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OPTIMAL MODEL MANAGEMENT FOR MULTIFIDELITY MONTE
CARLO ESTIMATION∗

BENJAMIN PEHERSTORFER† , KAREN WILLCOX† , AND MAX GUNZBURGER‡

Abstract. This work presents an optimal model management strategy that exploits multifidelity
surrogate models to accelerate the estimation of statistics of outputs of computationally expensive
high-fidelity models. Existing acceleration methods typically exploit a multilevel hierarchy of sur-
rogate models that follow a known rate of error decay and computational costs; however, a general
collection of surrogate models, which may include projection-based reduced models, data-fit mod-
els, support vector machines, and simplified-physics models, does not necessarily give rise to such
a hierarchy. Our multifidelity approach provides a framework to combine an arbitrary number of
surrogate models of any type. Instead of relying on error and cost rates, an optimization problem
balances the number of model evaluations across the high-fidelity and surrogate models with respect
to error and costs. We show that a unique analytic solution of the model management optimization
problem exists under mild conditions on the models. Our multifidelity method makes occasional
recourse to the high-fidelity model; in doing so it provides an unbiased estimator of the statistics of
the high-fidelity model, even in the absence of error bounds and error estimators for the surrogate
models. Numerical experiments with linear and nonlinear examples show that speedups by orders of
magnitude are obtained compared to Monte Carlo estimation that invokes a single model only.
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1. Introduction. Multilevel techniques have a long and successful history in
computational science and engineering, e.g., multigrid for solving systems of equations
[8, 25, 9], multilevel discretizations for representing functions [50, 18, 10], and multi-
level Monte Carlo and multilevel stochastic collocation for estimating mean solutions
of partial differential equations (PDEs) with stochastic parameters [27, 22, 45]. These
multilevel techniques typically start with a fine-grid discretization—a high-fidelity
model—of the underlying PDE or function. The fine-grid discretization is chosen to
guarantee an approximation of the output of interest with the accuracy required by the
current problem at hand. Additionally, a hierarchy of coarser discretizations—lower-
fidelity surrogate models—is constructed, where a parameter (e.g., mesh width) con-
trols the trade-off between error and computational costs. Changing this parameter
gives rise to a multilevel hierarchy of discretizations with known error and cost rates.
Multilevel techniques use these error and cost rates to distribute the computational
work among the discretizations in the hierarchy, shifting most of the work onto the
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cheap lower-fidelity surrogate models but correcting with a few expensive high-fidelity
model outputs to establish accuracy guarantees on the overall result. However, in
many situations, we are confronted with richer, more heterogeneous sets of models
than just hierarchies of fine- and coarse-grid discretizations. For example, available
surrogate models may include projection-based reduced models [44, 43, 24, 3], data-fit
interpolation and regression models [21], machine-learning-based support vector ma-
chines (SVMs) [16, 48, 11], and simplified-physics models [2, 37]. Distributing work
among general surrogate models (i.e., deciding which models to use and when) is
challenging because collections of general surrogate models typically do not give rise
to a multilevel hierarchy with known error and cost rates.

We present a multifidelity framework to exploit lower-fidelity surrogate models of
any type for the acceleration of the Monte Carlo estimation of statistics of outputs of
large-scale high-fidelity models. The key ingredient of our multifidelity Monte Carlo
(MFMC) method is an optimization problem to distribute the computational work
among the models such that the mean squared error (MSE) of the multifidelity esti-
mator is minimized for a given computational budget. Thus, our multifidelity method
distributes work using an optimization problem rather than error and cost rates, be-
cause such rates are unavailable for general collections of models. We show that the
optimization problem has a unique and analytic solution under mild conditions on
the models. These conditions, for example, prevent the use of models that are both
inaccurate and costly to evaluate. Multilevel techniques guarantee similar conditions
on the models by construction, because the model hierarchy is generated by changing
the discretization parameter. In contrast, our multifidelity approach targets optimal
exploitation of a given set of models and therefore requires explicit conditions that are
revealed by analysis of our optimization problem formulation. We prove that there
always exists a subset of the given set of models that satisfies these conditions. We de-
velop our methodology in the context of computational models, but our optimization-
based multifidelity approach is applicable to information sources beyond models, e.g.,
experiments, expert opinions, and lookup tables. If each information source has asso-
ciated a certain fidelity and cost, the solution of our optimization problem determines
the optimal number of queries of each information source such that the multifidelity
estimator with minimal MSE is obtained.

Several approaches in the literature combine a high-fidelity model with general
surrogate models to accelerate computations. Multifidelity optimization uses surro-
gate models to accelerate convergence to an optimal solution [4, 1, 32, 21]. In sta-
tistical inference, two-stage Markov chain Monte Carlo techniques rely on surrogate
models to decide whether a proposed sample is further processed by the high-fidelity
model, discarded, or used to adapt the surrogate model [14, 19, 17]. We focus here
on the estimation of statistics of outputs of models, a setting for which multifidelity
methods are often based on control variates. The control variates method provides
a framework to derive an estimator with a lower variance than the Monte Carlo es-
timator by combining samples drawn from the output random variable of interest
with samples drawn from a correlated auxiliary random variable [34]. The multilevel
Monte Carlo method [27, 22, 15, 46] uses coarse-grid approximations as surrogate
models and distributes the work among the models using known error and cost rates.
In [6, 5], the control variate method is used to combine the high-fidelity model with
a reduced basis model. The focus is on the construction of the reduced basis model
with a problem-specific greedy method that tailors the reduced model toward variance
reduction. In [36, 37], general surrogate models, including reduced basis models, and
other sources of approximate information (e.g., past model evaluations for different
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parameters) are exploited in a control variate framework to reduce the computational
costs of optimization under uncertainty. The approach in [49] applies the multilevel
Monte Carlo method to reduced basis models and approximately solves an optimiza-
tion problem to derive the number of model evaluations, which requires a posteri-
ori error estimators of the reduced models. StackedMC [47] uses the control variate
method and data-fit surrogate models. The surrogate models are constructed with su-
pervised learning techniques. Another body of work combines the high-fidelity model
with a surrogate model in the context of the Monte Carlo method with importance
sampling [31, 30, 13, 41, 38].

Our MFMC method is based on the multifidelity approach introduced in [36, 37],
which considers the use of general surrogate models to accelerate Monte Carlo sam-
pling. That work derives a multifidelity estimator using the control variate method
and balances model evaluations between the high-fidelity model and a single surrogate
model such that the MSE of the estimator is minimized for a given computational
budget. Our MFMC method follows a similar approach but we formulate an opti-
mization problem that explicitly allows an arbitrary number of surrogate models and
surrogate models of any type. Our mathematical analysis of the solution of the opti-
mization problem confirms that combining surrogate models of different type, varying
approximation quality, and varying costs is often more beneficial than combining ac-
curate surrogate models only. In this sense, surrogate models that inform different
aspects of the high-fidelity model are better than surrogate models that are accurate
but lack a rich diversity. Our analysis shows that the variance reduction obtained by
including an additional surrogate model in the MFMC estimator depends on the new
information introduced by the surrogate model compared to the other models in the
MFMC estimator, rather than solely on the approximation quality and costs of the
surrogate model itself.

Unbiasedness of our MFMC estimator is established by occasional recourse to the
high-fidelity model. Thus, our MFMC method does not rely on error bounds of the
surrogate models and provides an unbiased estimator independent of the approxima-
tion quality of the surrogate models. Our MFMC method is applicable to black-box
high-fidelity and surrogate models, i.e., models for which we can evaluate a specified
input to obtain the output but for which we do not have access to the model operators
(in an assembled form or through their actions on a vector).

This paper is organized as follows. Section 2 describes the problem setup.
Section 3 defines the MFMC estimator, derives the optimization problem to bal-
ance the number of model evaluations, and provides an interpretation and discussion.
Section 4 demonstrates the MFMC estimator on a model that describes the bending
of a locally damaged plate and on a model of a tubular reactor that exhibits an os-
cillatory regime. Runtime savings of up to four orders of magnitude are achieved.
Section 5 draws conclusions.

2. Problem setup. Section 2.1 introduces the high-fidelity model and surrogate
models and discusses the Monte Carlo method. Section 2.2 formulates the problem
of interest.

2.1. Models. Let d ∈ N and define the input domain D ⊂ Rd and the output
domain Y ⊂ R. An information source is a function f : D → Y that maps an input
z ∈ D to an output y ∈ Y. In this work, all our information sources are computational
models that are evaluated at an input z ∈ D to obtain an output y ∈ Y; however,
our methodology extends to other information sources such as experiments, expert
opinions, and lookup tables, provided these information sources can be evaluated for
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any specified input realization.
In the following, we have a high-fidelity model denoted as f (1) : D → Y and

(lower-fidelity) surrogate models f (2), . . . , f (k) : D → Y with k ∈ N. We consider
the high-fidelity model f (1) as our “truth” model. Note that we use the same input
domain for all models f (1), . . . , f (k). Note further that we consider scalar-valued
models f (1), . . . , f (k) only.

The costs of evaluating a model f (i) are wi ∈ R+ for i = 1, . . . , k, where R+ = {x ∈
R : x > 0}. The costs vector is w = [w1, . . . , wk]T ∈ Rk+, with the set Rk+ containing
k-dimensional vectors with components in R+. There are no assumptions on the
surrogate models. In particular, we explicitly avoid assumptions on the pointwise
errors

(2.1)
∣∣∣f (1)(z)− f (i)(z)

∣∣∣ , z ∈ D, i = 2, . . . , k,

with respect to the high-fidelity model f (1). Bounds for (2.1) are unnecessary for
our methodology, and therefore our methodology is developed independently of the
availability of such accuracy guarantees on the surrogate models.

Let Ω be a sample space and Z : Ω→ D a random variable with rangeD. Indepen-
dent and identically distributed (i.i.d.) realizations of Z are denoted as z1, . . . ,zm ∈ D,
where m ∈ N. The variance Var[f (i)(Z)] of f (i)(Z) is denoted

(2.2) σ2
i = Var[f (i)(Z)]

for i = 1, . . . , k, and the Pearson product-moment correlation coefficient is

(2.3) ρi,j =
Cov[f (i)(Z), f (j)(Z)]

σiσj

for i = 1, . . . , k and j = 1, . . . , k. In the following, we ignore models that are uncor-
related to the high-fidelity model, and therefore we have ρ2

1,i > 0 for i = 1, . . . , k. We
define ρi,k+1 = 0 for i = 1, . . . , k.

