocks are
ordered using a k-d tree on the RBF centers

Fig. 6 Spatially indexed parameter correlation for log �
(1,1)
i with the value located at the green dot using the global Paciorek-Schervish model (top

row) and the disjoint local neighborhood model (bottom row)

icant misfit, and the corresponding values for the globally
optimized parameters much more closely resemble the stan-
dard half-normal density. Because the smallest eigenvectors
for most standard covariance models generally reflect high-
frequency energy and are comparable to some form of
higher-order differencing, this indicates that the global opti-
mization leads to the model capturing fundamentally local
behavior better than what is achieved with plug-in local
parameters. Since the model is necessarily somewhat mis-
specified, this behavior is likely explained at least in part as
the global optimization sacrificing fit quality in some parts
to make significant enough improvement in other parts such
that the total likelihood is improved. Considering that almost
every model used for serious applications with environmen-

tal data will be to some degree misspecified, we find this to
be a valuable functionality that is not possible with plug-in
local parameters.

Overall, we see that the combination of the covariance
matrix approximation and second-order trust-region-based
Fisher scoring algorithm presented here, which scale favor-
ably with the data size and the number of parameters,
can produce meaningfully different fits and capture inter-
parameter dependence structure formany-parametermodels.
Therefore these methods represent an important considera-
tion when modeling nonstationary data at scale.
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Fig. 7 Absolute values of standardized Z -scores for the eigenvector
inner products given by Eq. (47) corresponding to the 100 smallest
eigenvalues for the global model covariance matrix using plug-in local

parameter estimates (red), globally optimized parameters (blue), and
the nonstationary scale model discussed in Sect. 4.5 (green)

4.5 Comparison with a nonstationary scale

A nonstationary covariance model which is much easier to
fit but still offers some degree of flexibility can be generated
by allowing only the scale parameter to vary in space. This
category of covariance function was used, for example, in
Guinness (2021), and demonstrated a notable improvement
in the terminal likelihood in their application. In this section,
we briefly compare the primary model here, which uses a
spatially varying anisotropy, with this class of variable scale
covariance functions.

After experimentation, for this particular dataset an RBF-
based interpolation scheme between parameterized locations
yielded higher likelihoods than the orthogonal basis function
approach of Guinness (2021), so we use the spatially varying
scale function

σ(x) =
(

S∑

i=1

wi (x)

)−1 S∑

i=1

wi (x)σi , (48)

wherewi (x) = exp

(
−
√

(x − x j )T�−1(x − x j )

)
is a sim-

ple weighting function, σi is the directly parameterized scale
at location xi , and � is a diagonal matrix chosen to com-
pensate for the rectangularity of the spatial domain. The full
kernel is then given by

kscale(xi , x j ) = σ(xi )σ (x j )M1(√
(xi − x j )��−1(xi − x j )

)
, (49)

where � = LL� is a globally stationary anisotropy matrix
parameterized via its Cholesky factor

L =
[
�(1,1) 0
�(2,1) �(2,2)

]
(50)

and M1 is the Matérn covariance function with its smooth-
ness fixed to ν = 1. Following Guinness (2021), we
picked 10 spatial anchor locations to cover the domain,
making manual corrections to be sure that every anchor
location had a good amount of non-missing data around
it. Thus our full parameter vector for this model is θ =
[log σ1, ..., log σ10, log �(1,1), �(2,1), log �(2,2)] ∈ R

13.
Table 8 shows the results of estimation for this model

using the same covariance matrix approximation scheme,
block size, and off-diagonal rank as the nonstationary scale
model above. As can be seen, in terms of likelihoods, our
model with varying anisotropy does significantly better, even
if one compensates for the significant difference in the num-
ber of parameters. The prediction metrics are much closer,
although still slightly prefer our model. The degree of simi-
larity between these two models in the prediction setting is
interesting, although with data this dense and with this level
of dependence it is not entirely surprising.

