Density Estimation with Adaptive Sparse Grids for Large Data Sets

Benjamin Peherstorfer*

Abstract

Nonparametric density estimation is a fundamental problem
of statistics and data mining. Even though kernel density
estimation is the most widely used method, its performance
highly depends on the choice of the kernel bandwidth, and
it can become computationally expensive for large data sets.
We present an adaptive sparse-grid-based density estimation
method which discretizes the estimated density function
on basis functions centered at grid points rather than on
Thus, the costs of
evaluating the estimated density function are independent

kernels centered at the data points.
from the number of data points. We give details on how
to estimate density functions on sparse grids and develop a
cross validation technique for the parameter selection. We
show numerical results to confirm that our sparse-grid-based
method is well-suited for large data sets, and, finally, employ
our method for the classification of astronomical objects to
demonstrate that it is competitive to current kernel-based
density estimation approaches with respect to classification
accuracy and runtime.

1 Introduction

Suppose we have a data set S = {x1,...,x)} C R?
of samples drawn from an unknown distribution with
unknown probability density function f. The task is to
construct an estimated density function f of f based on
the data S. Estimated density functions can be either
used to present, visualize and retrieve information about
the data at hand [21], or they can be a means for other
common tasks of data mining and statistics such as
density-based clustering [3] and Bayesian classification
[15]. We refer to [21] for a general study on density
estimation and its applications.

In general, we can distinguish between parametric
and nonparametric density estimation methods. A
parametric density estimation method assumes that the
form of the underlying distribution is known and that
only a small number of parameters has to be estimated.
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Here, we consider nonparametric density estima-
tion which uses only the given data samples to esti-
mate the density and does not require any additional
information about the data. There is a variety of
nonparametric density estimation methods [9]. Kernel
density estimation has become the most widely used
method of this kind. The (one-dimensional) estimator
flz) = 1/M Zi\il K ((x —x;)/h) is a linear combina-
tion of kernel functions K centered at the data points
xz; € 8. The performance of the estimator depends on
the choice of the kernel function K and the bandwidth
h > 0. Whereas usually simply the Gaussian kernel
K(z) = (27r)’1/26*“"2/2 is used, the selection of the
bandwidth h is a far more delicate matter. Approaches
to determine a good value for h reach from rules of
thumb to highly sophisticated methods requiring a good
amount of computational effort, see, e.g., [10, 2] and the
references therein. Furthermore, the bandwidth can be
selected for each kernel individually, leading to kernel
density estimators with adaptive bandwidths [12, 13].
However, this is even more expensive. Besides this is-
sue of selecting the bandwidth, kernel density estimators
can become costly to evaluate for large data sets. The
evaluation of f depends on the number M of (training)
data points S. Thus, in order to evaluate the estimated
density function f , all M kernel functions centered at
all data points have to be evaluated. One remedy is to
divide the data into a small number of bins and place
a kernel function at each bin (also called “gridding the
data”). However, the number of bins increases expo-
nentially with the dimension of the data points (curse
of dimensionality), and this is thus only feasible in up
to, say, four dimensions. Note that approaches based on
FFT also rely on grids and thus are hardly considered
in more than four dimensions [6]. Recently, tree-based
approaches have been proposed which introduce a pre-
processing step to represent the data in a tree so that
they can boost the evaluation or query time [19, 6]. De-
pending on the data (size, dimension) the pre-processing
step can become costly.

We develop a density estimation method based
on sparse grids that overcomes these two drawbacks—
bandwidth selection, evaluation costs—of kernel density
estimation to some extent. Our method is based on the
idea in [7] to start with a highly-overfitted guess f. of
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the density function and then use spline smoothing to
obtain a smoother and more generalized approximation
f . The trade-off between fidelity and smoothness can be
controlled by a regularization parameter A. For that, we
develop here a simple but efficient cross validation tech-
nique to select a good regularization parameter. Fur-
thermore, in contrast to kernel-based methods which
represent a function as a linear combination of kernels
leading to high evaluation costs, we discretize the esti-
mated density function f on basis functions centered at
grid points. Since the number of grid points is usually
orders of magnitude smaller than the number of data
points, and the costs of evaluating the estimator depend
only on the number of grid points, the method becomes
scalable in the number of data points. However, just
as binning for kernel density estimation, a straightfor-
ward grid-based discretization suffers from the curse of
dimensionality: The number of grid points grows expo-
nentially with the dimension of the data points. That is
why we employ sparse grids instead of full (dense) grids
[1]. Sparse grids allow a grid-based discretization also in
moderately high-dimensional settings. Thus, the result
is a sparse-grid-based density estimation method that is
scalable in the number of data points and the number
of dimensions.

