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We consider control and stabilization for large-scale dynamical systems
with uncertain, time-varying parameters. The time-critical task of control-
ling a dynamical system poses major challenges: Using large-scale models
is prohibitive, and accurately inferring parameters can be expensive, too.
We address both problems by proposing an offline-online strategy for con-
trolling systems with time-varying parameters. During the offline phase, we
use a high-fidelity model to compute a library of optimal feedback controller
gains over a sampled set of parameter values. Then, during the online phase,
in which the uncertain parameter changes over time, we learn a reduced-
order model from system data. The learned reduced-order model is employed
within an optimization routine to update the feedback control throughout the
online phase. Since the system data naturally reflects the uncertain param-
eter, the data-driven updating of the controller gains is achieved without an
explicit parameter estimation step. We consider two numerical test problems
in the form of partial differential equations: a convection–diffusion system,
and a model for flow through a porous medium. We demonstrate on those
models that the proposed method successfully stabilizes the system model in
the presence of process noise.
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1 Introduction

We consider stabilization and control of large-scale dynamical systems with uncertain,
time-varying parameters, which bears significant challenges for control engineers. Math-
ematical models for industrial systems are often parameter-dependent, and the param-
eters in turn time-varying. Changes in parameters, such as boundary conditions, the
viscosity of a fluid, material coefficients in solids, etc., alter the system responses to oth-
erwise similar inputs and external disturbances. More specifically, such systems show
various degrees of sensitivity with respect to their governing parameters. A parametrized
change in a system can occur suddenly in a discontinuous fashion, e.g., in the damage
of an aircraft wing. In contrast, parameters can also change slowly and gradually, e.g.,
in fatigue scenarios of mechanical structures.

When the parameters are critical for stability or performance of the plant, appropriate
control action has to be taken to ensure that effects on the dynamics due to changes of the
underlying parameters are properly controlled. Model-based feedback control provides
an elegant and mathematically sound way to design a controller. However, there are
several challenges that have to be addressed in order to design a model-based feedback
controller for large-scale, parameter-dependent dynamical systems. First, in industrial
practice, assembling and extracting parameter-dependent system matrices is a delicate
task, due to the complex structure of legacy codes; doing so for a real-time control
application that needs repeated access to those matrices is even more challenging. Sec-
ond, if partial differential equation (PDE) models are available, their discretizations are
large-scale, rendering them infeasible for optimization and control in time-critical appli-
cations. Third, it is often difficult and expensive to estimate the underlying parameters
accurately during operation of the plant.

We address these challenges by proposing an offline-online strategy that can handle
uncertain parameters that change over time. In particular, we build on recent methods
in data-driven reduced-order modeling [1], to enable reduced-order feedback control of
large-scale dynamical systems with uncertain parameters. We use the expensive high-
fidelity model only during the offline phase; we learn a reduced-order model (ROM) from
system data in the online phase. The learned ROM is employed within a computation-
ally efficient optimization routine to update the feedback control as data is gathered
throughout the online phase. Since the system data naturally reflects the uncertain pa-
rameter, this data-driven updating of the controller gains is achieved without an explicit
parameter estimation step.

This work is related to diverse work in control, numerical linear algebra, and model
learning. When a system model itself is not readily available, one can either deviate from
model-based control altogether, or estimate system models from data. In this light, the
combination of statistical learning theory and control methods opens new pathways
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for designing efficient controllers. In the early work of [2], a neural network was used
during real-time operation, in order to train the control law from data. In the recent
work [3], statistical learning ideas are used in a model-free, data-driven framework to
compute the controller online. Moreover, the authors in [4] design a dynamic observer
(the dual problem to control) in a data-driven setup. Another alternative when models
are unavailable is to employ system identification techniques, as used by [5, 6] to estimate
the underlying system LTI operators. However, rapid changes to the underlying plant
might require fast adaptation of the control, whereas learning techniques may need more
data to adapt and confidently infer the model.

There is also a significant amount of work on learning (projection-based) reduced
models directly from snapshot data, rather than explicitly performing projection with
the system matrices. The Loewner framework provides a nonintrusive approach for
constructing reduced models of linear time-invariant (LTI) systems [7, 8]. The reduced
model is extracted directly from transfer function values, without requiring the system
matrices of the full LTI system. Vector fitting [9, 10] fits rational interpolants to fre-
quency response data of LTI systems. The eigensystem realization algorithm is another
example of a system identification approach for LTI systems [11, 12, 13, 14]. Dynamic
mode decomposition (DMD) learns a linear reduced dynamical system that best fits a
snapshot trajectory in the L2 norm [15, 16, 17] and has been extended to incorporate
control actions in [18]. Originally introduced for analyzing the behavior of dynamical
systems, DMD models have been shown to have a predictive capability as well [19]. The
work [20] uses sparsity-promoting learning techniques to select and fit basis functions of
a library to data.

For systems with time-varying, but known parameters, gain scheduling approaches
were proposed in [21, 22], where controllers are designed for specific solutions of inter-
est, such as desired operating conditions of the plant. To circumvent the problem of
large-scale models, the authors in [23] suggest using parametric ROMs as surrogates
for the high-fidelity model. Therein, ROMs are generated for the linearized equations
at fixed parameter values, and interpolated online for new parameters. In both cases,
it is assumed that the governing parameters (i.e., Reynolds number) are accessible in
real-time, an assumption we shall not make in this work.

