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similar Monte Carlo techniques. Numerical experiments illustrate the derived
bounds.
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2 1 INTRODUCTION

1 Introduction

Inputs to systems are often modeled as random variables to account for the
uncertainties in the inputs due to inaccuracies and incomplete knowledge.
Given the input random variable and a model of the system of interest, an
important task is to estimate statistics of the model output random variable.

Monte Carlo estimation is one popular approach to estimate statistics. Ba-
sic Monte Carlo estimation generates samples of the input random variable,
discretizes the model and then solves the discretized model—the high-fidelity
model—up to the required accuracy at these samples, and averages over the
corresponding outputs to estimate statistics of the model output random vari-
able. This basic Monte Carlo estimation often requires many samples, and
consequently many approximations of the model outputs, which can become
too costly if the high-fidelity model solves are expensive. We note that other
techniques than Monte Carlo estimation are available to estimate statistics of
model outputs, see, e.g., [1,33,21,15,14,47,43,45].

Several variance reduction techniques have been presented to reduce the
costs of Monte Carlo simulation compared to basic Monte Carlo estimators,
e.g., antithetic variates [39,23,28] and importance sampling [39,27,36]. Our
focus here is on the control variate framework that exploits the correlation
between the model output random variable and an auxiliary random vari-
able that is cheap to sample [30]. A major class of control variate methods
derives the auxiliary random variable from cheap approximations of the out-
puts of the high-fidelity model. For example, in situations where the model is
governed by (often elliptic) partial differential equations (PDEs), coarse-grid
approximations of the PDE—low-fidelity models—can provide cheap approx-
imations of the outputs obtained from a fine-grid high-fidelity discretization
of the PDE; however, other types of low-fidelity models are possible in the
context of PDEs, e.g., projection-based reduced models [41,40,20,3,37], data-
fit interpolation and regression models [13,12], machine-learning-based models
such as support vector machines [46,11], and other simplified models [29,32].

The multifidelity Monte Carlo (MFMC) method [38] uses a control variate
approach to combine auxiliary random variables stemming from low-fidelity
models into an estimator of the statistics of the high-fidelity model output.
Key to the MFMC approach is the selection of how often each of the auxiliary
random variables is sampled, and therefore how often each of the low-fidelity
models is solved. The MFMC approach derives this selection from the correla-
tion coefficients between the auxiliary random variables and the high-fidelity
model output random variable. The selection of the MFMC approach is opti-
mal in the sense that the variance of the MFMC estimator is minimized for
given maximal costs of the estimation. We refer to the discussions in [38,31]
for details on MFMC.

The work [38] discusses the properties of MFMC estimation in a setting
where only mild assumptions on the high- and low-fidelity models are made.
We consider here the setting where we can make further assumptions on the
errors and costs of outputs obtained with a hierarchy of low- and high-fidelity
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models. Our contribution is to show that for an MFMC estimator with mean-
squared error (MSE) below a threshold parameter ε > 0, the costs of the
estimation can be bounded by ε−1 up to a constant under certain conditions
on the error and cost bounds of the models in the hierarchy.

We discuss that the conditions we require in the MFMC context are similar
to the conditions exploited by the multilevel Monte Carlo method [9, Theo-
rem 1]. Our analysis shows that MFMC estimation is as efficient in terms of
error and costs as multilevel Monte Carlo estimation under certain conditions
that we discuss below in detail. Multilevel Monte Carlo uses a hierarchy of
low-fidelity models—typically coarse-grid approximations—to derive a hierar-
chy of auxiliary random variables, which are combined in a judicious way to
reduce the runtime of Monte Carlo simulation. Multilevel Monte Carlo was in-
troduced in [26] and extended and made popular by the work [18]. Since then,
the properties of the multilevel Monte Carlo estimators have been studied ex-
tensively in different settings, see, e.g., [9,8,2,6,42]. Multilevel Monte Carlo
and its variants have also been applied to density estimation [5], variance es-
timation [4], and rare event simulation [44]. We also mention the continuation
multilevel Monte Carlo [10] and the extension multi-index Monte Carlo that
allows different mesh widths in the dimensions [22]. In [34,35], a fault-tolerant
multilevel Monte Carlo is introduced and analyzed, which is well suited for
massively parallel computations. An integer optimization problem is solved
to determine the optimal number of model evaluations depending on the rate
of compute-node failures. The fault-tolerant approach thus takes into account
node failure by adapting the number of model evaluations accordingly. The
relationship between multilevel Monte Carlo and sparse grid quadrature [7,
16,17] is discussed in [24,25,19].

The outline of the presentation is as follows. Section 2 introduces the prob-
lem setup and basic, multilevel, and multifidelity Monte Carlo estimators. Sec-
tion 3 derives the new convergence analysis of MFMC estimation. Numerical
examples in Section 4 illustrate the derived bounds. Conclusions are drawn in
Section 5.

2 Problem setup

This section introduces the problem setup and the various types of Monte Carlo
estimators required throughout the presentation. Section 2.1 introduces the
notation and Section 2.2 the basic Monte Carlo estimator. Multilevel Monte
Carlo and the MFMC estimation are summarized in Section 2.3 and Sec-
tion 2.4, respectively.

2.1 Preliminaries

The set of positive real numbers is denoted as R+ = {x ∈ R : x > 0}. For
two positive quantities a and b, we define a . b to hold if a/b is bounded by
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a constant whose value is independent of any parameters on which a and b
depend on.