In Sec. 2 we briefly summarize the spline smoothing
approach presented in [7] before we discuss sparse grids
in Sec. 3 and how to employ them for density estimation
in Sec. 4. We show that the estimator is consistent, give
details on how to compute the estimator, and present
a cross validation technique to select the regularization
parameter. With the numerical experiments in Sec. 5 we
demonstrate that our method is competitive to kernel
density estimators with adaptive bandwidths [13] with
respect to accuracy and to tree-based methods [19] with
respect to runtime.

2 Density estimation with spline smoothing

We briefly summarize the idea of [7] to employ spline
smoothing to derive a smoother and more generalized
estimator f of a highly-overfitted initial guess f-..

Suppose we have an initial guess f. of the density
function underlying the data S = {x,...,xp}. Fol-
lowing spline smoothing, we are then looking for f in a
suitable function space V' such that

(21) f= argmin/ (u(z) — feo(x))® da + A|[Lu2..
ucV Q

Whereas the left term ensures that the function f closely

fits the initial guess f., the right term |Lul?, is a

regularization or penalty term imposing a smoothness

constraint. The regularization parameter A > 0 controls

the trade-off between fidelity and smoothness. After
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some transformations (see [7]) we obtain the variational
equation
(2.2)

/Qu()(da:—l—)\/Lu Ls(@ éw:x

for all test functions s € V and f. = 4; Ef\il 0x, Where
0, is the Dirac delta function centered on x;. Note that
0, is only well-defined if considered within an integral
as in (2.2); we refer to [7] for details. Here, we want
to find a solution of the variational problem (2.2) with
Galerkin projection. Therefore, we have to define a
finite-dimensional function space Vy C V as the span of
the basis functions in ® = {¢1,...,¢n} centered at grid
points. In the following section, we consider sparse grid
spaces for this purpose because standard discretizations
as employed in [7] become computationally infeasible in
high-dimensional settings.

3 Sparse grids

In data mining it is very common to represent a func-
tion as a linear combination of kernel functions centered
at data points. However, in a naive implementation
(cf. Sec. 1), we have to iterate over all data points for
each function evaluation. This becomes computation-
ally expensive for large data sets or a large number of
function evaluations. In contrast, grid-based approaches
represent a function fy € Vy as a linear combination
with coefficients a,

N
(3.3) = qigi(z),
i=1

where the basis ® = {¢1,...,dn} comes from a grid
and spans the function space V. Hence, the number
of basis functions does not increase with the number
of data points in contrast to classical approaches with
kernels. Unfortunately, a straightforward conventional
discretization with mesh width h; = 2 in each dimen-
sion suffers the curse of dimensionality: The number of
grid points is of the order O(h;d), depending exponen-
tially on the dimension d. In our case, the dimension d
equals the dimension of the data points. For functions
with bounded mixed, weak derivatives up to order two,
i.e., functions in the mixed Sobolev space HZ2. , sparse
grids enable one to reduce the number of grid points by
orders of magnitude to O(h; *|log,(he)|*~!) while keep-
ing an interpolation accuracy of O(hZ|log,(he)|4~1) in
the L? norm, instead of O(h?) as in the full grid case,
see [1] and Section 4.3.

In the following, we describe the basics of sparse
grids as briefly as possible, see [1, 18] for more de-
tails. The underlying principle of sparse grids is a one-
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Figure 1: One-dimensional hierarchical basis (left),
hierarchical scheme of increments (right top) and a
regular and refined sparse grid (right bottom).

dimensional hierarchical system of basis functions (see
Fig. 1, left) which is then extended to the d-dimensional
case via a tensor product approach. We start with the
reference hat function ¢(z) := max{1 — |z|,0} and ob-
tain the one-dimensional hierarchical hat functions ¢;;
depending on the level [ and index i via translation and
scaling as ¢;;(x) := ¢(2lx — i).