The work of Mathelin and co-workers [24, 25] divides the control design problem
into an offline and online phase. In the offline stage, high-fidelity feedback laws are
computed with varying initial conditions. The authors parametrize the control through
the initial conditions. During an online stage, a compressed sensing approach determines
the current state of the plant, and the control is obtained by an interpolation of the
expensively computed feedback laws. Moreover, the authors in [26, 27] design offline
libraries of dynamic regimes for classification of data in an online routine.

This paper differs from these large bodies of work by considering the case of unknown
time-varying parameters. Moreover, we do not assume access to a system matrix during
operation of the controller, and therefore propose to learn and update a reduced linear
time-invariant system representation of the system for feedback control.

This paper is organized as follows. In Section 2, we state the problem formulation and
briefly review the optimal control problem for dynamical systems. We discuss solution
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approaches for fixed parameters based on low-rank methods. In Section 3 we detail
the proposed method, including the steps necessary for library generation and online
detection. Section 4 then shows numerical results for two PDE test problems. Section 5
offers a brief summary and conclusions.

2 Problem formulation and background

We start by defining the motivating problem for this research in Section 2.1. The subse-
quent sections then introduce the necessary background material: Section 2.2 discusses
the optimal control problem for a fixed set of parameters, and Section 2.3 introduces
low-rank solution strategies for the optimal control problem. We complete this section
by stating our contributions in Section 2.4.

2.1 Problem formulation

Consider the large-scale dynamical system with time-varying parameters

ż(t; q(t)) = A(q(t))z(t; q(t)) +Bu(t; q(t)), q(0) = q0 ∈ Rd, z(0; q0) = z0 ∈ Rn, (1)

y(t; q(t)) = Cz(t; q(t)), (2)

for all t > 0. The system matrix A(q(t)) ∈ Rn×n depends on the time-varying parameter
q(t) ∈ Rd, while the input matrix B ∈ Rn×m and the output matrix C ∈ Rp×n are
considered to be fixed. The controls u(t; q(t)) ∈ Rm, the observed outputs y(t; q(t)) ∈ Rp,
and the states z(t; q(t)) ∈ Rn depend on the parameters, as indicated by the (·; q(t))
notation. We also refer to system (1)-(2) as the high-fidelity model. When system
(1)–(2) stems from the spatial discretization of a PDE, the state vector contains the
unknowns corresponding to the spatially discretized PDE state variable. Our objective
is to find a control u(t; q(t)) that minimizes the convex cost

J(z, u; q) =

∫ ∞
0
||Cz(t; q(t))||22 + ||Ru(t; q(t))||22 dt, (3)

subject to the dynamic constraints (1). The matrix R ∈ Rm×m is chosen as a diagonal
matrix of control weights. The time horizon is chosen infinite, since we assume no
information as to when our controller process terminates.

We model the time-dependency in the parameters by a piecewise constant function in
time, that is

q(t) = qTi for t ∈ Ti = [ti−1, ti], i = 1, 2, . . . .

However, it is not known a priori when the parameter changes, so the switching times
ti are unknown, and hence have to be detected during online operation of the plant.
Therefore, the time interval Ti has unknown starting and end points.

Owing to the piecewise continuity of the parameters, the control takes piecewise form

u(t; q(t)) = u(t; qTi), t ∈ Ti.
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Throughout this paper, we shall use the term offline to denote non time-critical situa-
tions, such as the process of control design. In the offline stage, we assume that compu-
tational time is not of major concern, so that large-scale simulations/optimization and
computationally expensive tasks can be carried out. By online stage, we refer to time-
critical scenarios, when the plant (modeled by the dynamical system) is under operation
and data streamed. These data need to be processed, used and computed with in a
time-critical manner.

Problem 2.1 Let the system matrix A(q(t)) be accessible offline, but not online. More-
over, assume that B,C are stored and available online. For time-varying, piecewise
constant parameters q(t) ≡ qTi for t ∈ Ti = [ti−1, ti] for i ∈ N with the switching times
ti unknown a priori, solve the minimization problem

∀i ∈ N : min
zTi ,uTi

J(zTi , uTi ; qTi)

s.t. żTi(t) = A(qTi)zTi(t) +BuTi(t),

where the cost function is given by (3) and the subscripts indicate the state and control
in the interval Ti = [ti−1, ti].

2.2 Optimal control for dynamical systems with time-invariant parameters

We briefly review the optimal control problem and its solution for time-invariant param-
eters, which then illustrates the additional challenges imposed by time-varying parame-
ters. For a time-invariant parameter q, the problem of controlling (and stabilizing) the
state z(t) = z(t; q) of (1) to a desired target state as t → ∞ independent of the initial
condition z0 has been studied extensively. Indeed, a sound mathematical theory for the
performance of a feedback control exists [28] for the case of state (or measured) feedback
u(t) = u(z(t)).

Definition 2.2 The linear quadratic regulator (LQR) control problem for fixed param-
eter q is as follows:

min
z,u

J(z, u)

s.t. ż(t) = A(q)z(t) +Bu(t),

where

J(z, u) =

∫ ∞
0
||Cz(t)||22 + ||Ru(t)||22 dt.

The first term under the integral in equation (3) penalizes the deviation of the measured
output y(t) from zero. The second term penalizes a weighted control action, such that a
balance between achieving the goal of driving the measured output back to zero, and the
control effort used is found. Therefore, the LQR problem defines a family of controllers,
parametrized by the control weights R.