Let d ∈ N be the dimension and define the Lipschitz domain D ⊂ Rd. Let
Z : Ω → D be a random variable over a probability space (Ω,F ,P), where
Ω denotes the set of outcomes, F the σ-algebra of events, and P : F → [0, 1]
a probability measure. Let further Q : D → R be a function in a suitable
function space and let Q` : D → R be functions for ` ∈ N that approximate Q
in the sense of the following assumption. Note that we assume that Q(Z) and
Q`(Z) are integrable.

Assumption 1 There exists 1 < s ∈ R and rate α ∈ R+ such that

|E[Q(Z)−Q`(Z)]| ≤ κ1s−α` , ` ∈ N ,

where κ1 ∈ R+ is a constant independent of `.

The parameter ` ∈ N is the level of Q`. Let further w` ∈ R+ be the costs of
evaluating Q` for ` ∈ N. The following assumption gives a bound on the costs
with respect to the level `.

Assumption 2 There exists a rate γ ∈ R+ with

w` ≤ κ3sγ` ,

where the constant s is given by Assumption 1 and κ3 ∈ R+ is a constant
independent of `.

Note that in Assumption 2 the same constant s as in Assumption 1 is used.
The variance Var[Q`(Z)] of the random variable Q`(Z) is denoted as

σ2
` = Var[Q`(Z)] , ` ∈ N .

We make the assumption that there exists a positive lower and upper bound
for the variance σ2

` with respect to level ` ∈ N.

Assumption 3 There exist σlow ∈ R+ and σup ∈ R+ such that σlow ≤ σ` ≤
σup for ` ∈ N.

The Pearson product-moment correlation coefficient of the random variables
Q`(Z) and Ql(Z) is denoted as

ρ`,l =
Cov[Q`(Z), Ql(Z)]

σ`σl
, `, l ∈ N , (1)

where Cov[Q`(Z), Ql(Z)] is the covariance of Q`(Z) and Ql(Z).
We consider the situation where the random variable Z represents an input

random variable and Q is a function that maps an input, i.e., a realization
of Z, onto an output. In our situation, evaluating Q entails solving a PDE
(“model”), but the solutions to the PDE are unavailable. We therefore revert to
solving an approximate PDE (“discretized model”), where the approximation
(e.g., the mesh width) is controlled by the level `. The functions Q` map the
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input onto the output obtained by solving the approximate PDE on level `.
Assumption 1 specifies in which sense Q` converges to Q with `→∞. Solving
the approximate PDE on level ` incurs costs w`. One task in this context is to
derive estimators of E[Q(Z)] using the functions Q`. We assess the efficiency

of an estimator Q̂ with its MSE

e(Q̂) = E
[(
Q̂− E[Q(Z)]

)2]
,

and its costs c(Q̂), which are the sum of the evaluation costs w` of the functions

Q` used in the estimator Q̂. An estimator Q̂ with MSE e(Q̂) . ε below a

threshold ε ∈ R+ is efficient, if the costs c(Q̂) . ε−1 are bounded by ε−1 up to
a constant. Note that ε bounds the MSE, in contrast to the root-mean-squared
error (RMSE) as in, e.g., [9].

2.2 Basic Monte Carlo estimation

Let ` ∈ N and define the basic Monte Carlo estimator Q̂MC
`,m of E[Q`(Z)] as

Q̂MC
`,m =

1

m

m∑
i=1

Q`(Zi) ,

with m ∈ N independent and identically distributed (i.i.d.) samples Z1, . . . , Zm
of Z. The MSE of the Monte Carlo estimator Q̂MC

`,m with respect to E[Q(Z)] is

e(Q̂MC
`,m) = m−1 Var[Q`(Z)] + (E[Q(Z)−Q`(Z)])

2
. (2)

The term m−1 Var[Q`(Z)] is the variance term and term (E[Q`(Z)−Q(Z)])2

is the bias term. The costs of the estimator Q̂MC
`,m are

c(Q̂MC
`,m) = mw` ,

because Q` is evaluated at m samples, with one evaluation having costs w`.
Let now ε ∈ R+ be a threshold. One approach to obtain a basic Monte

Carlo estimator Q̂MC
`,m with e(Q̂MC

`,m) . ε is to derive a maximal level L ∈ N and
a number of samples m such that the bias and the variance term are bounded
by ε/2 up to constants. Consider first the choice of the maximal level L ∈ N.
With Assumption 1, the maximal level L is given by

L =
⌈
α−1 logs

(√
2κ1ε

−1/2
)⌉

, (3)

where κ1 is the constant in Assumption 1. Note that the maximal level L
defines the high-fidelity model QL in the terminology of the introduction, see
Section 1.

To achieve that the variance term is bounded by ε/2 up to a constant, the
number of samples m is selected such that ε−1 . m. With Assumption 2, and
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assuming the variance σ2
` is approximately constant with respect to the level

`, the costs of the basic Monte Carlo estimator Q̂MC
L,m are

c(Q̂MC
L,m) . ε−1−γ/(2α) ,

see [9, Section 2.1] for a proof. The costs of the basic Monte Carlo estimator
scale with the rates γ and α.

2.3 Multilevel Monte Carlo estimation

We follow [9] for the presentation of the multilevel Monte Carlo estimation.
Consider the threshold ε ∈ R+ and define the maximal level L ∈ N as in (3).
Multilevel Monte Carlo exploits the linearity of the expected value to write

E[QL(Z)] = E[Q1(Z)] +

L∑
`=2

E[Q`(Z)−Q`−1(Z)] =

L∑
`=1

E[∆`(Z)] ,

where ∆`(Z) = Q`(Z) − Q`−1(Z) for ` > 1 and ∆1(Z) = Q1(Z). The basic
Monte Carlo estimator of ∆`(Z) with m` ∈ N samples Z1, . . . , Zm` is

∆̂MC
`,m`

=
1

m`

m∑̀
i=1

Q`(Zi)−Q`−1(Zi) .