In the d-dimensional case the level I = (Iy,...
and index ¢ = (i1,...,44) become vectors and the
corresponding basis function ¢y ; := Z:1 Ol (@) 18
the product of the respective one-dimensional basis
functions. This leads to a set of subspaces W; for
which the grid points are the Cartesian product of
the one-dimensional ones with level [; in dimension
k. TFig. 1 (right top) shows the grids of the two-
dimensional hierarchical increments Wj up to level 3 in
each dimension. Starting from a hierarchical scheme of
increments we can select only those subspaces W, that
contribute most to the overall solution. The solution
to this optimization problem is to cut-off the tableau in
Fig. 1 (right top) along the diagonal. The result is the

7ld)

sparse grid space Ve(l) of level ¢ [1].

Efficient methods to construct sparse grids are
available [1]. Here we do not discuss sparse grid
construction further because this is a standard task in
the context of sparse grids and several libraries support
corresponding methods and provide appropriate data
structures, see, e.g., [18, 14, 11].

To further reduce the number of grid points, we can
use spatial (local) adaptivity. We start with a rather
coarse sparse grid and use a suitable adaptivity criterion
to add points in those regions of the domain that are
most important, see Fig. 1 (right bottom). A simple
(though typically very effective) criterion for adaptive
refinement, which we use in the following, is to select the
refinement candidates with the highest absolute values
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of their coefficient oy ; weighted with the function value
at the corresponding grid point [18].

In the following, we define I as the set of all level-
index pairs corresponding to a sparse grid space Ve(l)

1)

and write a sparse grid function fy € V, "’ as the linear

combination
(3.4) In(x) = Z i ¢ni(),
(Li)el
with N = |I| basis functions ¢;; and coefficients «y ;

instead of the more common formulation (3.3).

4 Density estimation with sparse grids

In this section, we show how to employ sparse grids to
solve the spline smoothing problem (2.2) introduced in
Sec. 2. This leads to a sparse-grid-based density estima-
tion method. We discuss the computational procedure
as well as asymptotic properties of our method. Finally,
we present a cross validation technique to select the reg-
ularization parameter A\ and show how to marginalize
sparse grid density functions.

4.1 Density estimation with adaptive sparse
grids We solve the minimization problem (2.2) with
Galerkin projection to obtain an estimated density
function. Therefore, we define the function space Vy C
V as the span of the basis functions in ® = {¢1,...,dn}
and as usual also set the test space to Vn. The
approximation fy € Vi of the density estimator f
is a linear combination fy = YN, ;¢; where the
coefficients a« = (a1,...,ay) are the solution of a
system of linear equations Aa = b stemming from (2.2).
In particular, the system matrix A and the right hand
side b depend on the choice of the discretization, i.e.,
the basis functions ¢1,...,¢n and thus the space Vy.
We employ a sparse grid discretization as discussed in
the previous section.

Let ® be the set of hierarchical basis functions of the
(adaptive) sparse grid space Ve( ) ¢ H2, oflevel £ € N,

cf. Sec. 3. Following the usual Galerkin approach, we
are then looking for fy € Ve(l) such that

| ix@ o) - Zas %),

holds for all ¢ € ®. Because the sparse grid functlon
fn is a linear combination (3.3) of the basis functions
in ® with the coefficients a, we solve (4.5) by solving
the system of linear equations

(4.6) (R+A\C)a =b,

Wlth Rij = (gbz, gbj)Lz, Cij = (LQSM L¢j)L2 and bl =
= ij\/il ¢i(x;), where we used an arbitrary ordering of
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the N sparse grid basis functions ¢;; and coefficients
oq.5. Thus, to obtain an estimated density function fN,
we define the sparse grid level £ € N—or the number
of refinement steps—and solve the system (4.6) to get
the coefficient vector a of the linear combination (3.3)
corresponding to the sparse grid function f ~. Note that
the level of the sparse grid and the number of refinement
steps are parameters of the method which have to be
chosen adequately, see the numerical examples in Sec. 5.