5



The LQR problem has a well known solution [28, Sec.3.4] in form of linear state
feedback

u(t) = −K(q)z(t). (4)

Here, K(q) denotes the gain matrix, containing the feedback gains as rows. The feedback
gains contain relevant information about the impact of the state on the control action; for
instance, feedback gains can be used to optimize sensor and actuator locations [29]. For
a fixed parameter q, and under mild assumptions (the pair A(q), B must be stabilizable,
see [30, 28]), the gain matrix and control can be computed by solving the algebraic
Riccati equation (ARE) for the unique symmetric and positive definite solution Π:

A(q)TΠ(q) + Π(q)A(q)−Π(q)BBTΠ(q) + CTC = 0, (5)

so that
K(q) = R−1BTΠ(q). (6)

Throughout this paper we assume that the Riccati equation (5) has a unique positive
definite solution for all parameter values q.

2.3 Low-rank methods to solve control problem

For a fixed parameter q, significant advances have been made to solve the algebraic
Riccati equation (5) in a large-scale setting, see for instance the survey in [31]. When n
is large, storing an n × n matrix is computationally infeasible—even more so when the
solution is needed in an online fashion—and exploiting additional structure is inevitable.
As it turns out, methods that devise a low-rank factorization

Π(q) = W (q)W (q)T , W (q) ∈ Rn×r, (7)

have been successful [32, 33, 34, 35, 36]. The rank of a matrix is defined by the maximum
number of linearly independent rows or columns. Notably, one only has to store the
matrix W (q) of size n × r, where r � n, and computing K(q) = R−1BTW (q)[W (q)T ]
does not require processing a square matrix anymore.

One way to arrive at a low-rank approximation of Π(q) is by considering a Galerkin
projection framework. In [32], the authors showed that projection-based methods pro-
vide a viable path to solving (5) efficiently. More generally, physics-based ROMs derived
via Galerkin projection have provided viable surrogates used in real-time estimation and
control [37, 38, 39, 40, 41, 42, 43].

2.4 Challenges and Contribution

The challenge of Problem 2.1 lies in the time-varying parametric dependence of the
control, requiring the computationally expensive gain computation (5)-(6) online. Since
an exact solution is computationally infeasible, one has to approximate (or update)
K(q(t)) online by only having system data available, but without knowing q(t) explicitly.
This is further complicated by the fact that A(q(t)) is also unavailable online, since it is
too expensive to evaluate.
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To solve this problem, we propose a new two-stage approach based on the LQR theory
introduced in Section 2.2. In the offline stage, the ARE (5) is solved with high accuracy
for some pre-selected parameter values, and the resulting feedback gains are stored in a
library. In the online stage (i.e., during operation of the plant), we design a mapping
from the observed outputs to an index of the library elements. This mapping provides
a rapid way to classify a change in the underlying parameters. Based on the outcome
of this classification step, we select a feedback gain from the library, and initiate an
operator inference using real-time state information from the plant. Once a ROM is
learned, we can recompute the feedback gain, leading to suboptimal controllers for the
high-dimensional system.

The proposed method exploits the low-rank structure of the Riccati solution Π(q(t)) in
a projection-based framework, but does not require knowing the parameter q(t); instead,
the method uses data to update/infer a reduced-order system representation during
online operation of the plant.

Remark 2.3 In an ideal situation where 1) the parameter function q(t) is known for
all times, and 2) the system matrices are available online and of moderate dimension
(where ARE can be solved rather cheaply online), one can solve the optimal control, for
instance with projection-based intrusive ROMs. We address the situation where both of
these assumptions fail, and where the incorporation of real system data enables us to
compute model-based feedback controllers.

3 Closed-loop control: combining model libraries and model
learning

Our proposed method learns a state-space representation for control and combines this
with a library of precomputed feedback gains, to arrive at a control strategy for systems
with time-varying, and unknown parameters. We outline the methodology in Figure 1,
and give details of the method below.

Section 3.1 briefly introduces the reduced-order modeling framework, on which we
built upon in the following subsections. The offline stage is formulated in Section 3.2,
including the computation of the library of feedback gains and low-dimensional bases.
In this stage, we work with the expensive high-fidelity model.

The online part of our proposed method avoids expensive computations, and is de-
scribed in Section 3.3. The method detects changes in the parameters, and acts on the
information by immediately switching to a feedback gain from the library, and by learn-
ing a new model to update the gains. The online section ends with a statement of the
complete algorithm.

We subsequently ease our notation by using q = q(t) except in places where it is
necessary to emphasize the time-dependence. However, the reader should note that
the time-dependency of the parameters makes the control problem significantly more
challenging than considering only fixed parameters.
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(a) Offline stage: For an initial set of parame-
ters, the high-fidelity model is used for the ex-
pensive computation of bases needed for model
learning and parameter detection, as well as for
the computation of feedback gains. The high-
fidelity information is then stored in the library.

system
plant

classification to library controller

model learning

recompute feedback

data

initial gain

data

identified basisdata

ROM

updated gain

(b) Online stage: System data is clas-
sified by mapping the data to an in-
dex in the library of bases, see Section
3.3.1. Then, model learning is initi-
ated, and a feedback gain initialized.
Once the learned model is available,
feedback is recomputed, updated, and
applied to the system.

Figure 1: Outline of the proposed offline-online method.