The multilevel Monte Carlo estimator Q̂ML
L,m is then given by

Q̂ML
L,m =

L∑
`=1

∆̂MC
`,m`

, (4)

where the vector m = [m1, . . . ,mL]T ∈ NL is the vector of the number of

samples at each level. Note that each basic Monte Carlo estimator ∆̂MC
`,m`

in
(4) uses a separate, independent set of samples. Note further that the functions
Q1, . . . , QL−1 are low-fidelity models in the terminology of the introduction,
see Section 1.

Under the following two assumptions, and with a judicious choice of the
number of samples m, the multilevel Monte Carlo estimator is efficient, which
means that the estimator Q̂ML

L,m achieves an MSE of e(Q̂ML
L,m) . ε with costs

c(Q̂ML
L,m) . ε−1. The first assumption states that the variance of ∆` decays

with the level `.

Assumption 4 There exists a rate β ∈ R+ with

Var[Q`(Z)−Q`−1(Z)] ≤ κ2s−β` , ` ∈ N ,

where s is the constant of Assumption 1 and κ2 ∈ R+ is a constant independent
of `.
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The following assumption sets the rate β of the decay of the variance Var[Q`(Z)−
Q`−1(Z)] in relation to the rate γ of the increase of the costs with level `.

Assumption 5 For the rates γ of Assumption 2 and β of Assumption 4, we
have β > γ.

Set the number of samples mML = [mML
1 , . . . ,mML

L ]T to

mML
` =

⌈
2ε−1κ2

(
1− s−(β−γ)/2

)−1
s−(β+γ)`/2

⌉
, ` = 1, . . . , L , (5)

where κ2 is the constant in Assumption 4 and s is defined as in Assump-
tion 1. Note that the components of mML are rounded up. It is shown in
[9] that if Assumptions 1–5 hold, then the multilevel Monte Carlo estimator

Q̂ML
L,mML with mML defined in (5) achieves an MSE of e(Q̂ML

L,mML) . ε with

costs c(Q̂ML
L,mML) . ε−1. Note that under Assumptions 1–5 it is sufficient to

select the number of samples with the rates β and γ to achieve an efficient
estimator. We refer to [26,18,9] for details on multilevel Monte Carlo estima-
tion.

2.4 Multifidelity Monte Carlo estimation

The MFMC estimator [38] uses functions Q1, . . . , QL up to the maximal level
L to derive an estimate of E[Q(Z)], similarly to the multilevel Monte Carlo
estimator; however, the functions Q1, . . . , QL are combined in a different way
than in the multilevel Monte Carlo estimator, and the number of samples m
are selected by directly using correlation coefficients and costs instead of rates.

MFMC imposes on the number of samples m = [m1, . . . ,mL]T that m1 ≥
m2 ≥ · · · ≥ mL > 0. Let

Z1, . . . , Zm1 ∈ D (6)

be m1 i.i.d. samples of the random variable Z. Let further

Q`(Z1), . . . , Q`(Zm`) , (7)

be the evaluations of Q` at the first m` samples Z1, . . . , Zm` , for ` = 1, . . . , L.
Consider now the basic Monte Carlo estimators

Q̂MC
`,m`

=
1

m`

m∑̀
i=1

Q`(Zi) , ` = 1, . . . , L , (8)

and

Q̂MC
`,m`+1

=
1

m`+1

m`+1∑
i=1

Q`(Zi) , ` = 1, . . . , L− 1 , (9)

which use the samples (6) and the evaluations (7). Note that the estimators in

(9) use the first m`+1 samples of the samples (6). Thus, the estimators Q̂MC
`,m`
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and Q̂MC
`,m`+1

are dependent for ` = 1, . . . , L− 1. The MFMC estimator Q̂MF
L,m

is defined as

Q̂MF
L,m = Q̂MC

L,mL +

L−1∑
`=1

a`

(
Q̂MC
`,m`
− Q̂MC

`,m`+1

)
,

where a = [a1, . . . , aL−1]T ∈ RL−1 are coefficients. The costs of the MFMC

estimator Q̂MF
L,m are

c(Q̂MF
L,m) = wTm ,

where w = [w1, . . . , wL]T , see [38].
The MFMC method provides a framework to select the number of samples

m and the coefficients a such that the variance Var[Q̂MF
L,m] of the MFMC

estimator Q̂MF
L,m with costs c(Q̂MF

L,m) = p is minimized for a given computational
budget p ∈ R+. The number of samples m and the coefficients a are derived
under two assumptions on the correlation coefficients of Q1(Z), . . . , QL(Z)
and the costs w1, . . . , wL. The first assumption specifies the ordering of the
functions Q1(Z), . . . , QL(Z).

Assumption 6 The random variables Q1(Z), . . . , QL(Z) are ordered ascend-
ing with respect to the absolute values of the correlation coefficients

|ρL,1| < |ρL,2| < · · · < |ρL,L| .

The second assumption describes inequalities of the correlation coefficients and
the costs.

Assumption 7 The costs w1, . . . , wL and correlation coefficients ρL,1, . . . , ρL,L
satisfy

w`+1

w`
>
ρ2L,`+1 − ρ2L,`
ρ2L,` − ρ2L,`−1

for ` = 1, . . . , L− 1.

Assumption 7 enforces that the cost savings associated with a model justify its
decrease in accuracy (measured by correlation) relative to other models in the
hierarchy. If a particular model violates the condition in Assumption 7, the
MFMC method omits the model from the hierarchy. See [38] for more details.