4.2 Computational properties It is important
that the matrices R and C of the system of linear equa-
tions (4.6) are of size N x N and that the right hand
side b is a vector of size N. Thus, in contrast to most
kernel-based approaches, the number of unknowns does
not depend on the number of data points M but only
on the number of grid points N. Furthermore, if we
want to evaluate the estimated density function fN, we
only have to iterate over all IV basis functions ¢; ; € ®
and not over all M data points in S as it is the case for
(naive) kernel density estimators. Of course, it is crucial
to keep the number of grid points at a minimum. With
sparse grids we ensure that the number of grid points
grows only moderately with the number of dimensions.
Employing adaptivity, we can even further reduce the
needed grid points, cf. Sec. 3.

We solve the system of linear equations (4.6) with
the conjugate gradient method. Hence, we do not
have to form the matrices R and C but only need
to provide the matrix-vector product. For the matrix
R, algorithms especially designed to cope with the
hierarchical basis and the structure of sparse grids are
available, see [18]. There are also highly efficient,
parallel versions [8]. The matrix C depends on the
operator L. which imposes a smoothness constraint
on the solution fN. A common choice is L = V
leading to ||Vul|?, so that non-smooth functions are
penalized. Besides that it has been shown that in
the case of the hierarchical basis and sparse grids
the term } ., c; aj; is a good choice for |Lull7.
n (2.1) because the coeflicients o are a measure for
the second derivatives of the function, cf. [18]. The
advantage of this choice is that the matrix C' becomes
the identity matrix and thus the corresponding matrix-
vector product is for free.

4.3 Asymptotic properties In the following, we as-
sume that the (exact) probability density function f has
bounded mixed, weak derivatives up to order two, i.e.,
f € H2, ., and thus the sparse grid discretization er-
ror bounds hold, see Sec. 3. Even though this is not
a very restrictive assumption—every twice continuously
differentiable function is in H2. —we note that this as-

mix
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sumption is only important for the following theoretical
considerations. Sparse grids, in particular adaptively
refined sparse grids, have been shown to work well in
more general settings too, see, e.g., [18, 5]. We first
show the consistency of our sparse grid estimator fN
and then that fN has unit integrand.

THEOREM 4.1. Let S = {x1,...,xp} C R? be samples
drawn from the distribution with probability density
function f, and let fN € Vé(l) be the estimated density
function which is the solution of the system of linear
equations (4.6). Then, fN is consistent, i.e.,

1 F — 2 = =
pe(,, tm - I3 =0) =1

Proof. We write

7)) | fn=f13 = (Fn—Ff. In—=Fn)o+(Fn—Ff, Fn—1)2

where fN € Ve(l) is the sparse grid interpolant of the

density function f. We consider the second term of

(4.7) first, and obtain
((fx = f, fv — £zl < HfNA* fll2- ||f1vj fll2

< 3llfn = fI3 + I Fn — £13

<

ilfx = FI5 + O(hZ | logy (he) -

In the second step, we applied Young’s inequality. In the
third step, we used the L? error bound of the sparse grid
interpolant of f € H2,, see Sec. 3. Let us now consider
the first term of (4.7). We are interested in M — oo
and thus overfitting does not occur; hence, we can
assume A = 0. We know that fN - fN € Vé(l) because
both functions are sparse grid functions. Therefore, we
denote s = fy — fx and obtain with (2.2),

(fN_fafN_fN)Z = (f:N_fvs)Q
(fN78)2 - (f?s)Z
= 5 XM s(@) — By (s(x)) |

because due to (2.2) and A = 0, we have (f,s)s =
= Z£1 s(x;) for all s € VL,(D. We denote with E;(X)
the expected value of X with respect to the density
function f. Altogether we obtain

Ifv = fl3 < 5 - O(h7|logy(he)| ") +

a7 D (@) — § By (s(x) -
For M — oo, and samples @i,...,x) drawn
from the distribution corresponding to f, we have
Pr (% Zf\il s(x;) =Ef (s(:c))) = 1, due to the strong
law of large numbers. Thus, only the sparse grid dis-
cretization error remains. However, the discretization

error converges to zero for N — oo (i.e., £ — 00) be-
cause f € H2, . Hence, Pr(||fy — fl3=0)=1.