3.1 Reduced-order models to represent dynamics

In the offline and online stages, we build on results from reduced-order modeling of large-
scale systems, see Antoulas’ book [30]. The key observation in reduced-order modeling
is that the state of the dynamical system (1)–(2) can often be represented with a basis
of drastically reduced dimensions, i.e.,

z(t; q) ≈ V (q)ẑ(t; q), V (q) ∈ Rn×r, r � n,

where V (q) contains basis vectors for a low-dimensional, accurate representation of the
dynamics of (1)–(2). Inserting this approximation into system (1)–(2), and multiplying
by V (q)T from the left leads to a ROM of similar structure

˙̂z(t; q) = Â(q)ẑ(t; q) + B̂u(t), q(0) = q0 ∈ Rd, ẑ(0; q0) = ẑ0 ∈ Rr, (8)

y(t; q) = Cz(t; q), (9)

where Â(q) = V (q)TA(q)V (q) is the reduced-order system matrix and B̂(q) = V (q)TB.
The states of the ROM evolve in the low-dimensional subspace V (q). Subsequently, we
compute a low-dimensional basis both for learning a ROM, as well as for detection of
changes in the time-varying parameter.
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3.2 Offline: High fidelity library generation

In the offline stage, a set of M parameters {q1, . . . , qM} is chosen. The aim is to sam-
ple over parameters that are representative of the conditions one might expect during
operation of the system. This can be done by expert opinion, a greedy-type sampling
approach, or heuristic considerations. The offline stage requires three steps.

First, for each of the selected parameters, we use the high-fidelity matrices A(qi), B,C
to compute a high-fidelity LQR feedback matrix K(qi) from (6). This requires solving
the algebraic Riccati equation (5). We then store the resulting feedback matrices in a
library — a memory location (e.g., array) that is easily and quickly accessible during
operation of the system. Having the feedback matrices in the library allows us to quickly
react to changes in the parameters in the online phase.

In the second offline step, we compute detection bases VD(qi), i = 1, . . . ,M , which
provide a low-dimensional approximation of the system state and which are later needed
for detection of parametric changes. Through a projection of the system measurements
onto the detection basis in the online phase, we are able to infer the parameter qi that
generated the data. In this work, we use the method of proper orthogonal decomposition
(POD), (see e.g., [44] for a detailed description of POD). The POD method requires the
generation of S ∈ N snapshots of the dynamical system (1) through initial excitation, or
by using a time-dependent input function. The snapshots are stored in the matrix

Z(qi) = [z(t1; qi), z(t2; qi), . . . , z(tS ; qi)] ∈ Rn×S , (10)

which is the starting point to extract a low-dimensional basis to best represent the data
in an L2 sense. For large-scale systems, one likely has n � S, so that the method of
snapshots [45] provides an efficient way of computing the basis. Thus, compute the
singular value decomposition

Z(qi)
TZ(qi) = ΨΣΨT ∈ RS×S , (11)

and let Σr be the leading r × r submatrix of Σ, and Ψr denote the matrix containing
the leading r columns of Ψ. We then compute the proper orthogonal basis, and store it
in the library for later use as the detection basis

VD(qi) = Z(qi)ΨrΣ
1/2
r . (12)

A decision on how many POD basis vectors to keep is often based on the decay of the
singular values σi = Σii of the snapshot matrix, that is, by setting an energy threshold
ε ≤

∑r
i=1 σ

2
i \
∑S

i=1 σ
2
i .

In the third offline step, we compute a learning basis VL(qi), i = 1, . . . ,M , which
provides a low-dimensional basis for online learning of the reduced-order system matrix.
The details of the learning are introduced in Section 3.3.2 below. One can use VL(q) =
VD(q), but this is not a requirement. Indeed, we show in the numerical examples, that
the learning and detection bases can be different. For instance, the learning basis could
be computed through the eigenvalue decomposition of the system matrix A(qi). We
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remark that any method can be used to compute the low-dimensional basis, and our
subsequent control method remains valid.

In sum, the library L contains the feedback gains K(qi), the learning bases VL(qi),
and the detection bases VD(qi), for i = 1, . . . ,M ; that is,

L :=



VL(q1)
VD(q1)
K(q1)

 , . . . ,


VL(qM )
VD(qM )
K(qM )


 . (13)

The offline construction of the library allows us to use the pre-computed expensive high-
fidelity information in the online stage, when the system is under operation. The details
of the online stage are given in the next section.

3.3 Online: Detecting parameter changes and updating feedback matrix

The online stage of our algorithm is comprised of two parts. First, we build an indi-
cator that decides if the underlying system parameter has changed, and subsequently
switches the feedback controller to our best-fit feedback gain from the library. If a sudden
parametric change in A(q(t)) occurs, switching the feedback law can quickly stabilize
the dynamics until more information about the parametric change becomes available
(through the observed data). Second, the algorithm initiates a learning mechanism, to
subsequently update the feedback gain as more data are processed.

We apply the online algorithm to a system with external disturbances g(t) that enter
through Bd ∈ Rn×mg . Adding the disturbance to system (1) yields a disturbed system
model

ż(t; q(t)) = A(q)z(t; q(t)) +Bu(t; q(t)) +Bdg(t), t > 0, (14)

with otherwise similar outputs y(t; q(t)) = Cz(t; q(t)), and initial conditions q(0) = q0

and z(0; q0) = z0. Note, that this does not alter the solution to the LQR problem, yet it
provides a more realistic model of a system plant, and allows us to test the robustness
of our derived controller with respect to external disturbances.

