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Abstract

Markov chain Monte Carlo (MCMC) sampling of posterior distribu-
tions arising in Bayesian inverse problems is challenging when evaluations
of the forward model are computationally expensive. Replacing the for-
ward model with a low-cost, low-fidelity model often significantly reduces
computational cost; however, employing a low-fidelity model alone means
that the stationary distribution of the MCMC chain is the posterior dis-
tribution corresponding to the low-fidelity model, rather than the origi-
nal posterior distribution corresponding to the high-fidelity model. We
propose a multifidelity approach that combines, rather than replaces, the
high-fidelity model with a low-fidelity model. First, the low-fidelity model
is used to construct a transport map that deterministically couples a ref-
erence Gaussian distribution with an approximation of the low-fidelity
posterior. Then, the high-fidelity posterior distribution is explored using
a non-Gaussian proposal distribution derived from the transport map.
This multifidelity “preconditioned” MCMC approach seeks efficient sam-
pling via a proposal that is explicitly tailored to the posterior at hand
and that is constructed efficiently with the low-fidelity model. By relying
on the low-fidelity model only to construct the proposal distribution, our
approach guarantees that the stationary distribution of the MCMC chain
is the high-fidelity posterior. In our numerical examples, our multifidelity
approach achieves significant speedups compared to single-fidelity MCMC
sampling methods.
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1 Introduction

Bayesian inference provides a framework to quantify uncertainties in the solu-
tions of inverse problems [31, 62, 63]. The Bayesian approach to inverse problems
combines observed data, a forward model that maps parameters to observations,
a prior distribution on the parameters, and a statistical model for the mismatch
between model predictions and observations to define the posterior distribution

via Bayes’ theorem. The posterior distribution characterizes the parameter val-
ues and their uncertainties, given these ingredients. Practically “solving” a
Bayesian inverse problem, however, entails exploring the posterior distribution,
e.g., computing posterior expectations. A flexible and widely used approach for
exploring posterior distributions is to draw samples with Markov chain Monte
Carlo (MCMC) methods [64, 27]. Using these methods, the forward model typ-
ically must be evaluated multiple times at different parameter values for each
sample that is drawn, such that MCMC sampling quickly becomes computa-
tionally infeasible if each forward model solve is expensive.

In this paper, we propose a multifidelity preconditioner to increase the effi-
ciency of MCMC sampling. Our multifidelity approach exploits low-cost, low-
fidelity models to construct a proposal distribution that approximates the poste-
rior distribution at hand, then uses this proposal distribution to perform MCMC
sampling of the original (high-fidelity) posterior distribution. The proposal dis-
tribution is derived from a transport map that transforms the potentially com-
plex posterior distribution into another distribution from which samples can be
drawn more easily; in particular, we seek a map that transforms the posterior
into a more Gaussian and more isotropic distribution. See [41, 37, 45] for an
introduction to transport maps in the context of Bayesian inverse problems.
The key idea in the present work is to construct an invertible map using low-
fidelity models, but to apply it to the high-fidelity posterior. The map then acts
as a preconditioner for the high-fidelity posterior, preserving information (due
to its invertibility) while enabling MCMC sampling to proceed more efficiently.
An alternative but equivalent perspective is that pushing a simple proposal
through the inverse of this transport map—for instance, using a Metropolis
independence sampler with a standard Gaussian proposal—yields potentially
non-Gaussian and tailored proposals that can be efficient for the high-fidelity
posterior. The end result is the same: more efficient MCMC sampling, allowing
the number of high-fidelity forward model evaluations to be reduced. Since the
low-fidelity model is used only for preconditioning (or equivalently, constructing
the proposal), the stationary distribution of the chain obtained with our mul-
tifidelity approach is guaranteed to be the posterior distribution corresponding
to the high-fidelity model.

There is a long tradition of exploiting low-fidelity models to speed up MCMC
sampling for Bayesian inverse problems. There is work [69, 2, 39, 38, 34, 14] that
replaces the high-fidelity model with a low-fidelity model (see also the survey
[26]); because of this replacement, however, samples are drawn from a different
distribution—the posterior induced by the low-fidelity model. Under certain
assumptions, it has been shown that the posterior distribution induced by the
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low-fidelity model converges to the original/high-fidelity posterior distribution
as the low-fidelity approximation is refined [40, 19]. Other approaches adapt

low-fidelity models [20, 33] over a finite interval of posterior exploration, or
quantify the error introduced by sampling the low-fidelity posterior distribution
[22, 36]. Yet another family of approaches incrementally and infinitely refines
approximations of the forward model on-the-fly during MCMC sampling [17, 16];
under appropriate conditions, these schemes guarantee that the MCMC chain
asymptotically samples the high-fidelity posterior distribution.

Instead of replacing the high-fidelity model with low-fidelity models, multi-
fidelity methods combine high- and low-fidelity models. The aim is to leverage
low-fidelity models for speeding up computations while allowing occasional re-
course to the high-fidelity model to establish accuracy guarantees [50]. A va-
riety of multifidelity methods have been developed for uncertainty propagation
[8, 7, 42, 24, 12, 47, 49, 52, 48]; see the survey [50]. For the solution of Bayesian
inverse problems, there are multi-stage MCMC methods that aim to reduce
the number of high-fidelity model evaluations by first screening proposed moves
with low-fidelity models [15, 23]. Another line of work builds on hierarchies
of low-fidelity models, typically derived from different discretizations of par-
tial differential equations (PDEs) underlying the high-fidelity model, to reduce
sampling costs [4, 21, 32].

An alternative to multi-stage and hierarchical methods for increasing the
efficiency of MCMC sampling is to use notions of transport to construct more
effective proposal distributions. Effective proposals in MCMC should reflect the
local or global geometry of the target distribution [27, 9]. In keeping with this
idea, Parno et al. [45] use transport maps to precondition MCMC sampling.
As described earlier, preconditioning involves constructing transport maps that
“Gaussianize” the target distribution, such that it can be sampled more effec-
tively by standard MCMC algorithms; these maps thus encode the geometry of
the target. Parno et al. [45] build and refine such transport maps in an online
fashion during MCMC sampling, as more and more samples are obtained. This
approach can be seen as a form of adaptive MCMC [30, 54], wherein a (non-
Gaussian) proposal distribution is adapted as the MCMC sampling proceeds.
The transport maps in [45] are constructed via the solution of a convex and
separable optimization problem, which is simple and fast to obtain numerically.
However, this sampling approach faces some of the usual pitfalls of adaptive
MCMC. One of these issues is that a certain amount of initial mixing is nec-
essary for the adaptation to be effective, because the online-adapted transport
map depends on past samples.