Wl ol

ix*
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THEOREM 4.2. The estimator fN S ‘Q(l) has unit

integrand if the regularization term ||VfN||%2 is used in
(2.2).

Proof. Let 1y € Vz(l) be the constant map! with « — 1.
We then have

R ) 1 M

because (2.2) holds for all s € Vz(l). It follows im-
mediately that [ fy(z)dz = 1 because [V fy(x) -
V1y(z)de =0 and 7 i]\il 1y(x) =1.

We note that a similar consistency result as in The-
orem 4.1 is shown in [20] for a sparse grid extrapolation
technique. We also note that the proof of Theorem 4.2
can be easily extended to show that also the first mo-
ment is matched for N — oco. Finally, we note that we
cannot guarantee non-negativity of the sparse grid esti-
mator fy because of the discretization error incurred by
the sparse grids; however, negative values of f n are lim-
ited for large ¢ due to the error bounds given in Sec. 3.
Furthermore, most applications of density estimation
(e.g., visualization, clustering, classification) can easily
cope with values that are, say, —10719 instead of 0. This
is confirmed by our numerical results in Sec. 5.

4.4 Selection of regularization parameter The
minimization problem (4.5) depends on the regulariza-
tion parameter A which controls the trade-off between
fidelity and smoothness. It ensures that the estimated
density function generalizes to new data, i.e., it prevents
overfitting. In this section, we introduce a cross valida-
tion technique that allows us to select a parameter .

After we have obtained our estimated density func-
tion with the training data S = {@1,...,zp}, ie., we
computed the coefficients «, we can test the estimator
by computing the residual of the system of linear equa-
tions (4.6) but now without C and with a new right
hand side by which has been built using test data. The
L? norm of the residual |Ra — br||2 is then the ac-
curacy indicator. This is a reasonable indicator: If the
estimated density function captures the underlying den-
sity function and distribution we should obtain a small
value for the test data as well. If our estimated density
does not generalize to the test data then the value of
the residual of the system of linear equations remains
high. We compare the norms of the residuals for dif-
ferent choices of the parameter A and select the one
" ISparse grids with boundary points are required for 1 to be
in the sparse grid space V[(l).
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for which the residual is smallest, i.e., we select the A
for which the corresponding estimated density function
generalizes best to the test data.

To ensure that each sample is used for training and
testing, we split the training data S = {x1,..., @}
into k equally sized sets. Each of these k sets is then
used for testing and the union of the remaining ones for
training. This is standard k-fold cross validation widely
used in classification and other data mining tasks.

4.5 Marginalized density function Assume we
have estimated the joint probability function fx, x,
of two random variables X; and X;. The marginal
probability density function of X; is fx,(z1) =
fﬂ?z le,X2 (xl, xg)dxg. With

Fxi xs(z1,m2) = Z i1y iy (1) Py i (T2),

1,3)el

where I is the set of all level-index pairs of a two-
dimensional sparse grid, we have the marginal density
function of X1,

Fxi(@) = > 27, 4 (21),

(L3l

as [ ¢ri(z)dz = 271, Because a d-dimensional sparse
grid consists of several d— 1 dimensional sparse grids [1],
the marginal density function le can be represented
without an additional approximation error on a one-
dimensional sparse grid. This leads to a dramatic saving
in the number of grid points. Due to the tensor product
approach of sparse grids this procedure carries over
to the d-dimensional case. Note that marginalizing a
sparse grid density function does not depend on the
number of data points and is only linear in the number
of grid points.

5 Numerical Experiments

In this section, we compare our sparse-grid-based den-
sity estimation (SGDE?) method with two variants of
kernel density estimation: a kernel method with adap-
tive bandwidths (libagf?) [13] and a tree-based kernel
method (density trees®) [19]. Note that adaptive band-
widths estimators are known to achieve high accuracies
but are costly to evaluate, and that tree-based methods
are well-suited for large data sets but require an expen-
sive pre-processing step, see Sec. 1 and the extensive
discussions in [19, 6]. Note further that we are only in-
terested in nonparametric density estimation here and
thus do not consider, e.g., Gaussian mixture models.