3.3.1 Detection of parametric changes

As the time-varying parameters q(t) undergo piecewise constant transitions that alter the
system dynamics, it is key for our control method to quickly detect such changes. After
identification of a change in the parameter, we can quickly access the feedback gains
from the library L defined above to change the control, u(t; q(t)) = −K(q(t))z(t; q(t)),
and provide the proper basis for learning the model, VL. To this end, we define an
indicator for changes in the parameters, i.e., a mapping from the output space to the
index of the parameters in the library, h : Rm → {1, . . . ,M} via

h(y(t; qk)) = k. (15)

Consider the projection Pi : Rm 7→ Rm defined as

Pi = [(CVD(qi))
T (CVD(qi))]

−1(CVD(qi)), (16)
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acting on the outputs of the system. As an online indicator in the sense of (15), we use

k = arg max
i=1,...,M

||Piy(t; q)||2, (17)

which is a computationally cheap projection.
We note that the classification problem (i.e., the mapping from the outputs of a

system with time-varying parameters to bases from a library) is different from the task
of optimal state reconstruction. In practice, having a large number of elements in the
library can cause misidentification, thus we must ensure that the library contains a
suitable amount of information for classification. This can be achieved via heuristics,
using prior knowledge of the system and its parametric dependence, or by more rigorous
approaches such as measuring the alignment of the bases and corresponding subspaces,
as well as the energy in the subspaces are presented in [46].

3.3.2 Model Learning

The data from the operating plant will in general not be exactly represented in the pre-
computed bases of the library. In other words, the current dynamics may be generated
by a parameter that was not in the training set, q̃ /∈ {q1, q2, . . . , qM}. Thus, we opt
to learn and update low-dimensional models from data of the underlying system/plant
with the operator inference procedure as developed in [1]. For ease of notation, let
VL = VL(qi) ∈ Rn×r be the low-dimensional learning basis, computed for a particular
parameter qi. Moreover, let B̂ = V T

L B and B̂d = V T
L Bd, and assume that a record of

the past control inputs uk = u(tk; q(tk)), and the disturbance model gk = g(tk) for some
sampling times t1 < t2 < . . . < ts is available and stored in

U = [u1, u2, . . . , us]
T ∈ Rs×m, G = [g1, g2, . . . , gs]

T ∈ Rs×mg .

Our aim is to estimate a reduced system matrix Â(q̃) ∈ Rr×r from data z(t; q̃) of the
system (14). The reduced states at discrete time instances ti for i = 1, . . . , s are denoted
by ẑi := V T

L z(ti) and stored in

Ẑ = [ẑ1, ẑ2, . . . , ẑs]
T ∈ Rs×r. (18)

The derivative of the reduced state is approximated by a finite differencing scheme with
time step size ∆t, so that ˙̂zi := ẑi+1−ẑi

∆t . The finite differences are recorded in the right-
hand side matrix

Ô = [ ˙̂z1, ˙̂z2, . . . , ˙̂zs]
T ∈ Rs×r. (19)

The operator inference problem for Â = Â(q̃) then becomes

min
Â∈Rr×r

s∑
i=1

∥∥∥ ˙̂zi − Âẑi − B̂ui − B̂dgk

∥∥∥2

2
, (20)

which can be rewritten [1, Sec. 3.2] as

min
Â∈Rr×r

‖Ô − UB̂T −GB̂T
d − ẐÂT ‖2F . (21)
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The operator inference problem can be solved online with a least-squares approximation
in O(sr3) operations. It was shown in [1, Thm. 1], that the inferred matrix Â recovers
the matrix Â(q̃) = V T

L A(q̃)VL that would be obtained from (intrusive) projection of the
system matrix onto the reduced basis VL. The recovery takes place under the condition
that a sufficient amount of data z(t) is available and that the time discretization is
convergent. Once the system matrix is inferred, the ROM reads as

˙̂z(t; q) = Â(q̃)ẑ(t; q) + B̂ũ(t) + B̂dg(t), (22)

and can serve as a computationally cheap surrogate for the high-fidelity model. The
updated ROM is available after s time steps of data are collected. The inferred matrix
representations are subsequently used to compute the solution to a low-dimensional
algebraic Riccati equation as

ÂT Π̂ + Π̂Â− Π̂B̂B̂T Π̂ + ĈT Ĉ = 0. (23)

An approximation of the feedback gain is then obtained via

K(q̃) ≈ K̂VL(qk)T = R−1BT Π̂V T
L (qk),

which is used to update the current feedback gain, so that the control becomes u(t; q̃) =
−K(q̃)z(t; q̃). Note, that we never used the actual value of q̃; we only used data z(t; q̃)
of the system available online.

3.3.3 Complete algorithm

In the online stage of the algorithm, we initialize the controller with the feedback gain
K(q0). Then, at every time step, we evaluate the indicator h(y(t; q(t))) from equation
(15). If the result indicates a change to a new regime, say k, the algorithm then uses the
high-fidelity feedback gain K(qk) until a new model is learned. In Algorithm 1 below,
we summarize the steps of our hybrid method, which where previously shown in Figure
1 above.