The transport approach of Moselhy et al. [41] instead follows an offline/online
decomposition of the computation. In an offline phase, a reference distribution
is selected from which independent samples can be drawn cheaply and then
a transport map is constructed that pushes forward the reference distribution
to the posterior distribution. Then, in the online phase, the transport map is
used to transform samples from the reference distribution into samples from
the posterior distribution. If a large number of samples are transformed in
the online phase, then the one-time high cost of constructing the transport map
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offline is compensated. The optimization problem for constructing the transport
map can employ derivative information from the posterior density, and thus
yields accurate maps even if the posterior is concentrated. Furthermore, no
samples of the posterior distribution are necessary to solve the optimization
problem, in contrast with adaptive MCMC techniques such as [45]. However,
evaluations of the objective of the optimization problem entail evaluations of the
unnormalized posterior density and thus of the forward model; moreover, this
problem is in general not separable across dimensions and not convex (unless
the posterior density is log-concave). As a result, map construction in [41] is
typically far more computationally demanding than map construction in [45].
Furthermore, since the construction of the transport map involves numerical
approximations, the pushforward of the reference distribution by the map in
general only approximates the posterior distribution.

We propose a multifidelity approach that combines several of the advantages
of the approaches introduced by Parno [45] and Moselhy [41]. We construct
transport maps building on the offline/online approach of [41] and mitigate
the high computational costs of solving the optimization problem by relying
on low-cost, low-fidelity models. Our approach can exploit a wide range of
low-fidelity models, including projection-based reduced models [58, 56, 28, 3,
13], data-fit interpolation and regression models [25], machine-learning-based
models [18, 70, 57, 65], and simplified-physics models [1, 43]. Then, in the online
phase, the transport map is used to precondition MCMC sampling of the high-
fidelity posterior, as in [45]. The corresponding MCMC scheme is ergodic for the
high-fidelity posterior. In other words, the Metropolis step corrects errors that
otherwise would be introduced by relying on the transport map alone to push
forward the reference to the posterior. Thus, we obtain a multifidelity approach
that uses low-fidelity models to speed up computations while making occasional
recourse to the high-fidelity model to establish convergence, in the sense that
the stationary distribution of our MCMC chain is the high-fidelity posterior
distribution. In contrast to [45], our MCMC algorithm is not adaptive, because
the map is built once offline and then stays fixed during MCMC sampling. In
particular, no samples of the high-fidelity posterior distribution are needed to
construct the transport maps.

Section 2 describes the problem setup and briefly reviews transport maps
in the context of Bayesian inverse problems. In Section 3, we introduce our
multifidelity preconditioner and discuss it in the context of sampling with the
Metropolis-Hastings algorithm. Section 4 demonstrates our multifidelity ap-
proach on two examples where we achieve significant speedups compared to
using the high-fidelity model alone. Conclusions are given in Section 5.

2 Preliminaries

Section 2.1 and Section 2.2 define our Bayesian inverse problem setting and de-
scribe the Metropolis-Hastings algorithm for MCMC sampling. We refer to, e.g.,
[31, 62, 63], for details on Bayesian approaches to inverse problems. Section 2.3
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discusses transport maps for coupling probability distributions in the context of
Bayesian inverse problems. The problem description is given in Section 2.4.

2.1 Bayesian inverse problems

Consider the high-fidelity forward model (parameter-to-observable map) G :
P → Y, with parameter θ ∈ P , where P ⊆ R

d, and observable y ∈ Y, where
Y ⊆ R

d′

. Thus, the parameter θ and the observable y are d-dimensional and
d′-dimensional vectors, respectively. Consider now observed data

y = G(θ∗) + ǫ ,

corresponding to some parameter value θ∗ ∈ P . The noise ǫ is assumed to be
a realization of a zero-mean Gaussian random variable with covariance matrix
Σǫ ∈ R

d′
×d′

. Define the data-misfit function

Φy(θ) =
1

2

∥∥∥Σ− 1
2

ǫ (G(θ)− y)
∥∥∥
2

2
,

with the Euclidean norm ‖ · ‖2. The likelihood function Ly : P → R is

Ly(θ) = exp (−Φy(θ)) .

Combining the prior distribution with density π0 and the likelihood L via Bayes’
theorem gives the posterior density up to a normalizing constant

π(θ) ∝ Ly(θ)π0(θ) .

Above and for the remainder of this paper, we assume that the prior and poste-
rior measures are absolutely continuous with respect to the Lebesgue measure.

2.2 The Metropolis-Hastings algorithm

MCMC methods are widely used to sample posterior distributions that arise in
Bayesian inverse problems. The Metropolis-Hastings algorithm defines a wide
class of MCMC methods, on which we will build in the following. Algorithm 1
describes the Metropolis-Hastings approach. In our Bayesian inverse problem
setting, inputs are the likelihood L, the prior density π0, a proposal density
q, and the number of iterations M ∈ N. In each iteration, a proposal sample
θ′ is drawn from the proposal distribution, which may depend on the previous
sample θi−1. Then, the acceptance probability α(θi−1, θ

′) is computed, which
requires evaluating the likelihood L and prior π0 at the candidate sample θ′.
The proposal sample θ′ is accepted with probability α(θi−1, θ

′) and rejected
with probability 1 − α(θi−1, θ

′). This process is repeated for M iterations and
the samples θ1, . . . , θM are returned. The corresponding Markov chain is, by
construction, reversible for π and thus has π as a stationary distribution. With
some relatively simple additional conditions on π and q, one can show that the
chain converges to π, from any starting point; see [53] for a full discussion.
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Algorithm 1 Metropolis-Hastings

1: procedure MetropolisHastings(L, π0, q,M)
2: Choose a starting point θ0

3: for i = 1, . . . ,M do

4: Draw candidate θ′ from proposal q(·|θi−1)
5: Compute acceptance probability

α(θi−1, θ
′) = min

{
1,

q(θi−1|θ′)Ly(θ
′)π0(θ

′)

q(θ′|θi−1)Ly(θi−1)π0(θi−1)

}

6: Set the sample θi to

θi =

{
θ′ , with probability α(θi−1, θ

′) ,

θi−1 , with probability 1− α(θi−1, θ
′)

7: end for

8: return θ1, . . . , θM

9: end procedure

In general, the samples produced by MCMC are correlated; this correlation
inflates the variance of any expectations estimated with MCMC samples, relative
to an expectation estimated with uncorrelated Monte Carlo sample sets of the
same size. The efficiency of an MCMC sampler can thus be measured with the
effective sample size (ESS) of any sample set it produces, which is inversely
proportional to the integrated autocorrelation time of the chain [35]. To define
the ESS, consider a function f : P → R that is measurable with respect to
the Lebesgue measure, and let us assume we are interested in estimating the
expected value

E[f ] =

∫

P

f(θ)π(θ) dθ ,

with respect to the posterior distribution π. Consider now the Monte Carlo
estimator of E[f ] that uses n ∈ N samples {θi}ni=1,

Enf =
1

n

n∑

i=1

f(θi) .

The ESS of {f(θi)}ni=1 is n∗ ∈ R such that

Var[Enf ] =
Var[f ]

n∗
,

where Var[Enf ] is the variance of the estimator Enf and Var[f ] is the variance
of f(θ) for θ ∼ π. In other words, n∗ ≤ n is the number of independent Monte
Carlo samples from π that would be required to obtain an estimator with the
same variance as Enf . It can be shown that n∗ = n/τ , where τ is the integrated
autocorrelation time associated with the chain {f(θt)}t. Better MCMC mixing
corresponds to smaller τ and larger ESS.
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2.3 Transport maps

The use of transport maps in the context of Bayesian inference was introduced
in [41]. In particular, [41] proposed a variational Bayesian approach involving
transport. Rather than using importance sampling or MCMC to characterize
the posterior distribution, this approach seeks a transport map that pushes
forward a tractable “reference” distribution to the posterior, such that samples
drawn from the reference and acted on by the map are distributed according to
the posterior. Below we follow [37] to introduce the notion of transport maps.