2SGT+ library, http://www5.in.tum.de/SGpp
3Version 0.9.6, http://libagf.sourceforge.net/
4MLPACK 1.0.6 (with Intel MKL), http://www.mlpack.org/
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In the following, we employ the identity regulariza-
tion term (cf. Sec. 4.2) and cross validation with 10 folds
to obtain the regularization parameter A\ for the sparse
grid density estimator, if not otherwise noted. We also
use 10-fold cross validation for the density trees method
as suggested in [19].

5.1 Synthetic data sets Let us first consider syn-
thetic data sets where we know the target density func-
tion f and thus can compute the averaged L? error over
a test set T with M7 test samples as

o 3 (- j@)".

where f is the estimated density function. The synthetic
data sets are sampled in each direction independently
from a normal distribution with mean 0.4 and standard
deviation 0.1 and a beta distribution with a = 3 and
B = 5. Thus, a data set denoted by “GGBBB” is a
five dimensional data set (d = 5) where the samples
in the first two dimensions are drawn from the normal
distribution and in the third, fourth and fifth from the
beta distribution.

Before we start the comparison with kernel density
estimation, we show the convergence of our SGDE
method (nonadaptive sparse grid of level six) for the
two-dimensional “BB” (beta distribution) data set with
up to 10 million samples in Figure 2a. The error (5.8)
was computed over the samples corresponding to an
equidistant grid with 28 points in each dimension. We
observe a convergence rate of about O(M ~'/2). Kernel
density estimation can achieve a rate of up to O(M ~3/4)
for the mean integrated square error if the optimal
bandwidth is selected; however, the optimal bandwidth
is rarely known, and so rates of O(M~'/2) are common
for kernel estimators as well [21].

In Figures 2b and 2c we compare the averaged L? er-
ror (5.8) of the estimators obtained from 100,000 train-
ing samples with SGDE, libagf, and density trees over
test sets that contain the first 50,000 points of the low-
discrepancy Sobol sequence (generated with GNU Sci-
entific Library). For SGDE, we employ an adaptive
sparse grid where we start with a grid of level three and
refine five times up to 100 grid points. This leads to
~ 4000 points in five dimensions and to = 5000 points
in six dimensions, cf. Table 1. The regularization pa-
rameter \ is fixed to 107° to emphasize that our SGDE
method is not very sensitive with respect to A\. The Fig-
ures 2b and 2c clearly show that our method is compet-
itive with both kernel density estimation methods even
though we keep the regularization parameter A\ fixed
over all data sets. For five out of seven data sets, our
SGDE estimator achieves the highest accuracy.

(5.8)
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5.2 Runtimes In Table 1 we summarize the run-
times of the libagf, density trees, and our SGDE method
for five to ten dimensional synthetic data sets. The cross
validation runtime is not included®. The estimators are
evaluated at 100,000 samples. All measurements were
performed on a system with an Intel SandyBridge-EP
Xeon E5-2670. No parallelized implementations of the
libagf and density trees methods are available. We split
the total runtime into the time spent for initializing the
estimator (e.g., constructing the trees, solving the sys-
tem of linear equations) and the time needed to evaluate
the estimator fN. We employ the same adaptive sparse
grid settings as in the previous Sec. 5.1. Again, the
regularization parameter X is fixed to 107°.

The libagf has no initialization phase except for
loading the data; but the evaluation time increases
linear with the number of sample points (M). The
density trees method has a costly initialization phase
(constructing the trees) that strongly grows with the
number of training data points, but the evaluation of the
estimated density is very fast. Our sparse grid density
estimation method also has an initialization phase,
where the system of linear equations (4.6) is solved,
but the required time is low compared to density trees.
The initialization phase of SGDE increases slightly with
the number of training data points M because the
computation of the right hand side of (4.6) depends on
the number of data points. Whereas the sample size
is increased by a factor of 50, the runtime to solve the
system increases only by a factor of five. The evaluation
time of our sparse-grid-based estimator stays constant
even if we increase the number of training samples.
That is because the evaluation costs only depend on
the number of sparse grid points which does not change
for more training points.

Let us now consider the runtimes with respect to the
dimensions. The runtimes of libagf and density trees are
only slightly affected by the dimension of the data set.
However, since the number of sparse grid points grows
with the number of dimensions (see Sec. 3), we observe a
runtime increase of our SGDE method. This emphasizes
that our method is well-suited for moderately high-
dimensional data sets. Nevertheless, our SGDE method
only needs 1,361 seconds on one core to estimate a
ten-dimensional density function from 500,000 training
samples and to evaluate it on 100,000 test samples. The
parallel version on four cores takes only 417 seconds.