3.3.4 Online costs of the method

This section discusses the costs of adapting the gain with Algorithm 1. Three steps in
Algorithm 1 dominate the costs: (1) Detecting the best fit basis in L (line 2), (2) solving
for the reduced operator Â (line 12), and (3) solving the ARE for Π̂ (line 13). Detecting
the best fit basis in line 2 requires projecting the current output y(t) ∈ Rm onto M bases
in the library, with total costs bounded in O(mM2). The system of linear equations in
line 12 is of size s× r, with s being the number of collected data for learning the model
online, and r being the ROM dimension of the learned model, where typically s � r.
A crude upper bound on solving an s × r least-squares problem is O(sr3). Solving the
ARE is in line 13 is bounded in O(r3). In total, the costs of adapting the gain with
Algorithm 1 are in O(mM2 + sr3).
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Algorithm 1 Online detection and model updating with control

Input: Model and gain library L, initial K0 ∈ L, data window s
1: Initialize control: u(t; q0)← −K0z(t)
2: Detect basis in L: k = arg maxi=1,...,M ||Piy(t; q(t))||2 as in (16)
3: Use K ← K(qk) ∈ L
4: B̂ ← VL(qk)TB, Ĉ ← CVL(qk) from L
5: for i = 1, . . . , s do
6: ẑi = VL(qk)T z(ti)
7: Ẑ = [ẐT ẑi]

T

8: U = [U uTi ]T

9: G = [g1, g2, . . . , gs]
T

10: O = [O ˙̂zTi ]T , where ˙̂zi := (ẑi − ẑi−1)\(ti − ti−1)
11: end for
12: Solve

min
Â∈Rr×r

‖R− UB̂T
k − ẐÂT ‖2F . (24)

For instance in Matlab, Â = (Ẑ\[R− UB̂T
k ])T

13: Solve ARE for Π̂:

ÂT Π̂ + Π̂Â− Π̂B̂R−1B̂T Π̂ + ĈĈT = 0 ∈ Rr×r

14: Update gain: K ← R−1BT Π̂VL(qk)T

15: Apply control to system u(t)← −Kz(t)

4 Numerical Results

We present numerical results for two PDE models of fluids. Section 4.1 considers a two
dimensional model of a flow through a porous medium, where the permeability field is
uncertain. The model in Section 4.2 is a convection-diffusion equation in two dimensions,
where the uncertain parameter is the viscosity of the fluid.

4.1 Permeability of porous media

4.1.1 Problem setup

We consider a two dimensional PDE that models flow through a porous medium. The
material’s permeability, a spatially varying parameter field, describes the ability of a
porous medium to allow fluids to pass through it. The resulting model is given by a
Laplace equation of the form

∂

∂t
θ(t,x) = ν(t,x) ·

(
∂2

∂x2
1

+
∂2

∂x2
2

)
θ(t,x) + b(x)u(t) + b1d(x)g1(t) + b2d(x)g2(t),
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where the space x = [x1, x2]T ∈ Ω = [0, 1]2, and the time t ∈ (0,∞). Here, ν(t,x) is the
uncertain permeability field, assumed to be zero on the boundary of the domain. The
function b(·) is a bivariate normal distribution with mean at x = [.6, .7]T and standard-
deviation 3×10−2. The external disturbances enter through b1d(·) (bivariate normal with
mean x = [.3, .5]T and standard-deviation 3 × 10−2), and b2d(·) which is also bivariate
normal with the same standard deviation, but mean at x = [.3, .7]T . Moreover, θ(t,x)
is interpreted as the velocity of the flow at time t and space coordinates x1, x2. As
boundary conditions for the velocity of the fluid, we impose the Dirichlet conditions

θ(t, x1, 0) = 0, θ(t, 1, x2) = 0, θ(t, x1, 1) = 0, θ(t, 0, x2) = 0.5.

The output of the model is given by

η(t) =

∫
Ω
c(x)θ(t,x)dx, (25)

where the function c(·) is modeled as a bivariate normal distribution with mean at
x = [.5, .6]T and the same standard deviation 3 × 10−2. A spatial discretization with
finite differences leads to the system of ordinary differential equations

ż(t) = A(q(t))z(t) +Bu(t) +Bdg(t), (26)

y(t) = Cz(t), (27)

where z(t) is the finite-dimensional state variable and y(t) the output of the model.
Similarly, the parameters q(t) are the spatially discretized version of ν(t, x). The matrix
Bd consequently has two columns, and B only a single column. The measurement matrix
C has one row.

4.1.2 Offline stage

To compute the library of high-fidelity gains, as well as detection and learning bases,
we generated three different permeability fields ν1(x), ν2(x), ν3(x), leading to spatially
discretized parameters q1, q2, q3. The permeability q1 leads to a stable dynamical system,
whereas the parameters q2 and q3 lead to unstable dynamical systems. For the unstable
cases, stabilization through the controller is most important, so that unbounded growth
can be prevented. The penalty on the control action is set to R = 0.1.

For each permeability field, we compute the eigenbasis of A(qi), and keep the leading
20 basis vectors, which we then store as the learning basis VL(qi), for i = 1, 2, 3. For
detection, we compute a POD basis from simulation of the closed-loop system (26) with
two external disturbances g(t) = [g1(t), g2(t)]T , modeled as a Gaussian noise process
with mean six and variance σ = 3. The initial condition is set to zero. The system
is simulated for 500 time units with a backward Euler time integration scheme, and
S = 10, 000 snapshots are used to compute the POD basis. We store the POD basis of
order 20 as a detection basis in VD(qi), for i = 1, 2, 3 in the library L.
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4.1.3 Online stage

The online stage of the algorithm considers a time horizon of tf = 600 time units, where
the backward Euler time integration methods takes time steps of size 3 × 10−2. We
choose the time-varying parameter q(t) as in Figure 2(a). The time-varying parameter
changes between q1 and q2 at the transition times ti = {60, 150, 270, 390}, resulting in
five time intervals Ti. The time evolution of q(t) is not known to our online adaptive
control algorithm, and has to be detected. Thus, Figure 2(a) also shows the results of
the detection method from Section 3.3, which our proposed algorithm uses to detect
parametric changes during online operation. We switched the dynamic regime to the
new indicated index k by using (17) if the past ten classification steps yielded identical
results. The projection method provided the correct regime in more than 94% of the
cases. We purposely neglected the third dynamic regime with q3, but included it in the
library. The detection results from Figure 2(a) also illustrate that there was not a single
instance where parameter q3 was detected.