2.3.1 Definition of transport maps

Let µπ and µη be two probability measures on R
d that are absolutely contin-

uous with respect to the Lebesgue measure. In the following, µπ is the target
measure, which corresponds to the posterior distribution in our case, and µη

is the reference measure, which typically is a Gaussian or another distribution
from which we can draw independent samples efficiently. The probability den-
sity function corresponding to the target measure µπ is the posterior π, and the
probability density function corresponding to µη is denoted by η. A transport
map is a function T : Rd → R

d that pushes forward the reference µη to the
target µπ , which we write as

µπ = T♯µη , (1)

and which means that for any Borel set A ⊆ R
d, it holds µπ(A) = µη(T

−1(A)).
Existence of such maps is ensured by the absolute continuity of the reference
and the target measure. There may be infinitely many transport maps that
push forward a given reference to the target of interest. Uniqueness can be
enforced by introducing a cost function that is minimized while imposing the
constraint (1). This construction leads to the notion of optimal transport ; see,
e.g., [66, 67, 68].

Instead of introducing a cost function to regularize the problem of finding
a transport map, we directly impose structure on the map T as in [41, 45, 37].
In particular, we will seek lower triangular maps that are monotone increasing.
The lower triangular structure of T is as follows

T (ϑ1, ϑ2, . . . , ϑd) =




T1(ϑ1)
T2(ϑ1, ϑ2)
T3(ϑ1, ϑ2, ϑ3)
...
Td(ϑ1, ϑ2, . . . , ϑd)



, (2)

where ϑi denotes the ith component of ϑ = [ϑ1, . . . , ϑd]
T ∈ R

d and where
Ti : R

i → R is the ith component function of the map T . Monotonicity in this
context corresponds to the condition that Ti is a monotone increasing function
of ϑi, for all i = 1 . . . d. This condition ensures that ∇T � 0 and det∇T ≥
0; see [37, 61] for more detail. Since we assume that the reference and the
target measures are absolutely continuous, existence and uniqueness of such a
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lower-triangular transport map is guaranteed; this map is in fact the Knothe–
Rosenblatt rearrangement [6, 11, 55].

2.3.2 Numerical approximations of transport maps

Following [41], we will obtain numerical approximations of the Knothe–Rosenblatt
rearrangement by solving an optimization problem. Let T be a finite-dimensional
subspace of the space of all smooth lower triangular functions (2) from R

d

into R
d. Then, an approximation T̃ ∈ T of a transport map T can be ob-

tained via numerical optimization over the coefficients of the representation of
T̃ in a basis of T . To set up the optimization problem, consider the pullback

(T̃−1)♯µπ ≡ T̃ ♯µπ of µπ through a map T̃ ; the density of this pullback measure
can be written as

η̃(ϑ) = π(T̃ (ϑ))| det∇T̃ (ϑ)| , (3)

where | det∇T̃ (ϑ)| is the absolute value of the determinant of the Jacobian

∇T̃ (ϑ) of T̃ at ϑ. Note that the functions in T are smooth in the sense that

∇T̃ exists and is sufficiently regular; see, e.g., [37, 61]. Let

DKL(π1||π2) = Eπ1

(
log

π1

π2

)

denote the Kullback–Leibler (KL) divergence of π1 from π2 (where π1 and π2

in the log term are densities). Then, a solution T̃ ∗ ∈ T of the optimization
problem

min
T̃∈T

DKL(η||η̃) ,

s.t. ∇T̃ ≻ 0 ,
(4)

is an approximation of a transport map that pushes forward the reference mea-
sure µη to the target µπ. The constraint ∇T̃ ≻ 0 means that the Jacobian of T̃
is positive definite. If the approximation space T is sufficiently rich such that
DKL(η||η̃) = 0, then we have T̃ ∗♯µπ = µη and T̃ ∗

♯ µη = µπ[37].
The KL divergence is not symmetric. The direction of the KL divergence

here is chosen such that the expected value is taken with respect to the reference
µη, which is selected so that it can easily be sampled. Furthermore, the objective
in (4) can be minimized without knowledge of the normalizing constant of π.
To see this, transform the objective DKL(η||η̃) into

DKL(η||η̃) = Eη

[
log

(
η

η̃

)]

= Eη

[
log η − log π ◦ T̃ − log | det∇T̃ |

]
,

(5)

where we used the definition of η̃ in (3). The expectation Eη[log η] is independent

of the map T̃ and therefore can be ignored when minimizing the objective of
(4). Similarly, the normalizing constant of π leads to a constant term in (5) that

is independent of T̃ and therefore unnormalized evaluations of π are sufficient
to optimize (4).
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2.4 Problem description

We identify two challenges of directly relying on a solution T̃ ∗ of (4) to solve a
Bayesian inverse problem, as proposed in [41]. First, the KL divergence objec-
tive (5), which contains an expectation with respect the the reference measure
µη, is typically estimated with a Monte Carlo method because no closed form
expression is available for general π. Thus, the (unnormalized version of the)
pullback density (3) must be evaluated at a potentially large number of samples
for each optimization iteration. Since each evaluation of the pullback entails
an evaluation of the (unnormalized) posterior distribution π, and thus of the
forward model G, the optimization can become computationally intractable if
G is expensive to evaluate. Second, the push forward T̃ ∗

♯ µη is only an approxi-
mation of the posterior µπ. In particular, approximation errors may follow from
the choice of the finite-dimensional approximation space T , the finite number
of Monte Carlo samples used to discretize the expectation in the objective, and
any other errors in the numerical optimization. While this error can be esti-
mated (see [41, 37]), reducing this error to an arbitrarily small threshold—e.g.,
by enriching T —can be computationally expensive.

3 Multifidelity preconditioned Metropolis-Hastings

We propose a multifidelity preconditioned Metropolis-Hastings (MFMH). Sim-
ilar to the approach of Moselhy [41], our multifidelity approach consists of an
offline and an online phase. In the offline phase, a transport map is constructed
rapidly by using a low-cost, low-fidelity approximation of the high-fidelity model.
Then, in the online phase, a proposal distribution is derived from the transport
map and used to sample the high-fidelity posterior via a modified Metropolis-
Hastings algorithm, following the work of Parno [45]. If the low-fidelity model
is an accurate approximation of the high-fidelity model, and if the transport
map captures the essential structure of π, then the ESS of this MFMH will
be higher and fewer online evaluations of the high-fidelity model will be re-
quired to achieve a given accuracy. In any case, any error associated with the
transport map is corrected by Metropolization in the online phase; samples are
thus drawn (asymptotically) from the posterior distribution corresponding to
the high-fidelity model G. In other words, the MFMH approach offers the same
convergence guarantees as standard MCMC.

3.1 Approximation spaces and numerical optimization

This section provides details on the numerical construction of transport maps
from the reference measure to the target measure.