Under Assumptions 6–7, the number of samples m and the coefficients a,
which minimize the variance of Var[Q̂MF

L,m] with costs c(Q̂MF
L,m) = p, are given

as follows [38]. The coefficients aMF = [aMF
1 , . . . , aMF

L−1]T are set to

aMF
` =

ρL,`σL
σ`

, ` = 1, . . . , L− 1 ,

and the number of samples mMF = [mMF
1 , . . . ,mMF

L ]T is set to

mMF
` = mMF

L r` , ` = 1, . . . , L ,
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where

r` =

√
wL(ρ2L,` − ρ2L,`−1)

w`(1− ρ2L,L−1)
, ` = 1, . . . , L , (10)

with ρL,0 = 0. Note that the selection of mMF and aMF is independent of the
rates α, β, γ, which means the approach is applicable also in situations where
rates capture the behavior of the properties of the functions Q1, . . . , QL only
poorly, see, e.g., [38] for examples. Note further that the components of the
number of samples mMF are rounded up to integer numbers as in the mul-
tilevel Monte Carlo method, see (5) in Section 2.3. We note that in [34] an
integer optimization problem is solved to adapt the number of model evalua-
tions in multilevel Monte Carlo for an increased processor-failure tolerance on
massively-parallel compute platforms.

The MFMC estimator is unbiased with respect to E[QL(Z)], see [38, Lemma 3.1].

The variance of the MFMC estimator Q̂MF
L,mMF is [38]

Var(Q̂MF
L,mMF) =

σ2
L(1− ρ2L,L−1)(
mMF
L

)2
wL

p .

The work [38] investigates the costs and the MSE of the MFMC estimator only
in the context of Assumption 6 and Assumption 7, and does not give insights
into the behavior of the MFMC estimator if additionally Assumptions 1–5 are
made.

3 New properties of the multifidelity Monte Carlo estimator

We now discuss the error and costs behavior of the MFMC estimator in a
typical setting of the multilevel Monte Carlo estimators where Assumption 4
on the rate of the variance decay and Assumption 5 on the relative costs hold.
Our main result is Theorem 1 that states that the MFMC estimator is efficient
under Assumptions 1–7, which means that the MFMC estimator achieves an
MSE e(Q̂MF

L,mMF) . ε with costs c(Q̂MF
L,mMF) . ε−1, independent of the rates α

and γ. We first state Theorem 1 and then prove two lemmata in Section 3.1
and provide the proof of Theorem 1 in Section 3.2. Corollary 1 discusses the
convergence rates of MFMC if Assumption 5 is violated.

Theorem 1 With Assumptions 1–5, as well as Assumption 6 and Assump-
tion 7, set the maximum level L as in (3) and set the budget p to

p = κ4ε
−1 , (11)

with the constant

κ4 = 2
σ2
up

σ2
low

(
s
γ−β

2

1− s γ−β2

)2

.
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For the number of samples mMF and the coefficients aMF ∈ RL−1 defined in
Section 2.4, the MSE e(Q̂MF

L,mMF) of the MFMC estimator with respect to the

statistics E[Q(Z)] is bounded as

e(Q̂MF
L,mMF) . ε ,

and the costs are bounded as c(Q̂MF
L,mMF) . ε−1.

Note that the MLMC theory developed in [9, Theorem 1] and [18, Theo-
rem 3.1] requires an additional assumption on the rate α because the rounding
up of the numbers of samples to an integer is explicitly taken into account, see
also [4, Theorem 3.2]. We ignore the rounding here and therefore can avoid
that assumption; however, we emphasize that we expect that a similar as-
sumption is necessary for MFMC as well if the rounding of the numbers of
samples is taken into account explicitly.

3.1 Preliminary lemmata

This section proves two lemmata that we use in the proof of Theorem 1 in
Section 3.2.

Lemma 1 Let L ∈ N be the maximal level. From Assumption 4, it follows
that

Var[QL(Z)−Q`−1(Z)] . s−β` , (12)

for ` = 2, . . . , L− 1.

Proof Let κ2 be the constant in Assumption 4 so that we have

Var[Q`(Z)−Q`−1(Z)] ≤ κ2s−β` ,

for ` ∈ N. We obtain

Var[Q`+1(Z)−Q`−1(Z)] ≤ Var[Q`+1(Z)−Q`(Z)] + Var[Q`(Z)−Q`−1(Z)]

+ 2|Cov[Q`+1(Z)−Q`(Z), Q`(Z)−Q`−1(Z)]| . (13)

With Assumption 4 and the Cauchy-Schwarz inequality, it follows that

Var[Q`+1(Z)−Q`−1(Z)] ≤ κ2s−β(`+1) + κ2s
−β`

+ 2
√

Var[Q`+1(Z)−Q`(Z)] Var[Q`(Z)−Q`−1(Z)] ,

and therefore we have

Var[Q`+1(Z)−Q`−1(Z)] ≤κ2s−β(`+1) + κ2s
−β` + 2κ2s

−β(2`+1)/2

≤κ2s−β`(s−β + 1 + 2s−β/2)

≤κ2s−β`(s−β/2 + 1 + 2s−β/2) ,

(14)
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where the last inequality holds because s > 1. Define now the sequence (bj)
with

b0 = 1 , bj = s−βj/2 + bj−1(1 + 2s−βj/2) , j ∈ N .

From (14) and from the definition of the sequence (bj), it follows with induction
that

Var[Q`+j(Z)−Q`−1(Z)] ≤κ2s−β(`+j) + κ2bj−1s
−β` + 2κ2s

−β`(bj−1s
−βj)1/2

≤κ2s−β`(s−βj + bj−1 + 2(bj−1s
−βj)1/2)

≤κ2s−β`(s−βj + bj−1 + 2bj−1s
−βj/2)

≤κ2s−β`(s−βj/2 + bj−1(1 + 2s−βj/2))

≤κ2s−β`bj ,

because bj ≥ 1 (and therefore b
1/2
j ≤ bj) and s > 1 for j ∈ N. To bound the

sequence (bj), rewrite

bj =

j∑
i=0

s−βi/2
j∏

r=i+1

(1 + 2s−βr/2) ,

and observe that

j∏
r=i+1

(1 + 2s−βr/2) ≤
∞∏
r=0

(1 + 2s−βr/2) .