The Monte Carlo method draws m i.i.d. realizations z1, . . . ,zm ∈ D of Z and
estimates E[f (i)(Z)] by

(2.4) y(i)
m =

1

m

m∑
j=1

f (i)(zj)

for i = 1, . . . , k. The Monte Carlo estimator y
(i)
m is an unbiased estimator of E[f (i)(Z)]

[42]. If the variance σ2
i ∈ R (i.e., if the variance is finite), then the MSE of the

estimator y
(i)
m with respect to E[f (i)(Z)] is

e(y(i)
m ) = E

[(
E[f (i)(Z)]− y(i)

m

)2
]

=
Var[f (i)(Z)]

m
.

The cost of computing the Monte Carlo estimator is

c(y(i)
m ) = wim,

because the model f (i) is evaluated at m inputs, each with evaluation cost wi.
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2.2. Problem formulation. Our goal is to estimate the expectation

(2.5) s = E[f (1)(Z)]

of the high-fidelity model f (1) with realizations of the random variable Z as inputs.
We seek an estimator with a computational budget p ∈ R+ that optimally exploits the
surrogate models f (2), . . . , f (k) to achieve a lower MSE than the Monte Carlo estimator
with the same computational budget p. Stated differently, we seek a multifidelity
estimator that achieves the same MSE as the Monte Carlo estimator but with a
lower computational cost. We also seek an estimator that is unbiased with respect
to expectation (2.5), even in the absence of accuracy guarantees such as (2.1) on the
surrogate models.

3. Multifidelity Monte Carlo. Our MFMC method derives auxiliary random
variables from surrogate models and combines them into the unbiased MFMC es-
timator using the control variate method. An optimization problem distributes the
number of model evaluations among the high-fidelity and surrogate models. The opti-
mization problem balances correlation strength and relative computational costs such
that the MSE of the estimator is minimized for a given computational budget. We
prove that the MFMC estimator is unbiased and derive the condition under which the
MFMC estimator has a lower MSE than the Monte Carlo estimator with the same
computational budget. Section 3.1 formulates the MFMC estimator and shows that it
is unbiased. Sections 3.2 to 3.4 derive the optimization problem to balance the num-
ber of model evaluations across the high-fidelity and surrogate models and provide an
interpretation and discussion. Sections 3.5 and 3.6 give practical considerations and
summarize the MFMC method in Algorithm 2.

3.1. Multifidelity Monte Carlo estimator. Consider the k models f (1),
. . . , f (k). Let m = [m1, . . . ,mk]T ∈ Nk be a vector with integer components 0 <
m1 ≤ . . . ≤ mk and let

(3.1) z1, . . . ,zmk
∈ D

be mk i.i.d. realizations of the random variable Z. For i = 1, . . . , k, evaluate model
f (i) at the mi realizations z1, . . . ,zmi

of (3.1) to obtain

f (i)(z1), . . . , f (i)(zmi).

The component mi of m is the number of evaluations of model f (i) for i = 1, . . . , k.

Derive the Monte Carlo estimate y
(i)
mi as in (2.4) from the mi model evaluations

f (i)(z1), . . . , f (i)(zmi
) for i = 1, . . . , k. Additionally, compute the Monte Carlo esti-

mate y
(i)
mi−1 from the mi−1 model evaluations f (i)(z1), . . . , f (i)(zmi−1

) for i = 2, . . . , k.

The Monte Carlo estimator y
(i)
mi−1 reuses the first mi−1 model evaluations that are

used for y
(i)
mi , and therefore the two estimators are dependent. The MFMC estimate

ŝ of s is then

(3.2) ŝ = y(1)
m1

+

k∑
i=2

αi

(
y(i)
mi
− y(i)

mi−1

)
,

where α2, . . . , αk ∈ R are coefficients that weight the differences y
(i)
mi − y

(i)
mi−1 of the

Monte Carlo estimates y
(i)
mi and y

(i)
mi−1 for i = 2, . . . , k. The structure of our MFMC
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estimator (3.2) is similar to the structure of multilevel Monte Carlo estimators [15,
46]. Both correct an estimate of high-fidelity quantities with a sum of estimates
of differences of lower-fidelity quantities. The distinguishing feature of our MFMC
method is the optimal selection of the number of model evaluations m and of the
coefficients α2, . . . , αk that is applicable to surrogate models of any type, as introduced
in the subsequent sections.

The following lemma shows that the MFMC estimator is an unbiased estimator
of s.

Lemma 3.1. The MFMC estimator ŝ is an unbiased estimator of the expectation
s of the high-fidelity model f (1).

Proof. We have m ∈ Nk and m1 > 0 and therefore each model f (1), . . . , f (k) is
evaluated at least once. The unbiasedness E[ŝ] = E[f (1)(Z)] follows from the linearity
of the expectation.

Because the MFMC estimator ŝ is unbiased, the MSE of ŝ with respect to s is

(3.3) e(ŝ) = E[(s− ŝ)2
] = Var[ŝ].

The costs of deriving an MFMC estimate ŝ are

c(ŝ) =

k∑
i=1

wimi = wTm,

because to compute for i = 2, . . . , k

y(i)
mi
− y(i)

mi−1

the model f (i) is evaluated at the samples z1, . . . ,zmi
, where the first mi−1 samples

are reused to derive y
(i)
mi−1 .

3.2. Optimal number of model evaluations. The MFMC estimator defined
in (3.2) depends on the number of model evaluations m ∈ Nk and on the coefficients
α2, . . . , αk ∈ R. We formulate the selection of the number of model evaluations and
of the coefficients as an optimization problem. We first show Lemmas 3.2 and 3.3
before we derive the optimization problem and present its solution in Theorem 3.4.

Lemma 3.2. Consider the Monte Carlo estimators y
(l)
mi and y

(t)
mj with 1 ≤ i, j, l, t ≤

k. We find for the covariance

(3.4) Cov
[
y(l)
mi
, y(t)
mj

]
=

1

max{mi,mj}
ρl,tσlσt.

Proof. We have

(3.5) Cov
[
y(l)
mi
, y(t)
mj

]
=

1

mimj

mi∑
i′=1

mj∑
j′=1

Cov
[
f (l)(Zi′), f

(t)(Zj′)
]
,

where Z1, . . . , Zmk
are random variables that are i.i.d. as the random variable Z.

With the definition of the correlation coefficient (2.3), the independence of the random
variables Z1, . . . , Zmk

, and the symmetry of the covariance follows (3.4) from (3.5).
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Lemma 3.3. The variance Var[ŝ] of the MFMC estimator ŝ is

(3.6) Var[ŝ] =
σ2

1

m1
+

k∑
i=2

(
1

mi−1
− 1

mi

)(
α2
iσ

2
i − 2αiρ1,iσ1σi

)
.

Proof. The variance of a sum of random variables is the sum of their covariances

Var[ŝ] = Var

[
y(1)
m1

+

k∑
i=2

αi

(
y(i)
mi
− y(i)

mi−1

)]

= Var
[
y(1)
m1

]
+

k∑
i=2

α2
i

(
Var

[
y(i)
mi

]
+ Var

[
y(i)
mi−1

])
+ 2

k∑
i=2

αi

(
Cov

[
y(1)
m1
, y(i)
mi

]
− Cov

[
y(1)
m1
, y(i)
mi−1

])
+ 2

k∑
i=2

αi

k∑
j=i+1

αj

(
Cov

[
y(i)
mi
, y(j)
mj

]
− Cov

[
y(i)
mi
, y(j)
mj−1

])
(3.7)

− 2

k∑
i=2

αi

k∑
j=i+1

αj

(
Cov

[
y(i)
mi−1

, y(j)
mj

]
− Cov

[
y(i)
mi−1

, y(j)
mj−1

])
(3.8)

− 2

k∑
i=2

α2
i Cov

[
y(i)
mi
, y(i)
mi−1

]
.

With Lemma 3.2 and m1 ≤ · · · ≤ mk, it follows that the covariance terms in (3.7)
and (3.8) cancel, which then shows the lemma.

We now formulate the optimization problem to select the number of model eval-
uations m and the coefficients α2, . . . , αk that minimize the MSE e(ŝ) of the MFMC
estimator ŝ with costs c(ŝ) = p equal to a computational budget p ∈ R+. Since
e(ŝ) = Var[ŝ], it is sufficient to minimize the variance Var[ŝ] of the MFMC estimator;
see section 3.1 and (3.3). We formulate the optimization problem withm ∈ Rk, rather
than in Nk, and round down bmic to determine the integer number of model evalua-
tions from the real number mi for i = 1, . . . , k. We do not expect that the rounding
significantly impacts the MSE of the MFMC estimator. Usually, the number of model
evaluations is� 1 and therefore changing the number of model evaluations by a frac-
tion less than one is a small change relative to the number of model evaluations.
Rounding down ensures that the costs of the MFMC estimator do not exceed the
computational budget p. Let therefore J : Rk+ × Rk−1 → R be the objective function
with

(3.9) J(m, α2, . . . , αk) =
σ2

1

m1
+

k∑
i=2

(
1

mi−1
− 1

mi

)(
α2
iσ

2
i − 2αiρ1,iσ1σi

)
,

and note that J(m, α2, . . . , αk) = Var[ŝ] for m ∈ Nk and 0 < m1 ≤ m2 ≤ · · · ≤ mk.
We define the vector m∗ ∈ Rk and the coefficients α∗2, . . . , α

∗
k ∈ Rk to be the solution
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of the optimization problem

(3.10)

arg min
m∈Rk,α2,...,αk∈R

J(m, α2, . . . , αk)

subject to mi−1 −mi ≤ 0, i = 2, . . . , k,

−m1 ≤ 0,

wTm = p.

The inequality constraints mi−1 − mi ≤ 0 for i = 2, . . . , k and −m1 ≤ 0 ensure
0 ≤ m1 ≤ · · · ≤ mk. Note that we will show m∗1 > 0 for the optimal m∗1 and therefore
m∗ ∈ Rk+; see Lemma A.1. The equality constraint wTm = p ensures that the
costs of the corresponding MFMC estimator equal the computational budget p ∈ R+.
Theorem 3.4 provides the global solution of the optimization problem (3.10) under
a condition on the costs and the correlation coefficients. Note that in section 3.5
we present an algorithm to select from models f (1), . . . , f (k) a subset of models that
satisfies the conditions required by Theorem 3.4.