In addition to these comparisons, we also include in Fig. 7
the eigen-Z statistics obtained from the tail of the spectrum
of the fitted covariance matrix under this model (results in
green). Interestingly, the direction of the misfit for this model
is that the variance of those linear functions of the data is
over-estimated by the model. Inspecting those eigenvectors
shows that they resemble high-order finite differences, pri-
marily across latitude, in the upper northwest portion of the
domain, and are often near the large primary cloud mask.
This is an interesting region because the data is particularly

123



Statistics and Computing            (2023) 33:84 Page 15 of 17    84 

Model �(̂θ) RMSE max. abs. error
Nonstationary anisotropy (global) 0.0 0.1281 1.790
Nonstationary anisotropy (local) −48,679 0.1314 1.767

Nonstationary scale −32,194 0.1284 1.768

Fig. 8 A comparison of estimation and prediction metrics using our
nonstationary anisotropy model with both locally and globally esti-
mated parameters, and model using a nonstationary scale parameter.
Log-likelihoods at the MLE are normalized to zero by the highest
value, and the prediction regions used in the RMSE and maximum
error columns are the cloud-masked regions of the domain using the
NOAA data product as the ground truth

smooth, but there is a lot of structure being obscured by
those clouds. Considering that that portion of the domain
was also a hotspot for serious prediction error in our non-
stationary anisotropy model, a possible explanation for this
behavior in the eigen-Z scores is that these estimated param-
eters do indicate more variability in that area than just the
available data would suggest, and considering that under-
estimating variability punishes a likelihood much worse than
over-estimating, a model that is conservative about the vari-
ance of those differences would naturally do better.

5 Discussion

In this work we present a complete set of linear cost com-
putations for second-order maximum likelihood estimation
of Gaussian process parameters using the block full-scale
approximation with application to fitting many-parameter
nonstationary models. In particular, we give exact algo-
rithms for computing the Gaussian log-likelihood and its
gradient, Fisher information matrix, and Hessian, as well as
methods for highly efficient stochastic approximation. The
ability to compute derivatives of the log-likelihood is cru-
cial especially in fitting expressive covariance models with
many parameters, in which solvers must navigate a com-
plex, high-dimensional, nonconvex objective landscape. We
demonstrate using a large sea surface temperature dataset that
our methods facilitate parameter estimation for nonstation-
ary models with a very large number of parameters. Further,
we demonstrate the value of complex global parameteriza-
tions by the significantly improved likelihood and additional
inferred covariance structure between parameters, motivat-
ing the need for methods that are designed to be scalable with
respect to both data size and parameter size.

The block diagonal plus low-rank approximation we use
is well known in the literature as the partially indepen-
dent conditional (Snelson and Ghahramani 2007) or block
full-scale approximation (Sang et al. 2011). It is also a
special case of the Vecchia approximation (Katzfuss and
Guinness 2021) and is a two-level case of the more gen-
eral hierarchical models of both Katzfuss (Katzfuss 2017;

Katzfuss and Gong 2020) and Chen (Chen and Stein 2021).
While these more sophisticated approaches can achieve
more accurate approximations to the log-likelihood (Katz-
fuss and Gong 2020; Chen and Stein 2021), they provide
no efficient methods for computing its derivatives, making
high-dimensional parameter estimation extremely challeng-
ing. Our principal contributions are to demonstrate that the
block full-scale approximation yields efficient computations
with and without a nugget using Schur complements in a
permuted covariance matrix and to apply these computa-
tions to high-dimensional parameter estimation problems.
The utility and efficiency of computations with the block
diagonal plus low-rank structure are due to the fact that this
structure is closed with respect to matrix-matrix addition,
multiplication, and inversion. Therefore, by making a single
algebraic approximation to the covariance matrix, we obtain
rank-structured derivatives matrices, symmetric factors, and
conditional covariance matrices that can be assembled using
only O(n) computation and storage.

Although we find that this covariance matrix approxima-
tion in conjunction with the SAA gradient and Fisher matrix
methods makes parameter estimation possible for hundreds
of parameters, it has limitations in some circumstances.With
respect to the covariance approximation, Katzfuss and Gong
(2020) show that the conditional mean can suffer from dis-
continuities at block boundaries, which are noticeable upon
close inspection of the interpolant in Fig. 3. Although these
can in theory be alleviated by tapering at block boundaries
with a sufficiently smooth compactly supported function,
this comes at the cost of approximation accuracy. Regard-
ing SAA and parameter dimension, the full Fisher matrix
contains O(m2) many entries, where m is the number of
parameters. Due to the incredible efficiency of computing
SAA inner products, this is not a computational bottleneck
in the application shown above. However, if one were to
need thousands of parameters with hundreds of thousands
of observations, or if exact Fisher entries were required for
extremely high-precision optimization, this quadratic scal-
ing in parameter dimension may become prohibitive. In this
regime, some form of structured quasi-Newton that approx-
imates the Fisher matrix using fewer entries may become
necessary. Additionally, we note that the cost of evaluating
the basis function expansion (39) to compute the covariance
itself has cost O(m), so computing the m derivative matri-
ces ∂�

∂θ j
requiresO(m2n) effort, which explains why forming

thesematrices is the bottleneck in our application. This could
potentially be alleviated through the use of compactly sup-
ported basis functions as in Huang et al. (2021), although
these authors use purely local parameter estimation in place
of the global model estimation we have developed here.