The infinite product converges if and only if the series

∞∑
r=0

2s−βr/2

converges, which is the case because s > 1 and therefore s−β/2 < 1. Denote

∞∏
r=0

(1 + 2s−βr/2) = κ5 ,

with the constant κ5 ∈ R, and obtain the bound κ6 ∈ R

bj ≤ κ5
j∑
i=0

s−βi/2 ≤ κ6 , j ∈ N .

Using bj ≤ κ6 and (14) shows the lemma.

Lemma 2 From Assumption 4, Assumption 3, and Lemma 1, it follows that

ρ2L,` − ρ2L,`−1 .
1

σ2
low

s−β` .
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Proof First, we ensure ρL,` ≥ 0 for ` ∈ N w.l.o.g. by redefining Q` to −Q`
if necessary, and subsequently using −Q` in the estimators (8) and (9). With
the definition of the correlation coefficient (1), we obtain

0 ≤ ρL,` − ρL,`−1 =ρL,` −
Cov[QL(Z), Q`−1(Z)]

σLσ`−1

=ρL,` −
1

σLσ`−1
Cov[QL(Z), Q`−1(Z)] +

1

2

σ2
L

σLσ`−1
− 1

2

σ2
L

σLσ`−1

+
1

2

σ2
`−1

σLσ`−1
− 1

2

σ2
`−1

σLσ`−1

=ρL,` +
1

2σLσ`−1
Var[QL(Z)−Q`−1(Z)]− 1

2

(
σL
σ`−1

+
σ`−1
σL

)
,

(15)

where we used

Var[QL(Z)−Q`−1(Z)] = Var[QL(Z)]+Var[Q`−1(Z)]−2 Cov[QL(Z), Q`−1(Z)] .

With x = σL/σ`−1, we can rewrite the last term in (15) as

1

2

(
σL
σ`−1

+
σ`−1
σL

)
=

1

2

(
x+

1

x

)
.

Because

1

2

(
x+

1

x

)
≥ 1

holds for x ∈ R+, and because 0 ≤ ρL,` ≤ 1 per definition, we obtain the
following bound on ρL,` − ρL,`−1

0 ≤ ρL,` − ρL,`−1 =ρL,` +
1

2σLσ`−1
Var[QL(Z)−Q`−1(Z)]− 1

2

(
σL
σ`−1

+
σ`−1
σL

)
≤ 1

2σLσ`−1
Var[QL(Z)−Q`−1(Z)]

.
1

σ2
low

s−β` ,

where we used Lemma 1 to bound Var[QL(Z)−Q`−1(Z)] and the lower bound
σlow of Assumption 3. Since ρL,` + ρL,`−1 ≤ 2, we obtain

ρ2L,` − ρ2L,`−1 = (ρL,` − ρL,`−1)(ρL,` + ρL,`−1) .
1

σ2
low

s−β` .
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3.2 Proof of main theorem

With the Lemmata 1–2 discussed in Section 3.1, we now prove Theorem 1.

Proof (of Theorem 1) The MSE of the MFMC estimator Q̂MF
L,mMF is split into

the biasing and the variance term

e(Q̂MF
L,mMF) = Var[Q̂MF

L,mMF ] + (E[Q(Z)−QL(Z)])
2
. (16)

We first consider the biasing term of the MSE. With the maximal level L
defined as in (3), we obtain with Assumption 1

(E[Q(Z)−QL(Z)])
2 .

ε

2
.

Consider now the variance term Var[Q̂MF
L,mMF ]. Assumption 3 means that σ` ≤

σup for ` = 1, . . . , L. We therefore have

Var[Q̂MF
L,mMF ] ≤

σ2
up

(
1− ρ2L,L−1

)(
mMF
L

)2
wL

p =
σ2
up

(
1− ρ2L,L−1

)
pwL

(
L∑
`=1

w`r`

)2

,

where we used mMF
L = p/(wTr) and r = [r1, . . . , rL]T defined in (10) in

Section 2.4. Note that Assumptions 6–7 are required for mMF and aMF to be
optimal in the sense defined in Section 2.4. We further have with the definition
of r in (10) in Section 2.4 that

σ2
up

(
1− ρ2L,L−1

)
pwL

(
L∑
`=1

w`r`

)2

=
σ2
up

p

(
L∑
`=1

√
w`

(
ρ2L,` − ρ2L,`−1

))2

, (17)

see [38, Proof of Corollary 3.5] for the transformations. With Assumption 2
and Lemma 2, we obtain

L∑
`=1

√
w`

(
ρ2L,` − ρ2L,`−1

)
.

1

σlow

L∑
`=1

√
sγ`s−β` .

1

σlow

L∑
`=1

(
s
γ−β

2

)`
. (18)

Assumption 5 gives β > γ, and therefore sγ−β < 1 (because s > 1). Therefore,
we obtain with the geometric series that

L∑
`=1

√
w`

(
ρ2L,` − ρ2L,`−1

)
.

1

σlow

s
γ−β

2

1− s γ−β2

.

This means that we have

Var[Q̂MF
L,mMF ] .

σ2
up

p

(
1

σlow

s
γ−β

2

1− s γ−β2

)2

=
1

2ε−1
=
ε

2
.