Theorem 3.4. Let f (1), . . . , f (k) be k models with ordering

(3.11) |ρ1,1| > · · · > |ρ1,k|

and with costs w1, . . . , wk that satisfy the ratios

(3.12)
wi−1

wi
>
ρ2

1,i−1 − ρ2
1,i

ρ2
1,i − ρ2

1,i+1

for i = 2, . . . , k. Set the coefficients α∗2, . . . , α
∗
k to

(3.13) α∗i =
ρ1,iσ1

σi

for i = 2, . . . , k and the components of r∗ = [r∗1 , . . . , r
∗
k]T ∈ Rk+ to

(3.14) r∗i =

√
w1(ρ2

1,i − ρ2
1,i+1)

wi(1− ρ2
1,2)

for i = 1, . . . , k. Set further the components of m∗ = [m∗1, . . . ,m
∗
k]T ∈ Rk+ to m∗i =

m∗1r
∗
i for i = 2, . . . , k and

(3.15) m∗1 =
p

wTr∗
,

where p ∈ R+ is the computational budget. The global minimum of (3.10) is (m∗, α∗2,
. . . , α∗k).

Proof. First note that (m∗, α∗2, . . . , α
∗
k) satisfies the constraints of the optimiza-

tion problem (3.10) because of the ordering (3.11) and condition (3.12). Consider
a local minimum (m, α2, . . . , αk) of (3.10) for which an i ∈ {2, . . . , k} exists with
mi−1 = mi. Define l = [l1, . . . , lq]

T ∈ Nq with q ∈ N such that

mli−1 < mli , i = 1, . . . , q,

and
mli = mli+1 = · · · = mli+1−1, i = 0, . . . , q,
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where l0 = 1 and lq+1 = k + 1. Lemma A.1 in Appendix A shows that we have

(3.16) rli =
mli

m1
=

√√√√√
(∑l1−1

j=1 wj

)
(∑li+1−1

j=li
wj

) (ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)

for i = 0, . . . , q. Lemma A.3 in Appendix A shows that condition (3.12) on the ratios
of the costs and the differences of the squared correlation coefficients leads to

k∑
i=1

√
wi(ρ2

1,i − ρ2
1,i+1) <

q∑
i=0

√√√√√
li+1−1∑

j=li

wj

 (ρ2
1,li
− ρ2

1,li+1
),

from which we obtain

(3.17)

√
1− ρ2

1,2

w1

k∑
i=1

wi

√
w1

wi

(ρ2
1,i − ρ2

1,i+1)

(1− ρ2
1,2)︸ ︷︷ ︸

r∗i

<

√
1− ρ2

1,l1∑l1−1
t=1 wt

q∑
i=0

li+1−1∑
j=li

wj


√√√√√
(∑l1−1

t=1 wt

)
(∑li+1−1

t=li
wt

) (ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)︸ ︷︷ ︸
rli

,

where we used r∗1 , . . . , r
∗
k as defined in (3.14) and rl0 , . . . , rlq as in (3.16). Lemma A.1

shows m∗1 = p/(wTr∗) and m1 = p/(wTr) and therefore (3.17) is equivalent to√
(1− ρ2

1,2)p2

(m∗1)2w1
<

√
(1− ρ2

1,l1
)p2

m2
1

∑l1−1
i=1 wi

.

Squaring both sides and dividing by p leads to

(3.18)
σ2

1(1− ρ2
1,2)p

(m∗1)2w1
<
σ2

1(1− ρ2
1,l1

)p

m2
1

∑l1−1
i=1 wi

.

Lemma A.2 in Appendix A shows that the left-hand side of (3.18) is the objective
function J evaluated at m∗ and α∗2, . . . , α

∗
k and the right-hand side J evaluated at

m and α2, . . . , αk. The inequality (3.18) therefore shows that the value of the objec-
tive function at m∗ and α∗2, . . . , α

∗
k is smaller than at a local minimum with m and

α2, . . . , αk where there exists an i ∈ {2, . . . , k} with mi−1 = mi.
Lemma A.1 shows that only (m∗, α∗2, . . . , α

∗
k) can be a local minimum with m∗1 <

m∗2 < · · · < m∗k (strict inequalities) and therefore (m∗, α∗2, . . . , α
∗
k) is the unique global

minimum of (3.10) given ordering (3.11) and condition (3.12).

We round down the components of m∗ = [m∗1, . . . ,m
∗
k]T ∈ Rk+ to obtain an

integer number of model evaluations and denote the MFMC estimator with bm∗c =
[bm∗1c, . . . , bm∗kc]T ∈ Nk and the coefficients α∗2, . . . , α

∗
k ∈ R as ŝ∗; see above for a

discussion on the rounding. In the problem setup, the budget p should be large
enough to evaluate the high-fidelity model at least once; otherwise the multifidelity
estimator is biased. For the ease of exposition, we treat the components of m∗ as
integers in the following, because the rounding introduces only constant factors in the
discussion.
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3.3. Discussion. Let ŝ∗ be the MFMC estimator with computational budget

p ∈ R+. The costs c(y
(1)
n ) = p of the Monte Carlo estimator y

(1)
n with n = p/w1

model evaluations are equal to the costs of the MFMC estimator ŝ∗ with computa-
tional budget p. Corollary 3.5 derives the condition under which it is computationally
cheaper to estimate s with the MFMC estimator ŝ∗ than with the Monte Carlo esti-

mator y
(1)
n .

Corollary 3.5. The MSE e(ŝ∗) of the MFMC estimator ŝ∗ for a given compu-
tational budget p ∈ R+ is

(3.19) e(ŝ∗) =
σ2

1(1− ρ2
1,2)

(m∗1)2w1
p.

The MSE e(ŝ∗) of the MFMC estimator ŝ∗ is smaller than the MSE of the Monte

Carlo estimator y
(1)
n with n = p/w1 evaluations of f (1), and thus costs c(y

(1)
n ) = p, if

and only if

(3.20)

k∑
i=1

√
wi
w1

(ρ2
1,i − ρ2

1,i+1) < 1.

Proof. Lemma A.2 shows that the MSE e(ŝ∗) of the MFMC estimator ŝ∗ is (3.19),
because the objective J equals Var[ŝ∗] if the components ofm∗ are integers. The MSE

of the Monte Carlo estimator y
(1)
n is

(3.21) e(y(1)
n ) =

σ2
1

n
=
σ2

1

p
w1.

To show the condition (3.20), we rewrite the MSE (3.19) of the MFMC estimator as

e(ŝ∗) =
σ2

1(1− ρ2
1,2)

pw1

(
k∑
i=1

wir
∗
i

)2

,

where we used m∗1 = p/(wTr); see Theorem 3.4. We obtain with the definition of r∗

in Theorem 3.4,

(3.22) e(ŝ∗) =
σ2

1

p

(
k∑
i=1

√
wi(ρ2

1,i − ρ2
1,i+1)

)2

.

We therefore derive from the MSE (3.21) of the Monte Carlo estimator and the MSE

(3.22) of the MFMC estimator that e(ŝ∗) < e(y
(1)
n ) if and only if

w1 >

(
k∑
i=1

√
wi(ρ2

1,i − ρ2
1,i+1)

)2

,

which is equivalent to (3.20).

Note that only the number of model evaluations m∗1 of the high-fidelity model
f (1) appears in the definition of the MSE e(ŝ∗) but that m∗1 depends through r∗ on
m∗2, . . . ,m

∗
k; see the definition of m∗1 in (3.15).



OPTIMAL MODEL MANAGEMENT A3173

Consider the condition (3.20) that is sufficient and necessary for the MFMC es-
timator to achieve a variance reduction compared to the Monte Carlo estimator with

the same computational budget. With the MSE e(y
(1)
n ) of the Monte Carlo estimator

as derived in (3.21) and the MSE e(ŝ∗) of the MFMC estimator as derived in (3.22)
we obtain the ratio

(3.23) γ ≡ e(ŝ∗)

e
(
y

(1)
n

) =

(
k∑
i=1

√
wi
w1

(ρ2
1,i − ρ2

1,i+1)

)2

.

The ratio (3.23) quantifies the variance reduction achieved by the MFMC estimator.
The ratio is in inverse proportion to the variance reduction and therefore the variance
of the MFMC estimator is small if the costs w1, . . . , wk and the correlation coefficients
ρ1,1, . . . , ρ1,k of the models f (1), . . . , f (k) lead to small terms in the sum in (3.23).
Consider a single term i ∈ {1, . . . , k} in the sum in (3.23),√

wi
w1

(ρ2
1,i − ρ2

1,i+1).

The term shows that the contribution of the model f (i) to the variance reduction is
high if the costs wi are low and the difference of the squared correlation coefficients
ρ2

1,i−ρ2
1,i+1 is low. Thus, the contribution of a model is high if the squared correlation

coefficient ρ2
1,i of model f (i) is similar to the squared correlation coefficient ρ2

1,i+1 of

the subsequent model f (i+1). This shows that the contribution of a model cannot be
determined by only considering the properties of the model itself but requires taking
the properties of other models used in the MFMC estimator into account. Further-
more, the condition (3.20) that the MFMC estimator is computationally cheaper than
the Monte Carlo estimator is not a condition on the properties of each model sepa-
rately but rather is a condition on the properties of all models f (1), . . . , f (k) together,
i.e., on the collective whole of the models.

Corollary 3.5 and the discussion on the variance reduction and the ratio (3.23) of
the MSEs show that the correlation ρ1,i between a random variable f (i)(Z) induced by
the surrogate model f (i) for i = 2, . . . , k and the random variable f (1)(Z) correspond-
ing to the high-fidelity model replaces the classical, deterministic pointwise error (2.1)
that is usually considered to quantify the approximation quality of surrogate models
in deterministic settings [43, 23, 24].

3.4. Illustrative examples. Let us consider an example with k = 3 models
f (1), f (2), f (3) to demonstrate the behavior of the MFMC estimator and the interac-
tions among the models. We consider the variance reduction ratio (3.23) as a function
of the correlation coefficients ρ1,2, ρ1,3 and the costs w1, w2, w3,

(3.24) γ(ρ1,2, ρ1,3, w1, w2, w3) =

(√
1− ρ2

1,2 +

√
w2

w1
(ρ2

1,2 − ρ2
1,3) +

√
w3

w1
ρ2

1,3

)2

.