The corresponding output y(t) of the controlled system (26) for two different con-
trollers is shown in Figure 2(b). Our proposed control strategy follows Algorithm 1,
which first detects the parameter switches as indicated in plot (a), learns the system
matrices from data online, and then recomputes the feedback gains. We compare this
approach to an ideal scenario, where it is assumed that the system matrix A(q(t)) and
the correct low-dimensional basis for projection are known at all times. In that case,
we can compute projection-based (intrusive) ROMs, and obtain the feedback matrix by
solving the low-dimensional Riccati equation. From Figure 2(b), we see that our offline-
online strategy successfully stabilizes the large-scale system, and rejects the external
disturbances. In the online phase, the algorithm solely relies on the precomputed library
L and data of the system.

Let us now compare the feedback gains computed from both approaches. In Figure
3, the left two plots show the feedback gains computed from the intrusive projection-
based reduced-order model. The right two plots then show the feedback gains computed
from the learned ROMs. The results are shown at t = 122, which corresponds to the
permeability q2, and at time t = 574, which corresponds to the permeability q1. Figure
3 then shows that the learned feedback gains indeed look qualitatively similar to their
intrusively computed counterparts.

4.2 Convection-diffusion equation

4.2.1 Problem setup

We consider another model from fluid dynamics, namely the convection-diffusion equa-
tion as a model for particle transfer. To that end, let θ(t,x) be a species concentration
satisfying the PDE

∂θ

∂t
(t,x) + x2

∂θ

∂x2
(t,x) = q(t)

(
∂2

∂x2
1

+
∂2

∂x2
2

)
θ(t,x) + b(x)u(t) + bd(x)g(t)
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Figure 3: The feedback gains computed from an intrusive ROM, where it is assumed that
the permeability is known, so that the system matrix can be projected onto the
POD basis (left); computed from the learned model without any knowledge of
the parameters (right).

for x = [x1, x2]T ∈ Ω = [0, 1]2 with Dirichlet boundary conditions on the bottom, right
and top walls:

θ(t, x1, 0) = 0, θ(t, 1, x2) = 0, θ(t, x1, 1) = 0,

and Neumann boundary condition on the left wall:

∂θ

∂x1
(t, 0, x2) = 0.

We choose b(x) = 5 if x1 ≥ 1/2 and 0 otherwise. The uncertain parameter is q(t) ∈ R+

for all t > 0, the diffusivity, which undergoes piecewise constant transitions in time.
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However, the time instances at which the transitions occur are again unknown, and
have to be detected by our online routine. The output is a weighted average of the
concentration:

η(t) =

∫
Ω

5 · θ(t,x)dx.

The model is discretized in space with a finite element method with piecewise linear
basis functions, leading to a state-space dimension n = 3540, so that the high-fidelity
model with external disturbances reads as

ż(t; q) = A(q(t))z(t; q) +Bũ(t) +Bdg(t), z(0) = z0 ∈ Rn, (28)

with corresponding output
y(t) = Cz(t) ∈ R.

Here, m = 1, so there is only one control input, and the disturbance g(·) enters through
the left boundary of the domain at 0 ≤ x1 ≤ 0.05. In this setting, a characteristic
non-dimensional quantity that qualitatively describes the flow behaviour is given by the
Péclet number, which quantifies the relative importance of the convection with respect
to the diffusion. High Péclet numbers indicate strongly convective flows.

4.2.2 Offline stage

To generate the library L, we pick four different diffusivity values, namely q1 = 5 ×
10−1, q2 = 10−1, q3 = 5 × 10−2 and q4 = 10−3. This leads to Péclet numbers Pe ∈
{2, 10, 50, 1000}. We first illustrate the qualitative and quantitative differences in the
dynamics when Pe changes.

Figure 4 shows the two eigenvalues with largest real part of the parameter-dependent
system matrix A(qi) with corresponding Péclet numbers. The larger the Péclet number,
the closer the spectrum of the system matrix to the imaginary axis. By design, stabiliza-
tion and control will move the spectrum of the closed-loop system matrix [A(qi)−BK(qi)]
further away from the imaginary axis.

Figure 5 shows the open loop outputs y(t) of the convection diffusion model for two
Péclet numbers, Pe1 = 2 and Pe4 = 1000, respectively. The outputs are generated start-
ing from the initial condition z0 = 15 sin(2πx1) sin(πx2), and by imposing an external
excitation g(t) in form of Gaussian noise with variance σ = 0.5. The backward Euler
time-discretization was solved until tf = 1 time units, with time step size ∆t = 10−3. In
the case where the Péclet number is small, the system output quickly returns to zero.
However, for the larger Péclet number, the output grows initially, then crosses zero and
becomes negative, see Figure 5(b). Such a scenario requires more control action to drive
the output back to zero. Recall, that the control cost function (3) penalizes the deviation
of the output from zero, and balances this with the invested control cost.