5.3 Real-world data sets So far we have evaluated
our SGDE method only on synthetic data sets (normal

5For the density trees implementation (MLPACK), we used

1-fold cross validation and divided the training runtime by two.
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Figure 2: In (a) the convergence of our SGDE method for a two-dimensional beta distribution. In (b) and (c) the
averaged L? error of the libagf, density trees, and SGDE estimators for synthetic data sets.

Table 1: Runtime (in seconds, without cross validation) of initializing and evaluating estimated densities with
libagf, density trees, and our SGDE method: The time spent for initializing our SGDE estimator depends only
slightly on the number of training data points; the evaluation time depends only on the number of sparse grid

points and is independent from the number of training

data points.

libagf d. trees SGDE, 1 core | SGDE, 4 cores

data set | d | size M || init[s] eval[s] || init[s] evalls] #gp | init[s] evalls] | init[s] evalls]
GGGBB | 5 | 10000 <1 146 1 <1 4277 16 5 6 2
GGGBB | 5 | 100000 <1 2145 78 <1 4185 27 6 9 2
GGGBB 5 | 500000 <1 11488 2567 <1 4285 87 6 24 2
GGBBBB | 6 | 10000 <1 145 1 <1 5586 34 10 13 2
GGBBBB | 6 | 100000 <1 1898 75 <1 5183 52 10 17 3
GGBBBB 6 | 500000 1 12931 2539 <1 5198 152 9 44 2
GGGBBBB | 7 | 500000 <1 13251 2593 <1 6823 293 14 86 3
GGGGBBBB 8 | 500000 <1 13755 2327 <1 9391 546 22 159 7
GGGGGBBBB | 9 | 500000 <1 13157 2106 <1 || 12301 857 30 256 8
GGGGBBBBBB | 10 | 500000 <1 14123 2095 <1 || 14764 | 1314 47 403 14

and beta distributions). Now we consider seven multi-
modal real-world data sets from various application
areas which are frequently used to benchmark data
mining methods. Description and links to download
these data sets can be found in [17], for DR6 see Sec. 5.5.
Because we have real-world data sets we do not know
the target density function f anymore. Following [22],
we split the data sets into a training set S and test set
T, estimate the density function on the training data,
and compute the log-likelihood of the test data,

MLT a;log (f(w)) :

The log-likelihood of the test samples is then a measure
of how well our estimated density function generalizes to
before unseen data. Again, we employ adaptive sparse
grids with the same setting as in Sec. 5.1. In Table 2,
we compare our SGDE method (10-fold CV) with libagf
and density trees (10-fold CV). For two out of these
seven data sets, our SGDE achieves better results than
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Table 2: Log-likelihood (higher is better) for multi-
modal real-world data sets: Our SGDE performs better
than libagf for two data sets, and better than density
trees for five sets.

’ data set \ d H libagf \ d. trees \ SGDE ‘
checker 2 1.82 1.83 1.82
spheres | 3 1.34 0.44 1.29

svmguide | 4 4.08 2.89 4.22
DR6 | 4 || 12.08 9.19 8.37
bupa liver | 6 4.92 3.69 3.97
olives 8 4.22 3.35 7.30
oilflow | 12 9.66 7.31 7.52

the adaptive bandwidths estimator libagf, and for five
data sets a better result than density trees.

Figure 3 shows the estimated densities for the old
faithful data set. Our sparse grid method captures the
two dominating clusters of the data sets and also the
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Figure 3: Estimated density functions for the old
faithful data set. Our sparse grid method captures not
only the two dominating clusters but also the two modes
within the cluster centered at (0.8, 0.6).

two modes within the cluster centered at (0.8,0.6).

5.4 Bayesian classification Density estimation is a
common task in Bayesian classification methods where
the class y € {1,...,k} of a data point * € R? is
determined by evaluating

f@]Y =y) p(Y =k)
f(x)

for all y € {1,...,k} and with prior p. The class with
the highest probability is assigned to the point x. To
compute (5.9), the class-conditional density f(z|Y =y)
has to be estimated from the data samples [15, 4].