Note that a lower value γ(ρ1,2, ρ1,3, w1, w2, w3) means a higher variance reduction.
For illustration, we set w1/w2 = 0.1 and vary the correlation coefficients ρ1,2, ρ1,3

and the costs ratio w3/w1. Figure 1(a) shows the contour plot of γ for ρ1,2 = 0.9,
ρ1,3 ∈ [0.1, 0.9], and costs w3/w1 ∈ [10−5, 10−1]. The black region indicates where
condition (3.12) is violated. The contours show that a model f (3) with a high cor-
relation coefficient ρ1,3 leads to a low value of γ and therefore to a high variance
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(a) ρ1,2 = 0.9 (b) ρ1,2 = 0.6 (c) ρ1,2 = 0.4

Fig. 1. The plots show the contours of the variance reduction ratio (3.23) of an MFMC esti-
mator with three models f (1), f (2), f (3). The black region shows where condition (3.12) is violated
and the gray region where the MFMC estimator leads to a higher variance than the Monte Carlo
estimator. The plots confirm that the variance reduction of the MFMC estimator is determined by
the properties of the collective whole of the models and not by the properties of each model separately.

reduction; however, the contours become almost vertical for low cost ratios w3/w1,
which means that further decreasing the costs w3 of model f (3) hardly improves the
variance reduction if w3 is already low. This can also be seen in (3.24), where chang-
ing the costs w3 affects the third term only. Thus, if w3/w1 is already low, the second
term in γ dominates the variance reduction, which is independent of the costs w3. In
Figure 1(b), the correlation coefficient of model f (2) is reduced to ρ1,2 = 0.6. The
gray region shows where γ evaluates to values larger than 1, and therefore where the
MFMC estimator has a higher variance than the standard Monte Carlo estimator.
Figure 1(b) shows that a high correlation coefficient ρ1,3 can violate condition (3.12).
Consider now Figure 1(c), where we further reduce the correlation coefficient of the
second model f (2) to ρ1,2 = 0.4. The plot shows that combining f (1), f (2), and a third
model f (3) with w3/w1 ∈ [10−5, 10−1] and ρ1,3 ∈ [0.1, 0.4] into an MFMC estimator
either violates condition (3.12) (black region) or leads to a higher variance than the
Monte Carlo estimator (gray region). In this situation, it is therefore necessary to
change or remove f (2) to obtain an MFMC estimator with a lower variance than the
Monte Carlo estimator; see the following section for an approach to handle such a
situation.

Let us now consider an example with two models f (1), f (2) to discuss the sensitiv-
ity of the number of model evaluations m∗ and the coefficient α∗2 with respect to the
correlation coefficients and the costs. Consider Figure 2(a) that shows the contours of
the ratio m∗2/m

∗
1 as a function of the cost ratio w2/w1 and the correlation coefficient

ρ1,2. The contours indicate that the ratio m∗2/m
∗
1 varies smoothly with the corre-

lation coefficient ρ1,2 and the cost ratio w2/w1. In particular, Figure 2(a) suggests
that small perturbations in the correlation coefficient ρ1,2 and the costs w1, w2 lead
to small changes in the number of model evaluations m∗ = [m∗1,m

∗
2]T . Similarly, the

coefficient α∗2 is in this example insensitive to perturbations in the ratio σ1/σ2 and
the correlation coefficient ρ1,2; see Figure 2(b). We refer to the numerical results in
section 4.1 that confirm this behavior.

3.5. Model selection. Theorem 3.4 is applicable to models that are ordered
descending with respect to the squared correlation coefficients (3.11) and that satisfy
condition (3.12) on the ratios of the costs and correlation coefficients. Even if the



OPTIMAL MODEL MANAGEMENT A3175

1e+031e+02

1e+021e+01

1e+01

3e+00

3e+00
1e+00

5e-01

0 0.2 0.4 0.6 0.8 1

correlation coefficient ρ1,2

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

co
st

ra
ti

o
w

2
/w

1

1e+04

1e+02

1e+00

1e-02

1e-04

1e-06

0 0.2 0.4 0.6 0.8 1

correlation coefficient ρ1,2

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

1e+06

ra
ti

o
σ

2 1
/σ

2 2

(a) contours of m∗2/m
∗
1 (b) contours of α∗2

Fig. 2. The plots show that for an example with two models the number of model evaluations
m∗ = [m∗1,m

∗
2]T and the coefficient α∗2 vary smoothly with respect to the costs w1, w2, the correla-

tion coefficient ρ1,2, and the variances σ2
1 , σ

2
2. In particular, small perturbations in the quantities

w1, w2, ρ1,2, σ2
1 , σ

2
2 lead to small changes in m∗ and α∗2.

given models f (1), . . . , f (k) violate the ordering (3.11) or condition (3.12), there exists
a selection of the models f (1), . . . , f (k) that can be ordered as in (3.11) and that satisfy
condition (3.12), and thus for which an MFMC estimator can be derived. There may
even be multiple feasible selections of models for which an MFMC estimator can be
constructed, in which case the selection that leads to the MFMC estimator with the
lowest variance (i.e., lowest MSE) is of interest.

Given k models f (1), . . . , f (k), Algorithm 1 iterates over all subsets M ⊆ {f (1),
. . . , f (k)} and selects the subset M∗ that leads to the MFMC estimator with the
lowest variance. Inputs to Algorithm 1 are the models f (1), . . . , f (k), the variance σ2

1

of the high-fidelity model f (1), the correlation coefficients ρ1,1, . . . , ρ1,k, and the costs
w1, . . . , wk. Algorithm 1 first orders the models with respect to the squared correlation
coefficients. It then initializes the set M∗ = {f (1)} with the set {f (1)} that contains
the high-fidelity model only. The variance of the estimator with computational budget
p = w1 that uses the high-fidelity model only (i.e., the Monte Carlo estimator) is
v∗ = σ2

1 ; see the proof of Corollary 3.5 and (3.21). The algorithm then iterates over
all subsets M ⊆ {f (1), . . . , f (k)} of which the high-fidelity model f (1) is an element
and which satisfy condition (3.12). If the variance v of the MFMC estimator with
budget p and with models in the current subset M is lower than the variance v∗,
then the current subset M is stored in M∗ and the variance v∗ = v is set to v. The
set M∗ is returned after iterating over all subsets. Note that M∗ cannot be empty
because the set M∗ is initialized with {f (1)}, which satisfies condition (3.12). Note
further that a different choice of the computational budget p leads to the same set
M∗ because the variance of the MFMC estimator depends linearly on p.

Algorithm 1 does not treat the case where there exists 1 ≤ i < j ≤ k with ρ2
1,i =

ρ2
1,j . In such a situation, Algorithm 1 is run for the set of models {f (1), . . . , f (k)} \
{f (j)} to obtainM∗1 and v∗1 and for the set {f (1), . . . , f (k)}\{f (i)} to obtainM∗2 and
v∗2 . If v∗1 < v∗2 then M∗ =M∗1 and else M∗ =M∗2.

The computational costs of Algorithm 1 grow exponentially in the number of
models k and are bounded by O(2k). Note that in many situations fewer than k = 10
models are available and therefore the exhaustive search performed by Algorithm 1 is
usually computationally feasible and often negligible compared to the computational
costs of evaluating models.
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Algorithm 1. Model selection.

1: procedure mSelect(f (1), . . . , f (k), σ1, ρ1,1, . . . , ρ1,k, w1, . . . , wk)
2: Ensure ρ2

1,1 > ρ2
1,2 > · · · > ρ2

1,k, reorder if necessary
3: Set the computational budget to p = w1

4: Initialize M∗ = {f (1)} and v∗ =
σ2
1

p w1

5: for M⊆ {f (1), . . . , f (k)} do
6: if f (1) 6∈ M then continue
7: end if
8: Set k′ = |M| to the number of elements in M
9: Let i1, . . . , ik′ be the indices of the models in M s.t. ρ2

1,i1
> · · · > ρ2

1,ik′

10: Set ρ1,ik′+1
= 0

11: if condition (3.12) is violated for models in M then continue
12: end if
13: Compute

v =
σ2

1

p

 k′∑
j=1

√
wij (ρ2

1,ij
− ρ2

1,ij+1
)

2

14: if v < v∗ then
15: M∗ =M
16: v∗ = v
17: end if
18: end for
19: return M∗, v∗
20: end procedure

3.6. Practical considerations and computational procedure. The optimal
vector m∗ and the optimal coefficients α∗2, . . . , α

∗
k derived in Theorem 3.4 depend on

the variance and the correlation coefficients corresponding to the high-fidelity and
the surrogate models. These quantities are usually unavailable and in practice we
therefore replace them by their sample estimates. To estimate these quantities, we
draw m′ ∈ N i.i.d. realizations z′1, . . . ,z

′
m′ ∈ D of the random variable Z and derive

the Monte Carlo estimates y
(i)
m′ of E[f (i)(Z)] for i = 1, . . . , k. The sample variance is

then

(3.25) σ̄2
i =

1

m′ − 1

m′∑
l=1

(
f (i)(z′l)− y

(i)
m′

)2

and the sample correlation

(3.26) ρ̄1,i =
1

σ̄1σ̄i(m′ − 1)

m′∑
l=1

(
f (1)(z′l)− y

(1)
m′

)(
f (i)(z′l)− y

(i)
m′

)
for i = 1, . . . , k. While evaluating the models to obtain the sample variances and
sample correlations, we measure the time needed for the model evaluations and derive
the costs w1, . . . , wk ∈ R+. Note that we derive the sample estimates by evaluating
the models at the m′ realizations z′1, . . . ,z

′
m′ and so incur certain costs; however,

in many situations, several model outputs are available from previous model runs,
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Algorithm 2. Multifidelity Monte Carlo.

1: procedure MFMC(f (1), . . . , f (k), σ̄1, . . . , σ̄k, ρ̄1,1, . . . , ρ̄1,k, w1, . . . , wk, p)
2: Ensure f (1), . . . , f (k) is the result of mSelect defined in Algorithm 1
3: Set ρ̄1,k+1 = 0 and define vector r̄ = [r̄1, . . . , r̄k]T ∈ Rk+ as

ri =

√
w1(ρ̄2

1,i − ρ̄2
1,i+1)

wi(1− ρ̄2
1,2)

, i = 1, . . . , k

4: Select number of model evaluations m ∈ Rk+ as

m =
[ p

wT r̄
, r̄2m1, . . . , r̄km1

]T
∈ Rk+

5: Round down components of m to obtain integers
6: Set coefficients α = [α1, . . . , αk]T ∈ Rk to

αi =
ρ̄1,iσ̄1

σ̄i
, i = 1, . . . , k

7: Draw z1, . . . ,zmk
∈ D realizations of Z

8: Evaluate model f (i) at realizations z1, . . . ,zmi
for i = 1, . . . , k

9: Compute MFMC estimate ŝ as in (3.2)
10: return ŝ
11: end procedure

which can be reused to derive the sample estimates (e.g., from snapshot data used to
create surrogate models). We also note that a small number m′ is typically sufficient
because small perturbations in the sample estimates have small effects on the number
of model evaluations and the coefficients; see section 3.4 and the numerical example
in section 4.