3.1.1 Integrated squared parametrization

Each component function T̃i, i = 1, . . . , d of the approximation T̃ of the map
T defined in (2) is parameterized with the integrated-squared ansatz [5], which
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is similar to the integrated-exponential ansatz introduced in [61]. Component

function T̃i is parameterized as

T̃i(ϑ1, . . . , ϑi;βi)

= T̃
(L)
i (ϑ1, . . . , ϑi−1;β

(L)
i ) +

∫ ϑi

0

(
T̃

(R)
i (ϑ1, . . . , ϑi−1, t;β

(R)
i )

)2

dt , (6)

where
βi =

[
β
(L)
i β

(R)
i

]
(7)

is a parameter vector and T̃
(L)
i : Ri−1 → R and T̃

(R)
i : Ri → R are functions

that are parameterized by the parameters β
(L)
i and β

(R)
i , respectively. The

integrated-squared parameterization (6) guarantees that the map T̃ is monotone

and therefore automatically satisfies the constraint ∇T̃ ≻ 0 in (4) [61].

3.1.2 Approximation space

Following [45, 37], we represent the functions T̃
(L)
i and T̃

(R)
i in each component

T̃i, i = 1, . . . , d of the map T̃ as multivariate polynomials. Let j = [j1, . . . , jd]
T ∈

N
d be a multi-index and let φji be a univariate polynomial with degree ji for

i = 1, . . . , d. Define the multivariate polynomial function as

φj(ϑ) =

d∏

i=1

φji(ϑi) . (8)

In the following, the multivariate polynomial functions (8) are simply the mono-
mials. Note that other polynomial families can be used, e.g., Hermite polyno-
mials. (One might also use Hermite functions, as in [61], for better control of
tail behavior.) Consider now the sets Ji ⊂ N

d for i = 1, . . . , d

Ji = {j | ‖j‖1 ≤ ℓ , jk = 0 , ∀k > i} , (9)

which correspond to the total-degree polynomials of maximal degree ℓ ∈ N.
The constraint jk = 0 , ∀k > i in the definition of Ji in (9) imposes the lower-

triangular structure of the map T̃ as defined in (2). The set Ji leads to the
definition of the approximation space Ti

Ti = span{φj | j ∈ Ji} ,

of the functions T̃
(R)
i and T̃

(L)
i+1, respectively, of the ith and i + 1st component

of T̃ . Thus, T̃
(L)
i ∈ Ti−1 and T̃

(R)
i ∈ Ti can be represented as

T̃
(L)
i (ϑ1, . . . , ϑi−1;β

(L)
i ) =

∑

j∈Ji−1

β
(L)
i,j φj(ϑ1, . . . , ϑi−1) , (10)
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and
T̃

(R)
i (ϑ1, . . . , ϑi−1, t;β

(R)
i ) =

∑

j∈Ji

β
(R)
i,j φj(ϑ1, . . . , ϑi−1, t) , (11)

where β
(L)
i and β

(R)
i are the vectors of the coefficients β

(L)
i,j with j ∈ Ji−1 and

β
(R)
i,j with j ∈ Ji, respectively. Note that we combine β

(L)
i and β

(R)
i into the

vector βi as defined in (7). The approximation space T is the product space

T = (T0 ⊕ T1)⊗ · · · ⊗ (Td−1 ⊕ Td) ,

where ⊕ and ⊗ denote the sum and the product of two spaces.

3.1.3 Numerical solution of optimization problem

Consider the optimization problem (4) and the transformation (5) that shows
that it is sufficient to minimize

Eη

[
− log π ◦ T̃ − log det∇T̃

]
(12)

with respect to T̃ . Note that evaluations of the unnormalized version of π are
sufficient to minimize (12); see Section 2.3.2. We have dropped the absolute

value above since the maps T̃ are guaranteed to be monotone, via our parame-
terization. We now replace the expected value with its sample-average approxi-
mation [59], i.e., a Monte Carlo estimator employing independent draws {ϑi}ni=1

from the reference distribution η. Making the dependence on the coefficients
β1, . . . ,βd explicit, we obtain the optimization problem

min
β1,...,βd

1

n

n∑

i=1

[
− logπ(T̃ (ϑi;β1, . . . ,βd))− log det∇T̃ (ϑi;β1, . . . ,βd)

]
. (13)

Our optimization problem (13) is unconstrained because the constraint ∇T̃ ≻ 0
of (4) is automatically satisfied via the squared-integrated parameterization (6).

3.2 Constructing transport maps with low-fidelity models

We propose to approximate the high-fidelity forward model G with a low-cost,
low-fidelity model to reduce the computational costs of constructing a transport
map via the optimization problem (13). Note that replacing evaluations of G
with evaluations of low-fidelity models in (13) will introduce an error that we
must correct later; see Section 3.4.

Let Ĝ : P → Y be a low-fidelity approximation of G that maps the parameter
onto an observable. The model Ĝ gives rise to a low-fidelity potential function

Φ̂y(θ) =
1

2

∥∥∥Σ− 1
2

ǫ

(
Ĝ(θ)− y

)∥∥∥
2

2
,

and to the low-fidelity likelihood function L̂y : P → R

L̂y(θ) = exp
(
−Φ̂y(θ)

)
.
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The probability density of the corresponding low-fidelity posterior distribution
is, up to a normalizing constant,

π̂(θ) ∝ L̂y(θ)π0(θ) .

We now use the low-fidelity posterior density π̂ in our variational construc-
tion of the map T̂ ∈ T . Consider the density η̂ that is the pullback of the
low-fidelity posterior density π̂ through a map T̂ ,

η̂(ϑ) = π̂(T̂ (ϑ))| det∇T̂ (ϑ)| .

We can find T̂ by minimizing DKL(η||η̂); this yields the following optimization
problem, analogous to (13) but with π̂ replacing π,

min
β1,...,βd

1

n

n∑

i=1

[
− log π̂(T̂ (ϑi;β1, . . . ,βd))− log det∇T̂ (ϑi;β1, . . . ,βd)

]
, (14)

with the coefficients β1, . . . ,βd defining T̂ ∗ ∈ T .

3.3 Constructing deep transport maps

The optimization problem (14) finds a transport map in the approximation space
T . Thus, if the approximation space T is chosen too coarse, then the pullback
of the target distribution through the map is only a poor approximation of the
reference distribution. Instead of choosing richer approximation spaces to find
more accurate transport maps, which would lead to a large number of coefficients
to be optimized for in (14), the work [41, 44] proposes to take compositions of
transport maps in coarse approximation spaces.

Let T (1) be a transport map that pushes forward the reference µη onto the

posterior µπ̂ and let T̂ (1) ∈ T be a numerical approximation of T (1) derived with
optimization problem (14). Since T̂ (1) is an approximation of the map T (1), we
obtain

µπ̂ ≈ µ
(1)
π̂ = T̂

(1)
♯ µη .

Following [45], to account for the discrepancy between µπ̂ and µ
(1)
π̂ , a second

map T̂ (2) ∈ T is constructed to push forward µ
(1)
π̂ to µπ̂, i.e.,

µπ̂ ≈ µ
(2)
π̂ = T̂

(2)
♯ µ

(1)
π̂ .