In Table 3 we show the classification accuracy of
Bayesian classifiers where the class-conditional densities
were estimated with libagf, density trees, and our SGDE
method and the prior p(Y = k) was set to the ratio
of the data points with class k£ in the data sets. The
sparse-grid-based classifiers achieve competitive results
with respect to accuracy. It is also the fastest classifier
for the largest data set (checker). For small data sets,
the overhead of building the grid and solving the system
is not compensated. Note that it is also possible to pre-
compute the matrices R and C of (4.6) once, because
they do not depend on the data points, and use them
over and over again for different data sets [17]. Such an
offline/online decomposition can boost the runtime of
SGDE by several orders of magnitude, as the “time*”
results in Table 3 confirm.

(5.9) Y =yle) =
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Figure 4: Speedup of the sparse-grid-based Bayesian
classifier for the checkerboard data set. The timings
include cross validation, training (50,000 points), and

prediction time. We observe speedups of up 30 over
density trees, and up to 200 over libagf.

Let us consider the runtimes for the checkerboard
data set in detail. We vary the number of test data
points to show their effect on the runtime of the
classification methods. If we consider the total runtime
(initialization and prediction time), our SGDE method
is between 20 and 200 times faster than libagf, and
about 30 times faster than density trees. Note that
the accuracies corresponding to the checkerboard data
sets are roughly equal for all three density estimation
methods, cf. Table 3.

5.5 Photometric classification of stars/quasars
Finally, let us consider the DR6 data set from the Sloan
Digital Sky Survey (SDSS) repository which is available
from [16]. It contains four photometric properties of
astronomical objects that allow us to classify them
either as stars or quasars. In particular, we learn from
505,290 data points and then classify another 200,000
objects. The results of the Bayesian classifiers with
libagf, density trees, and our SGDE method are shown
in Table 3. The sparse-grid-based classifier achieves a
better accuracy result than density trees, but is slightly
worse than libagf; however, our classifier is learned
(including 10-fold CV) and evaluated about nine and
60 times faster than the libagf- and density-trees-based
classifier, respectively.

6 Conclusions

We presented a sparse-grid-based density estimation
method that is well-suited for large data sets because
the density function is discretized on basis functions cen-
tered at grid points rather than on kernels centered at
data points. We showed the consistency of the sparse
grid estimators and discussed the computational pro-
cedure. Our numerical examples demonstrate that the
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Table 3: Accuracy and runtime of Bayesian classifier with densities estimated by libagf, density trees, and SGDE.
For “time*”, data-independent matrices were pre-computed. Time measurements include cross validation. SGDE
achieves speedups for large data sets of up to 100 and 80 compared to libagf and density trees, respectively.

libagf d. trees SGDE
data set | #train  F#test  d || test[%] time[s] || test[%] time[s] || test[%] time[s] time*(s] #ep
bupa liver 290 55 6 67.27 <1 61.82 <1 70.91 1189 32 10625
olives 348 88 8 97.73 <1 92.05 <1 97.73 3692 20 6401
spheres 607 68 3 || 100.00 <1 || 100.00 <1 98.53 5 1 351
oilflow 1318 687 12 97.09 1 86.03 1 85.74 13245 19 3249
svmguide 3089 4000 4 94.35 2 82.33 1 94.50 20 2 769
checker | 100000 50000 2 99.84 2393 99.95 1893 99.47 23 20 769

DR6 | 505290 200000 4 [ 94.83 14227 | 91.83 90619 [ 93.36 1456 1025 7937

sparse grid method is competitive to modern kernel den-  [10] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief
sity estimation methods (adaptive bandwidths methods survey of bandwidth selection for density estimation.
and tree-based methods) with respect to accuracy, and J. of Amer. Stat. Assoc., 91(433), 1996.

achieves speedups of up to several hundreds for large [11] A. Klimke and B. Wohlmuth. Algorithm 847: spinterp:

and moderately high-dimensional data sets. Eiec?wise multilinear hierarchical sparse grid interpgla—
tion in MATLAB. ACM Transactions on Mathematical

Software, 31(4), 2005.
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