To generate the library L, we compute high-fidelity LQR feedback gains from equations
(5)-(6) with control penalty R = 0.1 for the four selected Péclet numbers. The resulting
optimal feedback gains are plotted in Figure 6 with similar scaling. The feedback gains
show significant differences, both qualitatively and quantitatively. Hence, adapting the
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Figure 5: Output y(t) of the open loop convection diffusion system, excited with nonzero
initial condition z0 = 15 sin(2πx) sin(πy) and Gaussian disturbance g(t) with
variance σ = 0.5 applied through a disturbance term at 0 ≤ x1 ≤ 0.05. For
low Péclet number, the output returns to the zero state by the end of the
simulation (a), whereas for high Péclet number the system remains away from
the zero state (b).

control when the ratio of convection to diffusion changes, becomes important. This can
be seen both by looking at the feedback gains in Figure 6 as well as by considering the
spectrum of the open-loop operators in Figure 4.

We generate the learning basis VL(qi) from the eigendecomposition of the four resulting
system matrices, keeping the leading 10 basis functions. The detection basis VD(qi) is
computed with the POD method from S = 1, 000 snapshots from zero to tf = 1, and
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Figure 6: The feedback gains according to four different viscosities.

the leading 30 left singular vectors (i.e., POD basis functions) of the snapshot matrix
are kept. We used the same initial condition z0 as for the open loop simulation above.

4.2.3 Online stage

To test the method online, a longer time horizon of tf = 1.6 is considered, where the sys-
tem of ordinary differential equations (28) is solved with the backward Euler scheme with
constant step size ∆t = 1.3× 10−3. In Figure 7 the performance of the proposed model
is further demonstrated. Part (a) shows the prescribed switches for the four viscosities,
and compares this with the output of the detection function h(y(t)). We switched the
dynamic regime to the new indicated index k by using (17) if the past ten classification
steps yielded identical results. During the first segment, regime 4, the identification
correctly classifies the dynamics, but has slight misidentification towards the end of the
regime. Overall, the identification was correct in more than 85% of the cases, providing
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the correct library elements. Figure 7(b) then shows the output of the full closed-loop
model with two different controllers. The control computed from the learned ROM
(blue +) is compared to the controller obtained from a direct projection-based, intrusive
model. The latter assumes that the parameter and its prescribed transitions (red line
in plot (a)) are known. While this is unrealistic, it serves as a best-case comparison to
the control we computed with the offline-online method. We conclude by observing that
our learning-based controller is successful in attenuating the disturbance, and driving
the state back to zero, as targeted by the control cost formulated in (3).
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with re-computed controller is compared to a hypothetical situation where we
have perfect knowledge of the parameters and their transitions.
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5 Discussion and Conclusions

This work combines methods from data-driven reduced-order modeling, and optimal
feedback control to arrive at a computationally feasible suboptimal control and sta-
bilization strategy for dynamical systems with time-varying parameters. The system
parameters are considered to be uncertain and unknown in real time. Our method lever-
ages libraries computed offline to avoid the expensive step of estimating the uncertain
system parameter during operation. In doing so, we combine data-based methods with
physics-based modeling towards control.

By using learned ROMs, our method is feasible for a large class of applications. In
particular, we incorporate data from the system plant into a state-space model learning
procedure. We also use the expensive-to-evaluate high-fidelity model (e.g., industrial
legacy code) when building the library of feedback controllers and low-dimensional bases.
This allows us to extract information from both first-principles modeling and real system
data.

Our method circumvents the possible error-prone need to estimate the time-varying
uncertain system parameters before assembling the system matrix. Moreover, from
a computational perspective, building Â(q(t)) in an intrusive reduced-order modeling
framework, requires estimating the parameters, building a high-fidelity model with the
available legacy code (expensive), and subsequently projecting the model to reduced
dimensions—we replace those three steps with a single step. One instance where this
is advantageous is in the treatment of boundary conditions in PDE-based modeling—
the boundary conditions are typically built in to the approximation spaces, as well as
the formulation of the dual problem. If the boundary conditions are unknown and
uncertain, building the approximating spaces becomes a formidable task. However, if
we build ROMs from data of the actual system—which automatically reflects the the
boundary conditions—then the inferred model is built from the proper set of boundary
conditions.

The numerical results for a fluid flowing through a porous medium, and a convection-
diffusion flow show that the learned controllers successfully stabilize the plant, and con-
trol the state back to the zero solution. Moreover, the feedback gains show strong
similarities to the gains obtained from an intrusive, projection-based model. By learn-
ing the reduced-order state-space model, we are able to learn the control mechanism, as
evidenced by the feedback gains.
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[13] L. Döhler, M.and Mevel, Fast multi-order computation of system matrices in
subspace-based system identification, Control Engineering Practice 20 (9) (2012)
882–894.

[14] B. Kramer, S. Gugercin, Tangential interpolation-based eigensystem realization al-
gorithm for MIMO systems, Mathematical and Computer Modelling of Dynamical
Systems (2016) 1–25doi:DOI:10.1080/13873954.2016.1198389.

[15] P. Schmid, J. Sesterhenn, Dynamic mode decomposition of numerical and exper-
imental data, in: Bull. Amer. Phys. Soc., 61st APS meeting, American Physical
Society, 2008, p. 208.
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