Finally, we note that while this paper is exclusively con-
cerned with the maximum likelihood estimation of direct
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Gaussian process models, scalable approximations that are
also designed to accommodate models with many parame-
tersmay be useful in other domains andmodeling paradigms.
Hamiltonian Monte Carlo (Neal 2011) methods benefit from
derivative information, and so applying this methodology
that prioritizes derivativesmay be useful. Similarly, the appli-
cation of latent Gaussian processes in hierarchical models
that involve sampling may also benefit from such approxi-
mations, although as always, one should use caution when
applying kernel matrix approximation techniques in higher
dimensions.
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Appendix

Computing the Hessian

To employ second-order Newton solvers instead of Fisher
scoring to compute theMLE, one must compute the Hessian,
whose entries are given by

[− ∇2�(θ)
]
jk = −I jk + 1

2
tr

[
�̃

−1
(

∂2�̃

∂θ j∂θk

)]

+ y��̃
−1
(

∂�̃

∂θ j

)
�̃

−1
(

∂�̃

∂θk

)
�̃

−1
y

− 1

2
y��̃

−1
(

∂2�̃

∂θ j∂θk

)
�̃

−1
y. (51)

We can again apply basicmatrix differentiation rules to equa-
tion (19) to obtain the second derivatives of the Nyström
approximation, where the second derivative of the rank-p
Nyström approximation

∂2

∂θ j∂θk

(
�QP�−1

PP��
QP

)

=
(

∂2�QP

∂θ j∂θk

)
�−1

PP��
QP

−
(

∂�QP

∂θ j

)
�−1

PP

(
∂�PP

∂θk

)
�−1

PP��
QP

+
(

∂�QP

∂θ j

)
�−1

PP

(
∂��

QP

∂θk

)

−
(

∂�QP

∂θk

)
�−1

PP

(
∂�PP

∂θ j

)
�−1

PP��
QP

+ �QP�−1
PP

(
∂�PP

∂θk

)
�−1

PP

(
∂�PP

∂θ j

)
�−1

PP��
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− �QP�−1
PP

(
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∂θ j∂θk
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�−1

PP��
QP

+ �QP�−1
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(
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(
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(52)

has rank atmost 4p. The secondderivative of the approximate
covariance matrix �̃ is then given by

∂2�̃

∂θ j∂θk
= ��

⎡

⎢
⎢⎢
⎣

∂2

∂θ j∂θk

(
�QP�−1

PP��
QP

)
+ ∂2D

∂θ j∂θk

∂2�QP

∂θ j∂θk
∂2��

QP

∂θ j∂θk

∂2�PP

∂θ j∂θk

⎤

⎥
⎥⎥
⎦

�,

(53)

which follows the same permuted block diagonal plus low-

rank structure as �̃ and ∂�̃
∂θ j

, now with rank at most 4p in the
low-rank portion of the upper left block. Thus the trace term
in each Hessian entry can be computed using equation (21)
exactly as was done for the analogous term in the gradient.
This results in a linear complexity algorithm for computing
entries of the Hessian.

Nonstationary parameters for simulated data

For our approximation accuracy study in Sect. 4.3, we gen-
erate data from the Paciorek-Schervish model (6) using a
continuously varying local anisotropy matrix �(x) given by

�(x) =
[
cos(θx)) − sin(θ(x))

sin(θ(x)) cos(θ(x))

] [
λ1(x)

λ2(x)

]

×
[
cos(θ(x)) − sin(θ(x))

sin(θ(x)) cos(θ(x))

]T
, (54)

θ(x) = acos

(

min

(

1,
xT x∗

θ

||x||||x∗
θ ||

))

, (55)

λ1(x) = exp(2 cos(4||x − x∗
1||) − 3), and (56)

λ2(x) = exp(2 cos(4||x − x∗
2||) − 3), (57)

where x∗
θ = [1.75, 2.25], x∗

1 = [0.75, 0.5], and x∗
2 =

[0.3, 0.2]. These functions and values were chosen in an ad
hoc way simply to provide sample paths with interesting fea-
tures that resemble real data.
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