The aim is that the map T̂ (2) should capture only a small correction from µ
(1)
π̂

to µ
(2)
π̂ , so that the composition T̂ (1,2) = T̂ (2) ◦ T̂ (1) more accurately pushes

forward µη to µπ̂ (in the sense of KL divergence). This process is repeated k
times to obtain the “deep” map

T̂ ∗ = T̂ (k) ◦ · · · ◦ T̂ (1) . (15)
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Note that (15) is only one possible way of constructing deep transport maps.
Another possibility is to reverse the order of (15) and compose maps from the
right, rather than from the left, by keeping the µη as the reference and pulling
back the target µπ̂ by the current map approximation. This construction is
discussed in [61].

3.4 MFMH algorithm

We now use the transport map T̂ ∗ to derive an MCMC proposal with the
aim of improving sampling efficiency (e.g., reducing integrated autocorrelation
time) and at the same time guaranteeing that the stationary distribution of
the Markov chain is the posterior distribution corresponding to the high-fidelity
model G.

Since the transport map T̂ ∗ is monotone and lower triangular, as enforced
by the approximation space T , the inverse map Ŝ∗ = T̂ ∗−1 is cheap to evaluate
by solving d one-dimensional root-finding problems. We refer to [45, 37] for
details on how to invert lower-triangular, monotone maps. The inverse map
Ŝ∗ pushes forward the true posterior µπ onto a distribution that approximates

the reference distribution. In other words, Ŝ∗
♯ µπ = µη only if the map were

exact, which in general it is not; otherwise, Ŝ∗
♯ µπ is simply closer to µη (in

the sense of KL divergence) than µπ was. If µη is chosen to be a Gaussian,

then the map Ŝ∗ approximately “Gaussianizes” µπ. As shown in [45], and as
will be demonstrated with our numerical results in Section 4, MCMC sampling
from the approximate reference distribution Ŝ∗

♯ µπ generally yields higher ESSs
for a given computational effort than sampling directly from the posterior dis-
tribution. Crucially, because the map Ŝ∗ = T̂ ∗−1 is invertible, samples from
the approximate reference distribution can be exactly (up to machine precision)

pushed forward to samples from the posterior distribution via the map T̂ ∗.
Our MFMH algorithm is summarized in Algorithm 2 and follows the pre-

conditioned Metropolis-Hastings algorithm introduced in [45]. The MFMH al-
gorithm has the same inputs as the single-fidelity Metropolis-Hastings in Al-
gorithm 1, except that additionally the maps T̂ ∗ and Ŝ∗ are required. The
current state θi−1 is mapped with Ŝ∗ onto the approximate reference to obtain
ϑi−1. Then, a candidate sample is drawn from the proposal distribution based

on ϑi−1, and that candidate sample is mapped back with T̂ ∗ to a sample of the
posterior π.

Whether the candidate sample is accepted or rejected is based on the proba-
bility α that is determined using the high-fidelity posterior density π; the maps,
derived from the low-fidelity posterior, only affect the proposal distribution.
Thus it is guaranteed that the stationary distribution of the chain is the poste-
rior distribution π. Note that there is considerable flexibility in the choice of the
reference-space proposal distribution q. Below we will mostly choose q(·|ϑi−1)
to be a d-dimensional Gaussian, independent of ϑi−1. Thus our MCMC algo-
rithm reduces to a Metropolis independence sampler [53], whether viewed on the
reference space or on the target space. Given the monotonicity of the transport
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Algorithm 2 Multifidelity preconditioned Metropolis-Hastings (MFMH)

1: procedure PreconditionedMetropolisHastings(Ly, π0, q,M, T̂ ∗, Ŝ∗)
2: Choose a starting point θ0

3: for i = 1, . . . ,M do

4: Map state θi−1 onto reference with Ŝ∗(θi−1) = ϑi−1

5: Draw candidate ϑ′ from proposal q(·|ϑi−1)

6: Map candidate ϑ′ onto target with T̂ ∗(ϑ′) = θ′

7: Compute acceptance probability

α(θi−1, θ
′) = min

{
1,

q(ϑi−1|ϑ′)Ly(θ
′)π0(θ

′)| det∇T̂ ∗(θ′)|

q(ϑ′|ϑi−1)Ly(θi−1)π0(θi−1)| det∇T̂ ∗(θi−1)|

}

8: Set the sample θi to

θi =

{
θ′ , with probability α(θi−1, θ

′) ,

θi−1 , with probability 1− α(θi−1, θ
′)

9: end for

10: return θ1, . . . , θM

11: end procedure

maps and the full support of the Gaussian reference on R
d, the proposal distri-

bution on the target space is guaranteed to dominate the posterior distribution,
as required for Metropolis independence sampling to converge.

4 Numerical results

This section demonstrates our multifidelity approach on two examples. All
runtime measurements were performed on compute nodes with Intel Xeon E5-
1620 and 64GB RAM on a single core using a Matlab implementation.

4.1 Diffusion equation with reaction term

We first consider a model with diffusion and a nonlinear reaction term, where
our goal is to infer the parameters of the reaction term.

4.1.1 Problem setup

Let Ω = (0, 1)2 ⊆ R
2 and P = R

2 and consider the PDE

−∇2u(x1, x2; θ) + g(u(x1, x2; θ), θ) = 100 sin(2πx1) sin(2πx2) , x ∈ Ω ,
(16)

with homogeneous Dirichlet boundary conditions, where x = [x1, x2]
T , θ =

[θ1, θ2]
T ∈ P = R

2, and u : Ω× P → R is the solution function. The nonlinear

14



function g is

g(u(x; θ), θ) = (0.1 sin(θ1) + 2) exp
(
−2.7θ21

)
(exp (1.8θ2u(x; θ))− 1) .

We discretize (16) with finite differences on a grid with equidistant grid points
and mesh width h > 0. The corresponding system of nonlinear equations is
solved with Newton’s method and inexact line search based on the Armijo con-
dition. The model Gh : P → Y derived with mesh width h maps from P into
Y = R

12. The components of the observable y correspond to the values of
the approximated solution function at the spatial coordinates [0.25i, 0.2j]T ∈ Ω
with i = 1, 2, 3 and j = 1, 2, 3, 4.

A low-fidelity model Ĝh of Gh is derived via projection-based model reduc-
tion [3]. Solutions of (16) for parameters on an 100 × 100 equidistant grid in
[−π/2,−π/2]× [1, 5]⊂ P and mesh width h are computed and a 20-dimensional
reduced space with proper orthogonal decomposition is constructed. The op-
erators corresponding to the high-fidelity Gh are projected via Galerkin pro-
jection onto the reduced space and the low-fidelity model Ĝh is obtained. We
use a reduced model based on proper orthogonal decomposition in this exam-
ple; however, we note that our MFMH approach is applicable with other low-
fidelity models, e.g., coarse-grid approximations, data-fit surrogate models, and
simplified-physics models. Even if the low-fidelity model turns out to be a poor
approximation of the high-fidelity model, our MFMH approach guarantees that
samples are asymptotically drawn from the high-fidelity posterior distribution,
cf. Section 3.4. In case of a poor low-fidelity model, our MFMH approach dete-
riorates to a Metropolis-Hastings sampler with a poor proposal distribution.