This means that we bounded the variance and the biasing term by ε/2 and
therefore have that the MSE is bounded by ε. The choice of the budget p in
(11) leads to c(Q̂MF

L,mMF) . ε−1.
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3 NEW PROPERTIES OF THE MULTIFIDELITY MONTE CARLO

ESTIMATOR

The following corollary considers the case where Assumption 5 is violated,
i.e., where β ≤ γ.

Corollary 1 Consider the same setup as in Theorem 1, except that Assump-
tion 5 is violated and that ε < e−1. We obtain the following bounds on the
costs

c(Q̂MF
L,mMF) .

{
ε−1 ln(ε)2 , γ = β

ε−1−
γ−β
2α , γ > β

, (19)

where ln denotes the logarithm with base e.

Proof Consider (18) in the proof of Theorem 1 and note that equation (18)
holds even if Assumption 5 is violated. Note that the following proof closely
follows [9, Theorem 1] and [18, Theorem 3.1].

We first consider the case γ > β and obtain

L∑
`=0

(
s
γ−β

2

)`
=

1− s
γ−β

2 (L+1)

1− s γ−β2

=
s−

γ−β
2 − s

γ−β
2 L

s−
γ−β

2 − 1
=

s−
γ−β

2

s−
γ−β

2 − 1
− s

γ−β
2 L

s−
γ−β

2 − 1
.

Because γ > β and s > 1, we obtain for the first term

s−
γ−β

2

s−
γ−β

2 − 1
≤ 0 ,

and therefore
L∑
`=0

(
s
γ−β

2

)`
≤ s

γ−β
2 L

1− s− γ−β2

.

With the definition of L in (3) and dxe ≤ x+ 1, x ∈ R, we obtain

s
γ−β

2 L

1− s− γ−β2

≤ s
γ−β

2

1− s− γ−β2

s
γ−β
2α logs(

√
2κ1ε

−1/2) =
s
γ−β

2

(√
2κ1
) γ−β

2α

1− s− γ−β2

ε−
γ−β
4α .

With the constant

κ7 = 2
σ2
up

σ2
low

s γ−β2

(√
2κ1
) γ−β

2α

1− s− γ−β2

2

and (17), we obtain

Var[Q̂MF
L,mMF ] .

k7
2p

(
ε−

γ−β
4α

)2
.

Thus, with p = κ7ε
−1− γ−β2α follows the bound (19) for the case γ > β.
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Consider now the case γ = β. We obtain

L∑
`=0

(
s
γ−β

2

)`
= L+ 1 ≤α−1 logs(

√
2κ1ε

−1/2) + 2

=α−1 logs(
√

2κ1) + α−1
ln(ε−1)

2 ln(s)
+ 2 .

With ε < e−1 follows 1 ≤ ln(ε−1), and therefore

L+ 1 ≤ κ8 ln(ε−1) ,

with

κ8 = α−1 logs(
√

2κ1) + α−1
1

2 ln(s)
+ 2 .

Set

p = 2
σ2
up

σ2
low

κ28ε
−1 ln(ε)2 ,

where we used that ln(ε−1)2 = ln(ε)2, to obtain the bound (19) for the case
γ = β.

4 Numerical experiment

This section demonstrates Theorem 1 numerically on an elliptic PDE with
random coefficients.

4.1 Problem setup

Let G = (0, 1)2 be a domain with boundary ∂G. Consider the linear elliptic
PDE with random coefficients

−∇ · (k(ω,x)∇u(ω,x)) = f(x) , x ∈ G , (20)

u(ω,x) = 0 , x ∈ ∂G , (21)

where u : Ω × Ḡ → R is the solution function defined on the set of outcomes
Ω and the closure Ḡ of G. The coefficient k is given as

k(ω,x) =

d∑
i=1

zi(ω) exp

(
−‖x− vi‖2

0.045

)
,

where d = 9, Z = [z1, . . . , zd]
T is a random vector with components that

are independent and distributed uniformly in [10−4, 10−1], and the points in
V = [v1, . . . ,vd] ∈ R2×d are given by the matrix

V =

[
0.5 0.2 0.8 0.8 0.2 0 0.5 1 0.5
0.5 0.2 0.2 0.8 0.8 0.5 0 0.5 1

]
.
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rate constant
Assumption 1 α ≈ 1.0579 κ1 ≈ 4.0528× 101

Assumption 2 γ ≈ 1.0551 κ3 ≈ 2.3615× 10−6

Assumption 4 β ≈ 1.9365 κ2 ≈ 1.3744× 103

Table 1: The table reports the rates and constants of Assumptions 1,2,4 that we estimated
for our problem (20)–(21).

The domain D is D = [10−4, 10−1]9. The right-hand side is set to f(x) = 10.
The function Q : D → R is

Q(Z(ω)) =

(∫
G
u(ω,x)2dx

)1/2

.

We are interested in estimating E[Q(Z)].
We discretize the problem (20)–(21) with piecewise bilinear finite elements

on a rectangular grid in the domain G. The level ` defines the mesh width 2−`

of the grid in one dimension. The solution of the discretized problem at level
` is denoted as u`, which gives rise to the functions

Q`(Z(ω)) =

(∫
G
u`(ω,x)2dx

)1/2

, ` ∈ N .

Our reference estimate Q̂Ref ≈ 10.54829 of E[Q(Z)] is a basic Monte Carlo
estimate obtained from 104 samples

4.2 Numerical illustration of the assumptions

Dirichlet problems such as (20)–(21) are well studied in the multilevel Monte
Carlo literature. We therefore refer to the literature for theoretical consider-
ations in the context of multilevel Monte Carlo of problem (20)–(21) and its
variations [9,8].