Algorithm 2 summarizes the computational procedure for deriving an MFMC es-
timate. Inputs to Algorithm 2 are the models f (1), . . . , f (k), the sample variances
σ̄1, . . . , σ̄k, the sample correlations ρ̄1,1, . . . , ρ̄1,k, the costs w1, . . . , wk, and the com-
putational budget p ∈ R+. Algorithm 2 first ensures that the models are in the order
derived in Theorem 3.4 and satisfy condition (3.12), and it calls Algorithm 1 if nec-
essary. The vector m and the coefficients α are derived from the sample estimates
of the variances and the correlation coefficients. Note that the variances and the
correlation coefficients are replaced by their sample estimates and thus the obtained
vector m and the coefficients α are in general not the optimal vector m∗ and optimal
coefficients α∗ as derived in Theorem 3.4. Algorithm 2 then draws mk realizations
z1, . . . ,zmk

∈ D of the random variable Z and derives the MFMC estimate ŝ as in
(3.2), which is then returned. The costs of Algorithm 2 are usually dominated by the
costs wTm of the model evaluations.

4. Numerical experiments. This section demonstrates the MFMC method on
three numerical examples. Section 4.1 considers a locally damaged plate and estimates
the mean deflection for uncertain properties of the plate. Section 4.2 presents a tubular
reactor model that leads to either a steady-state or an oscillatory solution depending
on the inputs. We estimate with our MFMC method the expected amplitude of
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(a) deflection, no damage (b) deflection, damage up to 20%

Fig. 3. Plate problem: A local damage at x∗ = [0.7, 0.4]T ∈ Ω leads to a larger deflection of
the plate.

the oscillation for uncertain inputs. Section 4.3 presents a benchmark example to
discuss the MFMC approach in case of surrogate models with significantly different
correlation coefficients.

The reported runtime measurements were obtained on compute nodes with Intel
Xeon E5-1620 CPUs and 32 GB RAM using a MATLAB implementation.

4.1. Locally damaged plate in bending. Consider the model of a clamped
plate in bending [20] with a local damage [40, 39]. The spatial domain is Ω = [0, 1]2 ⊂
R2 and the inputs z = [z1, . . . , z4] are realizations of the random variable Z with a
uniform distribution in the input domain

D = [zmin
1 , zmax

1 ]× [zmin
2 , zmax

2 ]× [zmin
3 , zmax

3 ]× [zmin
4 , zmax

4 ] ⊂ R4

with zmin = [zmin
1 , . . . , zmin

4 ]T = [0.05, 1, 0, 0.01]T ∈ R4 and zmax = [zmax
1 , . . . , zmax

4 ]T

= [0.1, 100, 0.5, 0.1]T ∈ R4. The first input z1 controls the nominal thickness of the
plate, the second input z2 the load, and the third and fourth inputs z3, z4 the damage.
The damage is a local decrease of the thickness. We define the thickness at position
x ∈ Ω and input z ∈ D as the function t : Ω×D → R with

t(x; z) = z1

(
1− z3 exp

(
− 1

2z2
4

‖x− x∗‖22
))

,

where z1 is the nominal thickness, z3, z4 are the inputs that control the damage, and
x∗ = [0.7, 0.4]T ∈ Ω is the position of the damage. Figure 3 shows the plate without
damage, i.e., z3 = 0, and with a 20% decrease of the thickness, i.e., z3 = 0.2. The
output y ∈ Y ⊂ R of the model is the mean deflection of the plate.

The high-fidelity model f (1) : D → Y of the plate problem is derived with the
finite element method as described in [40, 20]. The discretized system of equations is
nonlinear in the inputs. The high-fidelity model has 279 degrees of freedom. We are
interested in the expected mean deflection E[f (1)(Z)].

We create five different surrogate models as follows. We evaluate the high-fidelity
model f (1) at 1000 realizations of the random variable Z and derive a proper orthog-
onal decomposition (POD) basis of the corresponding solutions. A reduced model
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Table 1
The tables summarize the costs and the correlation coefficients of the models used in the plate

problem in section 4.1 and in the tubular reactor problem in section 4.2.

Costs [s] Corr. coefficient

f (1) 4.0894× 10−1 1.00000000× 100

f (2) 4.9890× 10−3 9.99999983× 10−1

f (3) 1.3264× 10−3 9.99999216× 10−1

f (4) 2.9550× 10−4 9.99954506× 10−1

f (5) 2.2260× 10−5 9.98971009× 10−1

f (6) 1.5048× 10−6 9.97555261× 10−1

Costs [s] Corr. coefficient

f (1) 4.4395× 101 1.000000× 100

f (2) 6.8409× 10−1 9.999882× 10−1

f (3) 2.9937× 10−1 9.999743× 10−1

f (4) 1.9908× 10−4 9.958253× 10−1

(a) plate problem (b) tubular reactor problem

f (2) with 10 degrees of freedom is derived via Galerkin projection of the discretized
system of equations of the high-fidelity model onto the 10-dimensional POD space
as described in [40]. Similarly, we define f (3) and f (4) to be reduced models of f (1)

with two and five POD basis vectors, respectively. We further derive a data-fit sur-
rogate model f (5) with piecewise linear interpolation over a tensorized grid in D. Let
therefore φi(z) = max{1 − |3z − i|, 0}, i = 0, . . . , 3, be basis functions defined at the
grid points i/3, i = 0, . . . , 3 in [0, 1] ⊂ R. The surrogate model f (5) : D → Y is the
piecewise linear interpolant defined as

f (5)(z) =

3∑
i1=0

3∑
i2=0

3∑
i3=0

3∑
i4=0

βi1,i2,i3,i4

4∏
j=1

φij

(
zj − zmin

j

zmax
j − zmin

j

)
,

where the coefficients βi1,i2,i3,i4 are derived from the interpolation conditions

f (5)(zi1,i2,i3,i4) = f (1)(zi1,i2,i3,i4), i1, i2, i3, i4 = 0, . . . , 3,

at the equidistant grid points

zi1,i2,i3,i4 =


i1/3(zmax

1 − zmin
1 ) + zmin

1

i2/3(zmax
2 − zmin

2 ) + zmin
2

i3/3(zmax
3 − zmin

3 ) + zmin
3

i4/3(zmax
4 − zmin

4 ) + zmin
4

 ∈ D, i1, i2, i3, i4 = 0, . . . , 3,

in the domain D. The model f (5) is derived with the “griddedInterpolant” class
of MATLAB and the option “linear” [33]. Note that there are other interpolation
techniques for deriving surrogate models, e.g., sparse grid techniques [10]. We also
derive a regression-based surrogate model f (6) : D → Y with SVMs [16] from 256
realizations of Z and the corresponding high-fidelity model outputs. We use the
libsvm implementation [11] with ε-SVM (option “-s 3”) and radial basis functions
(option “-t 2”). We perform a five-fold cross validation to select the kernel bandwidth
and the costs parameters. The ε in the cost function is set to ε = 10−2. Overall,
we have the high-fidelity model f (1), the reduced models f (2), f (3), f (4), the data-fit
surrogate model f (5), and the SVM model f (6).

Let y
(1)
n be the Monte Carlo estimate of E[f (1)(Z)] with n = 105 samples. The

sample variances and the sample correlation coefficients for the models f (1), . . . , f (6)

are computed from 100 realizations of Z; see Table 1(a). Note that the models are
ordered descending with respect to the absolute sample correlation coefficients; see
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Fig. 4. Plate model: The MFMC estimator combines the high-fidelity model f (1), the reduced
model f (2), and the data-fit model f (5) to estimate the expectation of the deflection of the damaged
plate. The runtime to derive an MFMC estimate is four orders of magnitude lower than the runtime
to obtain the Monte Carlo estimate of comparable accuracy that uses the high-fidelity model only.
Furthermore, the runtime of the MFMC estimator is two orders of magnitude lower than using the
Monte Carlo method with the reduced model f (2).

Theorem 3.4. We estimate the MSE of an estimator s̄ over 10 runs as

(4.1) ê =
1

10

10∑
i=1

(
y(1)
n − s̄i

)2

,

where each of the estimates s̄1, . . . , s̄10 is derived from independent samples. In case
of the MFMC estimator s̄ = ŝ, Algorithm 2 is run 10 times to obtain the estimates
ŝ1, . . . , ŝ10.

Figure 4 reports the estimated MSE (4.1) of the Monte Carlo estimators that
use the high-fidelity model f (1), the reduced model f (2), and the data-fit surrogate
model f (5). The Monte Carlo estimators that use the reduced model f (2) and the
data-fit surrogate model f (5) are biased estimators of expectation E[f (1)(Z)], which
can be seen in Figure 4 in the case of the data-fit surrogate model. Figure 4 compares
the estimated MSEs of the Monte Carlo estimators to the estimated MSE of the
MFMC estimator that combines the high-fidelity f (1), the reduced f (2), and the data-
fit surrogate model f (5). The MFMC estimator achieves a speedup of up to four orders
of magnitude compared to the Monte Carlo estimator that uses the high-fidelity model
only and a speedup of up to two orders of magnitude compared to using the reduced
model only. The results confirm that the MFMC estimator is an unbiased estimator
of E[f (1)(Z)]. The MFMC estimator evaluates the data-fit surrogate model, but, in
contrast to the Monte Carlo estimator that uses the data-fit surrogate model only, the
MFMC estimator balances the model evaluations across all three models such that
the low approximation quality of the data-fit surrogate model is compensated and its
low computational costs are leveraged.

Figure 5(a) shows that even though the data-fit surrogate model is a poor approx-
imation of the high-fidelity model, the variance of the MFMC estimator is significantly
reduced if the data-fit surrogate model is combined with the high-fidelity and the re-
duced model. This is in agreement with the discussion in section 3.3, which states
that the contribution of a surrogate model to the MFMC estimator depends on the
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Fig. 5. Plate model: The plot in (a) shows the variance of the MFMC estimator with two (high-
fidelity f (1), reduced f (2)), three (high-fidelity f (1), reduced f (2), data-fit f (5)), and all six models
f (1), . . . , f (6) (high-fidelity f (1), reduced f (2), f (3), f (4), data-fit f (5), and SVM f (6)). Compared to
the Monte Carlo method with the high-fidelity model only, a variance reduction of about four orders
of magnitude is achieved. This is similar to the speedup obtained with the MFMC estimator shown
in (b).

properties of the model but also how it relates to the models already present in the
MFMC estimator. Figure 5(a) also shows that the variance of the MFMC estimator
that uses all six models f (1), . . . , f (6)—the high-fidelity model, three reduced models,
the data-fit model, and the SVM model—is only slightly lower than the variance of
the MFMC estimator that uses the three models f (1), f (2), f (5). This again confirms
that the contribution of a surrogate models to the variance reduction depends on how
the surrogate model complements the models already present in the MFMC estima-
tor. Note that the variance Var[ŝ] of the MFMC estimator can be estimated without
model evaluations from the sample variances and the sample correlation coefficients
with (3.6), and thus it is a computationally efficient guide for adding surrogate mod-
els to the MFMC estimator. The estimated MSE shown in Figure 5(b) confirms the
variance reduction results in Figure 5(a).