4.1.2 Setup of inverse problems

We set θ∗ = [0.5, 2]T and consider the data y = GH(θ∗) + ǫ, where H =
1/64 and ǫ adds Gaussian noise with zero mean and variance 0.0026, which
corresponds to 0.1% noise with respect to the Euclidean norm of the output
GH(θ∗). We then use the model Gh with h = 1/32 and the corresponding

low-fidelity model Ĝh for inference. Note that the data y is computed with a
discretization of the PDE (16) with mesh width H = 1/64, while we use a mesh
width h = 1/32 for inference. The prior distribution is a Gaussian distribution
with mean [π/4, 1.2]T and covariance matrix

Σǫ =

[
64 0
0 16

]
.

The low-fidelity Ĝh is about 80 times faster to evaluate than the high-fidelity
model Ĝh for h = 1/32.

We construct a transport map from the reference Gaussian distribution to
the posterior corresponding to the low-fidelity model Ĝh. The reference Gaus-
sian distribution has zero mean and standard deviation 0.1. Note that instead
we could have scaled and centered the posterior distribution to have zero mean
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and marginal variances of one and then used a standard Gaussian as reference
distribution.

The optimization is performed with Matlab’s fmincon optimizer, where the
tolerance (TolX) is set to 10−3 and where we use n = 250 samples of the reference
distribution to approximate the expected value in the objective function, see
Section 3.1.3. We compose two maps following Section 3.3. The approximation
space for the first map T̂ (1) corresponds to first-order polynomials (linear) and

the approximation space of the second map T̂ (2) corresponds to second-order
polynomials (quadratic). The starting point for the optimization is the identity
map. The transport map is then used to precondition Metropolis-Hastings as
shown in Algorithm 2. The proposal is the reference distribution, i.e., we obtain
an independence sampler with a proposal that is independent of the current state
of the chain. Because we expect that the transport map approximately pushes
the reference onto the posterior, it is reasonable to consider an independence
sampler with the reference distribution as proposal. We discard every other
sample, which means that we perform M = 2m iterations if we want m samples.

We compare sampling with our MFMH approach to delayed-rejection adaptive-
metropolis (DRAM) sampling [29]. The DRAM implementation1 that we use is
based on two stages, with the second proposal equivalent to the first proposal
scaled down by a factor of 3. The length of the non-adaptive period is 100.
All other parameters of DRAM are set to their default values in the implemen-
tation mentioned above. We initialize DRAM with a Gaussian proposal that
has a diagonal covariance with all elements on the diagonal being equal. We
start DRAM with diagonal elements in {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 2×
10−2, 3× 10−2, 4× 10−2, 5× 10−2, 10−1, 5× 10−1} and then select the run with
the highest ESS; cf. Section 2.2. The first 104 samples are discarded as burn-
in and then every other sample is used. This means that DRAM performs
M = 2m+104 iterations if we want m samples. Note that the same thinning of
discarding every other sample is applied to the samples obtained with MFMH
and DRAM.

4.1.3 Results

Figure 1 shows samples drawn with DRAM from the high-fidelity posterior and
compares them to samples drawn with MFMH. Both reflect the “banana”-like
shape of the posterior. Mapping the samples from Figure 1c to the reference
distribution results in the samples shown in Figure 1d. Figure 2 reports the
ESS of samples drawn with DRAM and our MFMH approach. For MFMH, we
report results form ∈ {5×102, 103, 5×103, 104} samples and for DRAM for m ∈
{5× 103, 104, 5× 104} samples. In this example, MFMH achieves a higher ESS
than DRAM with respect to runtime. The reported runtime is the time needed
for model evaluations and, in case of MFMH, for constructing and evaluating the
transport map. Note that we use a burn-in of 104 samples for DRAM, whereas
such a burn-in is unnecessary in case of our MFMH sampler because it is an

1http://helios.fmi.fi/∼lainema/dram/
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Figure 1: Diffusion-reaction problem: Plots in (a) and (c) visualize samples drawn
with DRAM and MFMH, respectively. The “banana”-like shape of the posterior is
reflected in both sets of samples, see plot (b). Plot (d) shows the samples from (c)
mapped onto the reference distribution, which demonstrates that our transport map
captures well the high-fidelity posterior distribution even though it was constructed
with a low-fidelity model.
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Figure 2: Diffusion-reaction problem: The ESS of samples drawn with our MFMH
approach is higher than with DRAM, in this example. The reported runtime includes
the runtime of constructing the transport map in case of our MFMH approach. Note
that there is no burn-in time for MFMH because it is based on an independence
sampler in this example.

independence sampler. Still, this is a fair comparison because MFMH incurs
offline costs to find a proposal distribution for independence sampling, instead
of a burn-in time as DRAM. The offline costs of our MFMH approach, just as
the costs of the burn-in time of DRAM, are included in the runtime plotted
in Figure 2. Figure 3a and Figure 3b are trace plots corresponding to DRAM
and our MFMH approach, respectively. Both samplers lead to fast mixing. The
autocorrelation functions plotted in Figure 3c and Figure 3d for DRAM and
MFMH, respectively, indicate that MFMH achieves a lower autocorrelation in
this example, which agrees with the finding that our MFMH approach achieves
a higher ESS than DRAM in this example, cf. Figure 2. The acceptance rate
of our MFMH independence sampler is about 80%, which confirms that the
proposal constructed with the transport map is so effective that it can be used
for independence sampling.

4.1.4 Results for inference from observations with higher noise

We now add 1% noise with respect to the Euclidean norm of the output GH(θ∗),
which corresponds to a 10 times higher noise level than considered in Sec-
tion 4.1.2. We additionally modify the nonlinear term in (16) to

g(u(x; θ), θ) = 5(0.1 sin(θ1) + 2) exp
(
−2.7θ21

)
(exp (2.3θ2u(x; θ))− 1) .

to prevent the signal from being lost in the noise. Note that this is necessary
because otherwise the prior dominates the posterior so that samples are essen-
tially drawn from the prior distribution; independent of the sampling scheme
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Figure 3: Diffusion-reaction problem: The trace plots in (a) and (b) show fast mixing
for DRAM and our MFMH approach. The autocorrelation functions plotted in (c) and
(d) indicate a lower autocorrelation of the samples drawn with our MFMH approach
than with DRAM in this example.

that is used. The rest of the setup is the same as described in Section 4.1.1 and
Section 4.1.2.

Figure 4a shows samples drawn with DRAM. The increased noise leads to
a wider banana-like shape of the posterior than in Section 4.1.2 and Figure 1.
The samples drawn with MFMH are shown in Figure 4b. Figure 4c compares
the ESS of DRAM with m ∈ {103, 5 × 103, 104} samples and MFMH with
m ∈ {5 × 102, 103, 5 × 103, 104} samples, where our MFMH approach achieves
similar speedups as in Figure 2 in Section 4.1.3. Thus, the higher noise level
seems to have little impact on the performance of our MFMH approach in this
example.