We estimate the rates of Assumptions 1–4 numerically from n = 104 sam-
ples Z1, . . . , Zn of the random variable Z and the corresponding evaluations
of Q3, . . . , Q8. Consider first Assumption 1. We use basic Monte Carlo esti-
mators with n = 104 samples to estimate |E[Q8(Z)−Q`(Z)]| for ` = 3, . . . , 7
and then find κ1 ∈ R+ and α ∈ R+ that best fit the estimates in the L2 norm.
Since the domain G is in a two-dimensional space, we set s = 22 = 4. Note
that we estimate the constant κ1 and the rate α with respect to Q8 instead
of Q. We follow [9] and ignore levels that lead to too coarse grids. Note that
a general discussion on which models to select for MFMC estimation is given
in [38, Section 3.5]. The behavior of |E[Q8(Z) − Q`(Z)]| for ` = 3, . . . , 7 is
shown in Figure 1a. The constant κ1 and the rate α are reported in Table 1.
We repeat the same procedure to obtain the rates and constants of Assump-
tions 2–4, which are visualized in Figure 1 and reported in Table 1. Note that
our estimated rates satisfy β > γ, cf. Assumption 5.
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Fig. 1: The plot in (a) shows that the rate of the decay of the expected absolute error is
α ≈ 1, see Assumption 1. The plot in (b) reports the rate γ ≈ 1 of the increase of the runtime
of the evaluations Q` for ` = 3, . . . , 7, see Assumption 2. The plots in (c) and (d) report
the behavior of the variance with respect to Assumption 4 and Assumption 3, respectively.
Note that β > γ as required by Assumption 5.

costs [s] variances correlation coefficients
level ` = 3 2.94× 10−4 9.41 9.990894578× 10−1

level ` = 4 8.77× 10−4 9.40 9.999374083× 10−1

level ` = 5 3.18× 10−3 9.34 9.999961196× 10−1

level ` = 6 1.54× 10−2 9.10 9.999997721× 10−1

level ` = 7 6.78× 10−2 8.27 9.999999908× 10−1

Table 2: The table reports the costs w3, . . . , w7 of functions Q3, . . . , Q7, and the sample
estimates of the variances σ2

3 , . . . , σ
2
7 and the correlation coefficients ρ8,3, . . . , ρ8,7 of the

random variables Q3(Z), . . . , Q7(Z) estimated from 104 samples.

We measure the costs of evaluating the functions Q3, . . . , Q7 by averag-
ing the runtime over 104 runs. We use Matlab for the implementation and
Matlab’s backslash operator to solve systems of linear equations. The time
measurements were performed on nodes with Xeon E5-1620 CPUs and 32GB
RAM. The variances σ2

3 , . . . , σ
2
7 and the correlation coefficients ρ8,3, . . . , ρ8,7

are obtained from 104 samples, see [38]. The costs w3, . . . , w7, the variances
σ2
3 , . . . , σ

2
7 , and the correlation coefficients ρ8,3, . . . , ρ8,7 are reported in Table 2.
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(b) MFMC

Fig. 2: The plots report the share of the number of samples of each level in the total number
of samples. MFMC evaluates the coarsest model more often than multilevel Monte Carlo in
this example.

4.3 Numerical illustration of main theorem

For ε ∈ {100, 10−1, . . . , 10−5}, we derive multilevel Monte Carlo and MFMC
estimates of E[Q(Z)] following Section 2.3 and Section 2.4, respectively. The
number of samples for the multilevel Monte Carlo estimators are derived using
the rates in Table 1. The number of samples and the coefficients for the MFMC
estimators are obtained using the costs, variances, and correlation coefficients
reported in Table 2. Figure 2 compares the number of samples obtained with
multilevel Monte Carlo and MFMC. The absolute numbers of samples are
reported in Table 3 for multilevel Monte Carlo and in Table 4 for MFMC. Both
methods lead to similar numbers of samples. MFMC assigns more samples to
level ` = 3 than multilevel Monte Carlo. A detailed comparison is shown in
Figure 3 for ε = 10−5, which illustrates that multilevel Monte Carlo distributes
the number of samples logarithmically among the levels depending on the
rates β and γ, see Section 2.4. MFMC directly uses the costs, variances, and
correlation coefficients and derives a more fine-grained distribution among the
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Fig. 3: The bar plot shows a detailed comparison of the share of the samples determined
by multilevel Monte Carlo (MLMC) and MFMC for ε = 10−5. Multilevel Monte Carlo
distributes the number of samples logarithmically among the levels, whereas MFMC deter-
mines a fine-grained distribution of the number of samples. Thus, the bars have the same
size on a logarithmic scale for multilevel Monte Carlo but different sizes for MFMC. Note
that the percent of the share of the total number of samples for each bar is shown in the
plot.

levels than multilevel Monte Carlo. We refer to [38] for further investigations
on the number of samples in the context of MFMC.

We repeat the multilevel Monte Carlo and the MFMC estimation 100 times
and report in Figure 4 the estimated MSE

ê(Q̂) =
1

100

100∑
i=1

(
Q̂i − Q̂Ref

)2
, (22)

where Q̂i is either a multilevel Monte Carlo estimator or an MFMC estimator,
and where Q̂Ref is the reference estimate, see Section 4.1. Figure 4 additionally
shows error bars with length

1

99

100∑
i=1

(
ê(Q̂)−

(
Q̂i − Q̂Ref

)2)2

, (23)

which is an estimate of the variance of the error ê(Q̂) if ê(Q̂) is considered as a
random variable. The estimated MSE for the multilevel Monte Carlo and the
MFMC estimators are reported in Figure 4. Both estimators lead to similar
estimated MSEs, which is in agreement with Theorem 1. The runtime of the
multilevel Monte Carlo and the MFMC estimator is reported in Table 3 and
Table 4, respectively.