Figure 6 reports the relative share of each model in the total number of model
evaluations, i.e., in the total number of samples. The shares of the models vary by
orders of magnitude between the high-fidelity, the reduced, the data-fit, and the SVM
models, reflecting their correlations and costs. Note that the relative shares of the
models are independent of the computational budget p, because all components of
m∗ scale linearly with p; see Theorem 3.4.

We use the sample variances and the sample correlation coefficients to determine
the number of model evaluations m and the coefficients α. Table 2 compares sam-
ple variances and sample correlation coefficients computed from 10, 100, and 1000
samples. The different number of samples leads to different estimates. Note that
even though the sample variances σ̄i, i = 1, . . . , k, change by a factor of two when
increasing the sample size from 10 to 100, the ratios σ̄1/σ̄i, i = 1, . . . , k change only
slightly. Since only the ratios σ̄1/σ̄i, i = 1, . . . , k, enter the computation of the co-
efficients α, the variations in the sample variances have only a minor effect on the
coefficients α. This is confirmed by Figure 7, which shows that the perturbations in
the sample variances and the sample correlation coefficients have a small effect on the
estimated MSE of the MFMC estimator and on the distribution of the work; see also
the discussion in section 3.4 and Figure 2.
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Fig. 6. Plate model: The plot reports how Algorithm 2 distributes the total number of samples
across the high-fidelity, the reduced, the data-fit, and the SVM models for the MFMC estimator with
two, three, and six models. Note the logarithmic scale on the y-axis.

Table 2
Plate example: The table compares the sample correlation coefficients and the sample variances

computed from 10, 100, and 1000 samples, respectively.

Sample correlation coefficients
From 10 samples From 100 samples From 1000 samples

f (1) 1.00000000× 100 1.00000000× 100 1.00000000× 100

f (2) 9.99999963× 10−1 9.99999983× 10−1 9.99999986× 10−1

f (3) 9.99997494× 10−1 9.99999216× 10−1 9.99999238× 10−1

f (4) 9.99882814× 10−1 9.99954506× 10−1 9.99948132× 10−1

f (5) 9.98582674× 10−1 9.98971009× 10−1 9.98580437× 10−1

f (6) 9.94953355× 10−1 9.97555261× 10−1 9.96563656× 10−1

Sample variances
From 10 samples From 100 samples From 1000 samples

f (1) 5.322× 10−3 1.5511× 10−2 1.4968× 10−2

f (2) 5.322× 10−3 1.5510× 10−2 1.4967× 10−2

f (3) 5.338× 10−3 1.5531× 10−2 1.4975× 10−2

f (4) 5.306× 10−3 1.5535× 10−2 1.4946× 10−2

f (5) 6.921× 10−3 1.8963× 10−2 1.7429× 10−2

f (6) 6.051× 10−3 1.5566× 10−2 1.4298× 10−2

4.2. Limit cycle oscillation in tubular reactor. Consider a one-dimensional
nonadiabatic tubular reactor with a single reaction and axial mixing as introduced
in [26]. The spatial domain is Ω = [0, 1] ⊂ R, the time domain is [0, T ] ⊂ R with
T = 500s, and the input domain is D = R. The governing equations are coupled
nonlinear time-dependent convection-diffusion-reaction equations

∂

∂t
uc(x, t; z) =

1

Pe

∂2

∂x2
uc(x, t; z)− ∂

∂x
uθ(x, t; z)− zg(uc, uθ),

∂

∂t
uθ(x, t; z) =

1

Pe

∂2

∂x2
uθ(x, t; z)− ∂

∂x
uθ(x, t; z)− β(uθ(x, t; z)− θ0) + εzg(uc, uθ),
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(a) estimated MSE (b) distribution of work among models

Fig. 7. Plate model: We use the sample variances and sample correlation coefficients to de-
termine the number of model evaluations m and the coefficients α. The plot in (a) compares the
estimated MSE of our MFMC estimators (with models f (1), f (2), f (5)) obtained from the sample vari-
ances and sample correlation coefficients from 10, 100, and 1000 samples, respectively; see Table 2.
The plot indicates that small perturbations in the sample correlation coefficients have a small effect
on the MSE of the MFMC estimators. The plot in (b) confirms that small perturbations in the
sample estimates lead to small changes in the number of model evaluations.
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Fig. 8. Tubular reactor: If the input z < z∗ is below the critical parameter z∗ ∈ D, the
temperature and the concentration of the tubular reactor converge to a steady state as shown in (a)
for the temperature at 1 ∈ Ω. If z > z∗, the tubular reactor enters an LCO as plotted in (b).

with the concentration uc : Ω×[0, T ]×D → R, the temperature uθ : Ω×[0, T ]×D → R,
and

g(uc, uθ) = uc exp
(
γ − γ

uθ

)
.

The nonlinear function g models an Arrhenius-type nonlinear reaction term. The
Péclet number is Pe = 5 and γ = 25, β = 2.5, ε = 0.5, and θ0 = 1 are known
constants. We impose Robin boundary conditions at x = 0, Neumann boundary
conditions at x = 1, and the initial condition as in [26].

The input z ∈ D is the Damköhler number. The Damköhler number controls the
behavior of the reactor. If z < 0.165, the concentration and the temperature of the
reactor converge to a steady-state solution as shown in Figure 8(a). If z > 0.165,
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Fig. 9. Tubular reactor: The bifurcation diagram in (a) visualizes the two regimes of the
tubular reactor. The LCO amplitude as shown in (b) is the difference between the temperature and
the equilibrium position.

the reactor enters a limit cycle oscillation (LCO) around a nontrivial equilibrium
position as shown in Figure 8(b). These two regimes are represented in the bifurcation
diagram in Figure 9(a). The LCO amplitude is the amplitude of the oscillation of the
temperature at x = 1. Figure 9(b) shows the LCO amplitude for inputs in [0.16, 0.17],
where for z < 0.165 the reactor converges to a steady-state solution and therefore the
LCO amplitude is zero. We define the LCO amplitude as the output of the tubular
reactor model.

The high-fidelity model f (1) is derived as in [51] and is based on a finite difference
discretization of the governing equations on a grid with 101 equidistant grid points in
the spatial domain Ω. The high-fidelity model has 198 degrees of freedom. The model
is marched forward in time with an explicit fourth-order Runge–Kutta method with
time step size 10−4s. The time stepping is stopped if either the solution converged to a
steady state or an LCO is detected. In order to derive two reduced models, we evaluate
the high-fidelity model at 20 inputs z1, . . . , z20 ∈ [0.16, 0.17] that coincide with an
equidistant grid in [0.16, 0.17]. The concentration and temperature at the grid points
in the spatial domain are stored every 0.25 s. A reduced basis is constructed with POD
from the stored concentration and temperature. The reduced model f (2) is derived
with Galerkin projection of the discretized equations of the high-fidelity model onto
the reduced space spanned by the first 10 POD basis vectors. The nonlinear function
g is evaluated explicitly—i.e., in each time step, the intermediate reduced solution
is projected onto the high-dimensional solution space of the high-fidelity model, the
function g is evaluated, and the result is projected back onto the 10-dimensional POD
space. The reduced model f (3) is derived as f (2) except that the nonlinear function g is
approximated by the discrete empirical interpolation method (DEIM) [12] as described
in [51]. The number of DEIM basis vectors and the number of DEIM interpolation
points is eight. Similarly to section 4.1, we additionally construct a data-fit surrogate
model f (4) with piecewise cubic interpolation from the inputs coinciding with the 10
equidistant grid points in [0.16, 0.17] and the corresponding outputs. The piecewise
cubic interpolant is derived with the “interp1” command in MATLAB and option
“cubic” [33]. We therefore have four models: the high-fidelity model f (1), two reduced
models f (2), f (3), and the data-fit surrogate model f (4).

We are interested in the expectation of the LCO amplitude E[f (1)(Z)] if the
Damköhler number is uncertain and a realization of the random variable Z with a
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[ŝ
]

budget p

one model (Monte Carlo)
two models

three models
four models

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e-02 1e+00 1e+02 1e+04

es
ti
m
at
ed

M
S
E

runtime [s]

one model (Monte Carlo)
two models
three models
four models

(a) variance (b) estimated MSE (4.1)

Fig. 10. Tubular reactor: The plot in (a) compares the variance of the Monte Carlo estimator
with the high-fidelity model f (1) (one model) to the MFMC estimator that uses the high-fidelity model
f (1) and the reduced model f (2) (two models) and shows the reduction that is achieved when the
data-fit model f (4) is added (three models) and when the reduced model f (3) is added (four models).
The MFMC estimator achieves an up to four orders of magnitude higher accuracy than the Monte
Carlo estimator; see (b).

normal distribution with mean 0.167 and standard deviation 0.03. The Monte Carlo
estimate y

(1)
n of E[f (1)(Z)] is computed from n = 103 realizations of Z and is used to

estimate the MSE as in (4.1). The estimated MSE is computed as in (4.1) over 10
runs. The sample variances and sample correlation coefficients are derived from 100
realizations of Z; see Table 1(b).

Figure 10(a) shows the variance of the MFMC estimators using up to four mod-
els. The variance is computed with the sample variances and sample correlation
coefficients. Combining the high-fidelity model f (1) with the reduced model f (2) that
explicitly evaluates the nonlinear function g and the data-fit surrogate model f (4) leads
to a variance reduction of about four orders of magnitude. Adding the reduced model
f (3) that approximates the nonlinear function with DEIM improves the variance only
slightly. Note that a similar situation was observed in section 4.1 and Figure 5(a).
The variance reduction is reflected in Figure 10(b), where the estimated MSE of the
MFMC estimator with the high-fidelity f (1), the reduced f (2), and the data-fit surro-
gate model f (4) achieves an improvement of about four orders of magnitude compared
to the Monte Carlo estimator that uses the high-fidelity model only.