4.2 Euler Bernoulli beam problem

We now infer the effective stiffness of an Euler Bernoulli beam, for which a
model is available on GitHub2. The model was developed by Matthew Parno for
the 2018 Gene Golub SIAM Summer School on “Inverse Problems: Systematic
Integration of Data with Models under Uncertainty.”

2https://github.com/g2s3-2018/labs
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Figure 4: Diffusion-reaction problem: Increasing the noise level to 1% in the observa-
tions leads to a wider banana-like shape of the posterior. The speedup achieved with
our MFMH approach is similar to the speedup obtained in Figure 2, where the noise
level is 0.1%.

4.2.1 Problem setup

Let L > 0 be the length of the beam and define Ω = [0, L] ⊂ R. Consider the
PDE

∂2

∂x2

(
E(x)

∂2

∂x2
u(x)

)
= f(x) , x ∈ Ω̄ , (17)

where u : Ω → R is the vertical deflection of the beam, f : Ω → R is the load,
and Ω̄ = (0, L). The effective stiffness of the beam is given by E : Ω → R and
describes beam geometry and material properties. The beam is in cantilever
configuration, where the left boundary is fixed and the right boundary is free,
i.e., the boundary conditions are

u(0) = 0 ,
∂

∂x
u

∣∣∣∣
x=0

= 0 ,
∂2

∂x2
u

∣∣∣∣
x=L

= 0 ,
∂3

∂x3
u

∣∣∣∣
x=L

= 0 .

The length of the beam is L = 1 in the following. The PDE (17) is discretized
with finite differences on a mesh of N = 601 equidistant grid points in Ω. The
same effective stiffness E as available in the GitHub repository1 is used by

interpolating on the grid points. Let x
(1)
obs, . . . , x

(41)
obs be equidistant points of the

N = 601 grid points. The observation y ∈ R
41 is the displacement u at the

41 points x
(1)
obs, . . . , x

(41)
obs polluted with zero-mean Gaussian noise with variance

10−4.
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4.2.2 Models for the Euler Bernoulli problem

We now derive the high-fidelity forward model. Consider the function I : R ×
Ω → R defined as

I(x, α) =

(
1 + exp

(
−
x− α

0.005

))−1

,

with
lim

x→−∞
I(x, α) = 0 , lim

x→∞
I(x, α) = 1 ,

such that there is a smooth transition from 0 to 1 at α. Define further k = 3
and let α1, . . . , αk+1 be the k + 1 equidistant points in Ω. Let R+ = {z ∈ R :
z > 0} and consider the parameter θ = [θ1, . . . , θk]

T ∈ R
k
+. Define the function

Êi : Ω× R → R as

Êi(x, θi) = (1 − I(x, αi))Êi−1(x, θi−1) + I(x, αi)θi ,

for i = 2, . . . , k and Ê1(x, θ1) = θ1. Given a parameter θ, the function Êk is

a smooth approximation of the piecewise constant function
∑k

i=1 θiI(αi,αi+1],
where I(αi,αi+1] is the indicator function of the interval (αi, αi+1] ⊂ R. The

high-fidelity forward model G maps a parameter θ ∈ R
k
+ onto the displacement

u with effective stiffness Êk at the observation points x
(1)
obs, . . . , x

(41)
obs . The same

discretization as described in Section 4.2.1 is used. The low-fidelity model Ĝ is
a spline interpolant of G on a logarithmically spaced grid in the domain [0.5, 4]3.
The interpolant is obtained with the griddedInterpolant procedure available
in Matlab. Extrapolation is turned off. The low-fidelity model Ĝ is about
1, 100 times faster to evaluate than the high-fidelity model G.

4.2.3 Setup of inverse problem

The observation y is obtained as described in Section 4.2.1. The prior is a
log-normal distribution with mean [1, 1, 1]T and covariance matrix

Σǫ =



0.05 0 0
0 0.05 0
0 0 0.05


 .

We construct a transport map T̂ using the low-fidelity model Ĝ. The transport
map T̂ is based on quadratic polynomials and approximately maps the reference
Gaussian distribution with mean [1, 1, 1]T and covariance with diagonal entries
0.1 onto the low-fidelity posterior distribution. Note that a standard Gaussian
can be used as reference distribution if the posterior distribution is centered
to zero mean and scaled to have marginal variances of one. This effectively
would perform a linear transformation. We optimize for the coefficients of T̂
with fmincon available in Matlab with tolerance set to 10−8 (TolX option)
and with 500 samples from the reference distribution. The initial point of the
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Figure 5: Euler Bernoulli beam: Plot (a) visualizes the posterior density function.
Plot (b) shows samples drawn with DRAM from the posterior distribution. The plots
on the diagonal of (b) show marginal densities estimated from the samples.
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optimization corresponds to the identity map. We then use the transport map
in Algorithm 2 with a random-walk Metropolis algorithm on the reference space,
i.e., with a local Gaussian proposal ϑ′ ∼ N (ϑi−1,Σ

′). The covariance matrix
Σ′ is diagonal. To select the diagonal of Σ′, we ran MFMH for proposals with
variance in {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 2×10−2, 3×10−2, 4×10−2, 5×
10−2, 10−1, 5 × 10−1} and then selected the variance that leads to the highest
ESS, cf. Section 4.1.2. The corresponding results are reported in the following.
Additionally, we consider an independence MFMH sampler where the reference
distribution together with the transport map serves as a proposal distribution
that is independent of the previous sample. The rest of the setup is the same
as in Section 4.1.2.

4.2.4 Results

Figure 5a visualizes the posterior density function corresponding to the high-
fidelity model. The plot indicates that the posterior distribution is a non-
Gaussian distribution. We use the same procedure as in Section 4.1.2 to draw
samples from the posterior with DRAM. The samples with the highest ESS are
shown in Figure 5b.

Let us now consider our MFMH approach. First, we consider the inde-
pendence MFMH sampler that uses a proposal that is independent of the pre-
vious sample, see Figure 6a. The samples are in agreement with the sam-
ples drawn with DRAM from the high-fidelity posterior distribution, cf. Fig-
ure 5b. Figure 6b plots the samples mapped with the transport map onto an
approximation of the reference Gaussian distribution, which demonstrates that
the transport map T̂ ∗ captures well the posterior distribution. The ESSs of
m ∈ {105, 5 × 105, 106, 5 × 106} samples drawn with DRAM and the indepen-
dence MFMH sampler are compared in Figure 7. Our independence MFMH
sampler achieves a higher ESS than DRAM in this example. Figure 7 also
shows that a higher ESS compared to DRAM is achieved only if sufficiently
many samples are drawn because otherwise the offline costs of constructing the
transport maps are not compensated. The MFMH sampler with a local random
walk proposal leads to a higher ESS than DRAM too, but the improvement
is smaller compared to the independence MFMH sampler. Additionally, an
even larger number of samples is necessary to compensate the offline costs of
constructing the transport maps. Note that the MFMH sampler with a local
random walk proposal and the DRAM sampler both use a burn-in of 104 samples
as in Section 4.1.2.