4.4 MFMC and coarse-grid (weakly-correlated) models

The random variables Q3(Z), . . . , Q7(Z) corresponding to levels ` = 3, . . . , 7
are highly correlated to the random variable Q8(Z), see Table 2. We now
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Fig. 4: The results are in agreement with Theorem 1, which states that the costs of the
MFMC estimator with MSE e(Q̂MF

L,mMF ) . ε are bounded by c(Q̂MF
L,mMF ) . ε−1 under

Assumptions 1–7. The behavior of the MFMC estimator is similar to the behavior of the
multilevel Monte Carlo estimator.

Table 3: The table reports the number of samples used in the multilevel Monte Carlo esti-
mator and the runtime in seconds. The runtime is averaged over 100 runs.

ε ` = 3 ` = 4 ` = 5 ` = 6 ` = 7 total time[s]
100 1.20× 101 0 0 0 0 1.20× 101 0.003
10−1 1.20× 102 1.60× 101 0 0 0 1.36× 102 0.054
10−2 1.19× 103 1.51× 102 1.90× 101 0 0 1.36× 103 0.606
10−3 1.19× 104 1.50× 103 1.89× 102 2.40× 101 0 1.36× 104 6.499
10−4 1.19× 105 1.50× 104 1.89× 103 2.38× 102 0 1.36× 105 64.955
10−5 1.19× 106 1.50× 105 1.88× 104 2.37× 103 2.99× 102 1.36× 106 674.360
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Table 4: The tables reports the number of samples used in the MFMC estimator. While the
total number of samples is higher than in multilevel Monte Carlo (see Table 3), the multi-
level Monte Carlo method requires more samples than MFMC at higher levels (i.e., more
expensive evaluations) and thus the runtimes are about the same for each ε ∈ {1, . . . , 10−5}.

ε ` = 3 ` = 4 ` = 5 ` = 6 ` = 7 total time[s]
100 1.20× 101 0 0 0 0 1.20× 101 0.003
10−1 1.75× 102 4.00× 100 0 0 0 1.79× 102 0.051
10−2 1.88× 103 4.30× 101 5.00× 100 0 0 1.92× 103 0.554
10−3 1.97× 104 4.65× 102 6.20× 101 6.00× 100 0 2.02× 104 6.505
10−4 1.96× 105 4.64× 103 6.18× 102 5.80× 101 0 2.02× 105 64.966
10−5 2.01× 106 4.80× 104 6.60× 103 7.24× 102 7.20× 101 2.07× 106 674.380

costs [s] variances correlation coefficients
level ` = 1 1.12× 10−4 3.23 7.761297293× 10−1

level ` = 2 1.67× 10−4 6.09 9.884862151× 10−1

level ` = 3 2.94× 10−4 9.41 9.990894578× 10−1

level ` = 4 8.77× 10−4 9.40 9.999374083× 10−1

level ` = 5 3.18× 10−3 9.34 9.999961196× 10−1

Table 5: The table reports the costs w1, . . . , w5 of functions Q1, . . . , Q5, and the sample esti-
mates of the variances σ2

1 , . . . , σ
2
5 and the correlation coefficients ρ8,1, . . . , ρ8,5 of the random

variables Q1(Z), . . . , Q5(Z) estimated from 104 samples. Note that the costs, variances, and
correlation coefficients for levels ` = 3, . . . , 7 are reported in Table 2.

consider MFMC with Q1(Z), Q2(Z), . . . , Q5(Z), where we include levels ` =
1 and ` = 2. The estimated correlation coefficients, costs, and variances
are reported in Table 5. The random variable Q1(Z) corresponding to level
` = 1 is significantly weaker correlated to Q8(Z) than the random vari-
ables Q2(Z), . . . , Q5(Z). As in Section 4.2, we measure the rates of Assump-
tions 1,2,4, and obtain α ≈ 0.9255, β ≈ 1.6202 and γ ≈ 0.7160. These rates
are similar as the rates reported in Table 1. Note that β > γ.

We derive multilevel Monte Carlo and MFMC estimates of E[Q(Z)] for
ε ∈ {101, 100, 10−1, 10−2} and report the estimated MSE (22) in Figure 5. The
error bars show the variance (23). The results illustrate that MFMC achieves
an estimated MSE that is in agreement with Theorem 1 also in this case where
the random variable Q1(Z) corresponding to the coarsest discretization is only
weakly correlated to Q8(Z). Multilevel Monte Carlo and MFMC show a similar
behavior. We refer to [38, Section 3.4, Section 4.3], where the performance of
MFMC with weakly-correlated models is further investigated analytically and
numerically.

5 Conclusions

The MFMC method provides a general framework for combining multiple
approximations into an estimator of statistics of a random variable that is
expensive (or impossible) to sample. We discussed MFMC in the special case
where sampling the random variable requires solving a PDE, and where we can
sample only approximations that correspond to a hierarchy of discretizations
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Fig. 5: The plots report the estimated MSE of multilevel Monte Carlo and the MFMC
estimators that combine Q1(Z), . . . , Q5(Z) corresponding to levels ` = 1, . . . , 5. The random
variables Q1(Z) and Q2(Z) are only weakly correlated to Q8(Z). The MFMC estimator
shows a similar behavior as the multilevel Monte Carlo estimator.

of the PDE. In this setting, and under standard assumptions on the discretiza-
tions of the PDE, the MFMC estimator is efficient, which means that the costs
of the MFMC estimator with MSE below a threshold are bounded linearly in
the threshold. Our numerical results illustrated the theory.
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