4.3. Short column. To demonstrate MFMC on surrogate models with low cor-
relation coefficients, we consider an analytic model of a short column with rectangular
cross-sectional area subject to bending and axial force. The analytic model is used
in [28, 29, 35] in the context of reliability-based optimal design. We follow [28] and
define the high-fidelity model as

f (1)(z) = 1− 4z4

z1z2
2z3
−
(

z5

z1z2z3

)2

,

where z = [z1, . . . , z5]T ∈ D with

D = [5, 15]× [15, 25]× R+ × R× R.

Let Z be the input random variable such that the width z1 is distributed uniformly
in [5, 15], the depth z2 is distributed uniformly in [15, 25], the yield stress z3 is log-
normally distributed with mean 5 and standard deviation 0.5, the bending moment
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Table 3
Short column: The table reports the correlation coefficients and the costs of models f (1), . . . , f (7).

f (1) f (2) f (3) f (4) f (5) f (6) f (7)

Corr. coeff. 1.000 0.9905 0.8251 0.7183 0.9905 0.8251 0.7183
Costs 1 10−1 10−1 10−1 10−5 10−5 10−5
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Fig. 11. Short column: The plots in (a) and (b) show that even surrogate models with low
correlation coefficients can lead to runtime speedups if the costs are low.

z4 is distributed normally with mean 2000 and standard deviation 400, and the axial
force z5 is distributed normally with mean 500 and standard deviation 100 [28, 29].
Since the computational costs of evaluating the high-fidelity model are negligible, we
assign the costs w1 = 1 for demonstration purposes.

We derive three functions of f (1) that serve as our surrogate models:

f (2)(z) = 1− z4

z1z2
2z3
−
(

z5

z1z2z3

)2

,

f (3)(z) = 1− z4

z1z2
2z3
−
(
z5(1 + z4)

z1z2z3

)2

,

f (4)(z) = 1− z4

z1z2
2z3
−
(
z5(1 + z4)

z2z3

)2

.

We assign the costs w2 = w3 = w4 = 10−1. We additionally derive the surrogate
models f (5) = f (2), f (6) = f (3), and f (7) = f (4) with costs w5 = w6 = w7 = 10−5. The
sample estimates of the correlation coefficients from 100 realizations of the random
variable Z are reported in Table 3. Note that we derived the surrogate models such
that we obtain the correlation coefficients ρ1,2 ≈ 0.9, ρ1,3 ≈ 0.8, and ρ1,4 ≈ 0.7.

We are interested in the expected value E[f (1)(Z)]. The Monte Carlo estimate

y
(1)
n of E[f (1)(Z)] is computed from n = 106 realizations of Z and is used to estimate

the MSE as in (4.1) over 100 runs. First consider the estimated MSE of the MFMC
estimator with the models f (1), f (4) as reported in Figure 11(a). The correlation
coefficient (ρ1,4 ≈ 0.7) between f (1) and f (4) is low and the costs w4 high, and therefore
no savings can be obtained compared to the benchmark Monte Carlo estimator that
uses the high-fidelity model f (1) only. Models f (3) and f (2) have a larger correlation
coefficient than f (4) and therefore lead to larger runtime savings. A similar situation
can be seen in Figure 11(b) for the models f (5), f (6), and f (7), which have the same
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correlation coefficients as the models f (2), f (3), and f (4), respectively, but significantly
lower costs.

5. Conclusions. The proposed MFMC method leverages computationally cheap
surrogate models to reduce the runtime of estimating statistics of expensive high-
fidelity models while maintaining unbiasedness of the resulting estimator. An opti-
mization problem with an analytic solution optimally balances the model evaluations
across the high-fidelity model and an arbitrary number of surrogate models of any
type, including projection-based reduced models, data-fit surrogate models, support
vector machines, and simplified models. The MFMC estimator achieved runtime
speedups by several orders of magnitude in the presented numerical examples com-
pared to the Monte Carlo estimator that uses the high-fidelity model only.

The benefit of adding a surrogate model to the models available to the MFMC
estimator depends on the properties of the surrogate model itself and also on the new
information introduced by the surrogate model compared to information provided by
the other models already present in the MFMC estimator. The mathematical and
numerical results show that combining surrogate models of different types, approxi-
mation quality, and costs is often more beneficial than combining accurate surrogate
models only. The MFMC estimator is unbiased, independent of the availability of a
priori error bounds and a posteriori error estimators for the surrogate models.

Future work includes an extension to models with vector-valued outputs. An ad
hoc way to cope with vector-valued outputs is to perform the model management
with respect to each component of the output separately. This leads to multiple
model management solutions, from which the one with the largest number of high-
fidelity model evaluations can be selected. An extension that can directly handle
vector-valued models is future work.

Appendix A. Auxiliary lemmas.

Lemma A.1. Consider the same setting as in Theorem 3.4. Let (m, α2, . . . , αk)
be a local minimum of (3.10) with budget p ∈ R+. Define α1 = 1 and αk+1 = 0. Let
l = [l1, . . . , lq]

T ∈ Nq be the vector with the components l1, . . . , lq ∈ {2, . . . , k} that are
the q ∈ N indices with

(A.1) mli−1 < mli , i = 1, . . . , q,

and
mli = mli+1 = · · · = mli+1−1, i = 0, . . . , q,

and l0 = 1 and lq+1 = k + 1. Define r = [r1, . . . , rk]T ∈ Rk+ with the components
ri = mi/m1 with i = 1, . . . , k. Then, the local minimum (m, α2, . . . , αk) leads to

(A.2) rli =
mli

m1
=

√√√√√
(∑l1−1

j=1 wj

)
(∑li+1−1

j=li
wj

) (ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)

with i = 0, . . . , q and m1 > 0. The q coefficients αl1 , . . . , αlq are

(A.3) αli =
ρ1,liσ1

σli

for i = 1, . . . , q and

m1 =
p

wTr
.(A.4)
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Proof. A vector l ∈ Nq exists and is unique because of the strict inequality in
(A.1). If m1 = · · · = mk, then q = 0. Consider now the Lagrangian

Ĵ(m, α2, . . . , αk, λ, ξ, µ2, . . . , µk) = J(m, α2, . . . , αk) + λ(wTm− p)− ξm1(A.5)

+

k∑
i=2

µi(mi−1 −mi)

of the optimization problem (3.10) with the Lagrange multipliers λ, ξ, µ2, . . . , µk ∈ R.
The partial derivatives of J with respect to m are


∂Ĵ

∂m1
...

∂Ĵ

∂mk

 =



− 1

m2
1

σ2
1 −

1

m2
1

(α2
2σ

2
2 − 2α2ρ1,2σ1σ2) + λw1 + µ2 − ξ

1

m2
2

(α2
2σ

2
2 − 2α2ρ1,2σ1σ2)− 1

m2
2

(α2
3σ

2
3 − 2α3ρ1,3σ1σ3) + λw2 − µ2 + µ3

1

m2
3

(α2
3σ

2
3 − 2α3ρ1,3σ1σ3)− 1

m2
3

(α2
4σ

2
4 − 2α4ρ1,4σ1σ4) + λw3 − µ3 + µ4

1

m2
4

(α2
4σ

2
4 − 2α4ρ1,4σ1σ4)− 1

m2
4

(α2
5σ

2
5 − 2α5ρ1,5σ1σ5) + λw4 − µ4 + µ5

...
1

m2
k

(α2
kσ

2
k − 2αkρ1,kσ1σk) + λwk − µk



,

(A.6)

and with respect to α2, . . . , αk

(A.7)


∂Ĵ

∂α2
...

∂Ĵ

∂αk

 =



(
1

m1
− 1

m2

)(
2α2σ

2
2 − 2ρ1,2σ1σ2

)
...(

1

mk−1
− 1

mk

)(
2αkσ

2
k − 2ρ1,kσ1σk

)

 .

Since (m, α2, . . . , αk) is a local minimum of (3.10) and since the constraints are affine
functions in m and α2, . . . , αk, it follows with the Karush–Kuhn–Tucker (KKT) con-
ditions [7] that λ, ξ, µ2, . . . , µk ∈ R exist with[

∂Ĵ

∂m1
. . .

∂Ĵ

∂mk

∂Ĵ

∂α2
. . .

∂Ĵ

∂αk

]
= 0,(A.8)

mi−1 −mi ≤ 0, i = 2, . . . , k,(A.9)

−m1 ≤ 0,(A.10)

wTm− p = 0,(A.11)

ξ, µ2, . . . , µk ≥ 0,(A.12)

µi(mi−1 −mi) = 0, i = 2, . . . , k,(A.13)

−ξm1 = 0.(A.14)

We use the KKT conditions (A.8)–(A.14) to show that the local minimum (m,
α2, . . . , αk) leads to the coefficients αl1 , . . . , αlq as in (A.3), to m1 > 0, to r =
[r1, . . . , rk]T as defined in (A.2), and to m1 = p/(wTr) as in (A.4).

First consider the case where m1 = · · · = mk and therefore q = 0. Since q = 0,
nothing is to show for the coefficients. The vectorm satisfies the constraint wTm = p
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because (m, α2, . . . , αk) is a local minimum of (3.10). Because p ∈ R+ and 0 <
w1, . . . , wk, we have m1 > 0. The definition of r leads to r1 = · · · = rk = 1. With
the definition l0 = 1 and lq+1 = k + 1 and the convention ρ1,k+1 = 0 we have r as in
(A.2). We further have m1 = p/(wTr) because r = [1, . . . , 1]T .

Consider now the case with q > 0, i.e., mli−1 < mli for i = 1, . . . , q. With
mli−1 < mli we also obtain mli−1 6= mli for i = 1, . . . , q. Because (m, α2, . . . , αk) is a
local minimum, the partial derivatives of Ĵ with respect to αl1 , . . . , αlq in (A.7) have
to be zero (see (A.8)), which leads to the coefficients as in (A.3).

We now show m1 > 0 and ξ = 0. Evaluating the objective function J at the local
minimum (m, α2, . . . , αk) gives

J(m, α2, . . . , αk) =
σ2

1

m1
+

q∑
i=1

(
1

mli−1
− 1

mli

)
(−ρ2

1,liσ
2
1),

where we used the coefficients as in (A.3). Since m1 < ml1 < ml2 < · · · < mlk per
definition of l, and since σ2

1 6= ρ2
1,l1

σ2
1 because 1 = ρ2

1,1 > ρ2
1,l1

(see the ordering
with respect to the squared correlation coefficients in Theorem 3.4), the objective J
converges for m1 → 0 to ∞+ from above. Therefore, m1 > 0 and with (A.14) we
obtain ξ = 0.