Trace plots for our MFMH samplers are provided in Figure 8. Both samplers
achieve fast mixing in all three parameters θ1, θ2, and θ3. Figure 9 shows the
autocorrelation functions for our MFMH samplers, which seem to decay faster
than the autocorrelation functions corresponding to DRAM in this example.
The faster decay of the autocorrelation functions agrees with the higher ESS of
our MFMH samplers reported in Figure 7. The acceptance rate of the MFMH
sampler with a local random walk proposal is about 41% and that of the MFMH
independence sampler is about 75%.
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Figure 6: Euler Bernoulli beam: Plot (a) shows samples drawn with our MFMH
method using a transport map constructed with a low-fidelity model. Mapping the
samples shown in (a) with the transport map gives samples of an approximate reference
Gaussian distribution, see plot (b). The plots on the diagonal of (a) and (b) show
marginal densities estimated from the samples.
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Figure 7: Euler Bernoulli beam: Our MFMH approach leads to a higher ESS than
DRAM after the offline costs of constructing the transport map are compensated. The
runtime is the total time of drawing samples, including the runtime of constructing the
transport map with the low-fidelity model in case of sampling with MFMH. The points
on the curves correspond to m ∈ {105, 5× 105, 106, 5× 106} samples, respectively.

5 Conclusions

Our MFMH approach leverages low-fidelity models to precondition MCMC sam-
pling, with the aim of improving MCMC mixing while guaranteeing that the
stationary distribution of the chain is the posterior distribution corresponding to
the high-fidelity model. In a one-time expensive step, a low-fidelity model is used
to construct a transport map that approximately maps an easy-to-sample refer-
ence distribution to the posterior distribution corresponding to the low-fidelity
model. In the second step, the transport map is used to precondition the poste-
rior distribution corresponding to the high-fidelity model during sampling with
Metropolis-Hastings. Since the low-fidelity model is used for preconditioning
only, the stationary distribution of the chain obtained in the second step is the
posterior distribution corresponding to the high-fidelity model. Our MFMH ap-
proach achieves significant speedups compared to single-fidelity sampling with
DRAM in our numerical examples.

This work focused on problems where evaluating the likelihoods are com-
putationally expensive because solving the forward models is demanding. A
direction of future research is to investigate our MFMH approach for problems
with higher-dimensional parameter spaces. In [45] and [41], transport maps are
used in up to 10 and 139 parameter dimensions, respectively, which shows that
computations with transport maps similar to our MFMH approach are tractable
in higher dimensions. A new building block for our MFMH approach in higher
dimensions will be theoretical results in [61, 60] which show that conditional
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Figure 8: Euler Bernoulli beam: Trace plots of our MFMH samplers for all three
parameters θ1, θ2, and θ3.

26



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

au
to
co
rr
el
at
io
n

lag

parameter θ1
parameter θ2
parameter θ3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

au
to
co
rr
el
at
io
n

lag

parameter θ1
parameter θ2
parameter θ3

(a) DRAM (b) MFMH, local random walk

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

au
to
co
rr
el
at
io
n

lag

parameter θ1
parameter θ2
parameter θ3

(c) MFMH, indep. sampler

Figure 9: Euler Bernoulli beam: The autocorrelation functions corresponding to our
MFMH samplers seem to decrease faster than the autocorrelation function correspond-
ing to DRAM in this example, which confirms the higher ESS achieved by our MFMH
approach; see Figure 7.

independence structure in the posterior leads to sparse or low-rank transports,
making representing and computing transport maps in even higher dimensions
tractable. Another option that we will explore is to discretize transport maps
on sparse grids [10, 51]. In a different line of future work, we will investigate the
optimal trade-off between low-fidelity model accuracy and low-fidelity model
costs so that the low-fidelity model is sufficiently accurate for improving, e.g.,
the ESS with MFMH while achieving speedups by keeping the offline costs low.
A similar question of finding optimal models for multifidelity Monte Carlo esti-
mation has been investigated in [46]. We plan to build on [46] to derive similar
complexity trade-offs for MFMH.
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[51] Pflüger, D., Peherstorfer, B., Bungartz, H.: Spatially adaptive sparse grids
for high-dimensional data-driven problems. Journal of Complexity 26(5),
508–522 (2010)

[52] Qian, E., Peherstorfer, B., O’Malley, D., Vesselinov, V.V., Willcox, K.:
Multifidelity Monte Carlo estimation of variance and sensitivity indices.
SIAM/ASA Journal on Uncertainty Quantification 6(2), 683–706 (2018)

[53] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer
(2004)

[54] Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. Journal of
Computational and Graphical Statistics 18(2), 349–367 (2009)

[55] Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math.
Statist. 23(3), 470–472 (1952)

31



[56] Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a
posteriori error estimation for affinely parametrized elliptic coercive partial
differential equations. Archives of Computational Methods in Engineering
15(3), 1–47 (2007)

[57] Santin, G., Wittwar, D., Haasdonk, B.: Greedy regularized kernel interpo-
lation. ArXiv e-prints 1807.09575 (2018)

[58] Sirovich, L.: Turbulence and the dynamics of coherent structures. Quar-
terly of Applied Mathematics 45, 561–571 (1987)

[59] Spall, J.: Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons (2003)

[60] Spantini, A.: On the low-dimensional structure of Bayesian inference.
Ph.D. thesis, Massachusetts Institute of Technology (2017)

[61] Spantini, A., Bigoni, D., Marzouk, Y.: Inference via low-dimensional cou-
plings. Journal of Machine Learning Research 19(66), 1–71 (2018)

[62] Stuart, A.M.: Inverse problems: A Bayesian perspective. Acta Numerica
19, 451–559 (2010)

[63] Tarantola, A.: Inverse Problem Theory. Elsevier (1987)

[64] Tierney, L.: Markov chains for exploring posterior distributions. Ann.
Statist. 22(4), 1701–1728 (1994)

[65] Vapnik, V.: Statistical Learning Theory. Wiley (1998)

[66] Vershik, A.M.: Long history of the Monge-Kantorovich transportation
problem. The Mathematical Intelligencer 35(4), 1–9 (2013)

[67] Villani, C.: Topics in Optimal Transportation. American Mathematical
Society (2003)

[68] Villani, C.: Optimal Transport: Old and New. Springer (2009)

[69] Wang, J., Zabaras, N.: Using Bayesian statistics in the estimation of heat
source in radiation. International Journal of Heat and Mass Transfer 48(1),
15 – 29 (2005)

[70] Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm.
Dolomites Research Notes on Approximation 6, 83–100 (2013)

32


	Introduction
	Preliminaries
	Bayesian inverse problems
	The Metropolis-Hastings algorithm
	Transport maps
	Definition of transport maps
	Numerical approximations of transport maps

	Problem description

	Multifidelity preconditioned Metropolis-Hastings
	Approximation spaces and numerical optimization
	Integrated squared parametrization
	Approximation space
	Numerical solution of optimization problem

	Constructing transport maps with low-fidelity models
	Constructing deep transport maps
	MFMH algorithm

	Numerical results
	Diffusion equation with reaction term
	Problem setup
	Setup of inverse problems
	Results
	Results for inference from observations with higher noise

	Euler Bernoulli beam problem
	Problem setup
	Models for the Euler Bernoulli problem
	Setup of inverse problem
	Results


	Conclusions