The vector m satisfies the constraint wTm = p because (m, α2, . . . , αk) is a local
minimum of (3.10), and therefore m1 = p/(wTr) as in (A.4). From (A.13) we derive
the Lagrange multipliers µl1 = · · · = µlq = 0, because mli 6= mli−1 for i = 1, . . . , q.

We now derive the Lagrange multiplier λ. Per definition of l we have m1 = · · · =
ml1−1. The partial derivative of Ĵ with respect to ml1−1, i.e., the component l1 − 1
of the vector of partial derivatives of Ĵ with respect to m (A.6), leads to

(A.15)
1

m2
1

(α2
l1−1σ

2
l1−1−2αl1−1ρ1,l1−1σ1σl1−1)− 1

m2
1

(−ρ2
1,l1σ

2
1)+λwl1−1−µl1−1 = 0,

where we used αl1 = ρ1,l1σ1/σl1 , µl1 = 0, and ξ = 0. Note that α1 = 1 per definition
and therefore (A.15) holds also in case l1 = 2. If l1 > 2, we find with the components
1, . . . , l1 − 2 of the vector of partial derivatives of Ĵ with respect to m (A.6) that

(A.16) α2
l1−1σ

2
l1−1 − 2αl1−1ρ1,l1−1σ1σl1−1 = −σ2

1 + λm2
1

l1−2∑
i=1

wi +m2
1µl1−1,

because m1 = · · · = ml1−1 and µ2, . . . , µl1−2 cancel. We use (A.16) in (A.15) and
obtain

1

m2
1

(
−σ2

1 + λm2
1

l1−2∑
i=1

wi

)
− 1

m2
1

(−ρ2
1,l1σ

2
1) + λwl1−1 = 0,

where µl1−1 canceled, which leads to

(A.17) λ =
σ2

1(1− ρ2
1,l1

)

m2
1

∑l1−1
i=1 wi

.

We now derive r1, . . . , rk. We have per definition r1 = · · · = rl1−1 = 1 because
m1 = m2 = · · · = ml1−1. Consider now mli = · · · = mli+1−1 for i = 1, . . . , q. The

components li to li+1 − 1 of the vector of partial derivatives of Ĵ with respect to m
(A.6) with condition (A.8) of the KKT conditions lead to

(A.18)
1

m2
li

(−ρ2
1,liσ

2
1) + λ

li+1−1∑
j=li

wj −
1

m2
li

(−ρ2
1,li+1

σ2
1) = 0,
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where we used µli = µli+1
= 0, αli = ρ1,liσ1/σli , and αli+1

= ρ1,li+1
σ1/σli+1

. Note
that µli+1, . . . , µli+1−1 cancel. Insert λ as derived in (A.17) into (A.18) and obtain

σ2
1

m2
li

(ρ2
1,li − ρ

2
1,li+1

) =
σ2

1(1− ρ2
1,l1

)

m2
1

∑l1−1
j=1 wj

li+1−1∑
j=li

wj .

This leads to

r2
li =

m2
li

m2
1

=

(∑l1−1
i=1 wi

)
(∑li+1−1

j=li
wj

) (ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)
.

Note that 1 = ρ2
1,1 > ρ2

1,l1
(see Theorem 3.4) and therefore 1 − ρ2

1,l1
> 0. The

positivity of the components of m given by m1 > 0 and the inequality constraints
of the optimization problem, the convention ρ1,k+1 = 0, and the definition αk+1 = 0
lead to r∗ as given in (A.2).

Lemma A.2. Consider the same setting as in Theorem 3.4. The value of the
objective function J at a local minimum (m, α2, . . . , αk) of (3.10) for the budget
p ∈ R+ is

(A.19) J(m, α2, . . . , αk) =
σ2

1(1− ρ2
1,l1

)p

m2
1

∑l1−1
i=1 wi

,

where q ∈ N and l = [l1, . . . , lq]
T ∈ Nq are defined as in Lemma A.1.

Proof. Use rl0 , . . . , rlq and αl1 , . . . , αlq as derived in Lemma A.1 and the objective
as defined in (3.9) to obtain

(A.20) J(m, α2, . . . , αk) =
σ2

1

m1

(
1−

q∑
i=1

(
1

rli−1

− 1

rli

)
ρ2

1,li

)
.

Note that rli = rli+1 = · · · = rli+1−1 for i = 0, . . . , q and thus that the corresponding
terms in the sum of the objective J evaluate to 0. Expanding the sum in (A.20) leads
to

(A.21) J(m, α2, . . . , αk) =
σ2

1

m1

(
1−

(
ρ2

1,l1

rl0
−
q−1∑
i=1

(ρ2
1,li
− ρ2

1,li+1
)

rli
−
ρ2

1,lq

rlq

))
.

We obtain for i = 1, . . . , q − 1 that

(ρ2
1,li
− ρ2

1,li+1
)

rli
= (ρ2

1,li − ρ
2
1,li+1

)

√√√√√
(∑li+1−1

j=li
wj

)
(∑l1−1

j=1 wj

) (1− ρ2
1,l1

)

(ρ2
1,li
− ρ1,l2i+1

)︸ ︷︷ ︸
1

rli

=
(1− ρ2

1,l1
)
(∑li+1−1

j=li
wj

)
∑l1−1
j=1 wj

√√√√√
(∑li+1−1

j=li
wj

)
(∑l1−1

j=1 wj

) (ρ2
1,i − ρ2

1,i+1)

(1− ρ2
1,l1

)︸ ︷︷ ︸
rli

,
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which we use in (A.21) to derive

J(m, α2, . . . , αk) =
σ2

1

m1

1−
ρ2

1,l1

rl0
+

(
1− ρ2

1,l1∑l1−1
i=1 wi

)
q−1∑
i=1

li+1−1∑
j=li

wjrli +
ρ2

1,lq

rlq

(A.22)

=
σ2

1(1− ρ2
1,l1

)

m1

∑l1−1
i=1 wi

k∑
i=1

wiri.

Use wTr = p/m1 (see Lemma A.1) to obtain (A.19).

Lemma A.3. Consider the same setting as in Theorem 3.4. In particular, let
ρ2

1,1 > · · · > ρ2
1,k > 0 and let the costs w = [w1, . . . , wk]T ∈ Rk+ satisfy

(A.23)
wi−1

wi
>
ρ2

1,i−1 − ρ2
1,i

ρ2
1,i − ρ2

1,i+1

for i = 2, . . . , k. Let q ∈ N with q < k − 1 and l = [l1, . . . , lq]
T ∈ Nq with 1 < l1 <

· · · < lq < k + 1 and set l0 = 1 and lk+1 = k + 1. The costs w1, . . . , wk and the
correlation coefficients ρ1,1, . . . , ρ1,k satisfy the inequality

(A.24)

k∑
j=1

√
wj(ρ2

1,j − ρ2
1,j+1) <

q∑
i=0

√√√√√
li+1−1∑

j=li

wj

(ρ2
1,li
− ρ2

1,li+1

)
.

Proof. Rewrite (A.24) as

(A.25)

q∑
i=0

li+1−1∑
j=li

√
wj(ρ2

1,j − ρ2
1,j+1) <

q∑
i=0

√√√√√
li+1−1∑

j=li

wj

(ρ2
1,li
− ρ2

1,li+1

)
.

There exists an i ∈ {0, . . . , q} with li+1 − li > 1 because q < k − 1. The terms of the
outer sum in (A.25) are nonnegative and therefore it is sufficient to show

(A.26)

li+1−1∑
j=li

√
wj(ρ2

1,j − ρ2
1,j+1) <

√√√√√
li+1−1∑

j=li

wj

(ρ2
1,li
− ρ2

1,li+1

)
.

First consider the case li+1− li = 2, where we define for the sake of exposition a = li,
b = li + 1, and c = li+1. The inequality of the arithmetic and the geometric mean
leads to

(A.27)
√
wawb(ρ2

1,a − ρ2
1,b)(ρ

2
1,b − ρ2

1,c) <
wa(ρ2

1,b − ρ2
1,c) + wb(ρ

2
1,a − ρ2

1,b)

2
.

Note that there is a strict inequality in (A.27) because assumption (A.23) guarantees
wb(ρ

2
1,a − ρ2

1,b) 6= wa(ρ2
1,b − ρ2

1,c) through

wb(ρ
2
1,a − ρ2

1,b) < wa(ρ2
1,b − ρ2

1,c).
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Adding the positive quantities wa(ρ2
1,a − ρ2

1,b) and wb(ρ
2
1,b − ρ2

1,c) to both sides of
(A.27) results in

(A.28)
(√

wa(ρ2
1,a − ρ2

1,b) +
√
wb(ρ2

1,b − ρ2
1,c)
)2

< (wa + wb)(ρ
2
1,a − ρ2

1,c).

Taking the square root of (A.28) shows

(A.29)
√
wa(ρ2

1,a − ρ2
1,b) +

√
wb(ρ2

1,b − ρ2
1,c) <

√
(wa + wb)(ρ2

1,a − ρ2
1,c),

which is (A.26) for the case li+1 − li = c− a = 2.
We now show that the result for li+1 − li = 2 can be extended to li+1 − li = 3.

Define a = li, b = li + 1, c = li + 2, and d = li+1 and use (A.29) to derive√
wa(ρ2

1,a − ρ2
1,b) +

√
wb(ρ2

1,b − ρ2
1,c) +

√
wc(ρ2

1,c − ρ2
1,d)(A.30)

<
√

(wa + wb)(ρ2
1,a − ρ2

1,c) +
√
wc(ρ2

1,c − ρ2
1,d).

Assumption (A.23) leads to

wa + wb
wc

=
wa
wc

+
wb
wc

>
wa
wb

wb
wc

+
wb
wc

>
ρ2

1,a − ρ2
1,b

ρ2
1,c − ρ2

1,d

+
ρ2

1,b − ρ2
1,c

ρ2
1,c − ρ2

1,d

=
ρ2

1,a − ρ2
1,c

ρ2
1,c − ρ2

1,d

,

and thus we obtain√
wa(ρ2

1,a − ρ2
1,b) +

√
wb(ρ2

1,b − ρ2
1,c) +

√
wc(ρ2

1,c − ρ2
1,d)

<
√

(wa + wb + wc)(ρ2
1,a − ρ2

1,d)

with the same arguments as (A.29). Induction establishes the inequality (A.26) for
the case li+1 − li > 3.
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