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One important task of uncertainty quantification is propagating input uncertainties through
a system of interest to quantify the uncertainties’ effects on the system outputs; however, numer-
ical methods for uncertainty propagation are often based on Monte Carlo estimation, which
can require large numbers of numerical simulations of the numerical model describing the
system response to obtain estimates with acceptable accuracies. Thus, if the model is com-
putationally expensive to evaluate, then Monte-Carlo-based uncertainty propagation methods
can quickly become computationally intractable. We demonstrate that multifidelity methods
can significantly speedup uncertainty propagation by leveraging low-cost low-fidelity models
and establish accuracy guarantees by using occasional recourse to the expensive high-fidelity
model. We focus on the multifidelity Monte Carlo method, which is a multifidelity approach
that optimally distributes work among the models such that the mean-squared error of the
multifidelity estimator is minimized for a given computational budget. The multifidelityMonte
Carlo method is applicable to general types of low-fidelity models, including projection-based
reduced models, data-fit surrogates, response surfaces, and simplified-physics models. We
apply the multifidelity Monte Carlo method to a coupled aero-structural analysis of a wing and
a flutter problem with a high-aspect-ratio wing. The low-fidelity models are data-fit surrogate
models derived with standard procedures that are built in common software environments
such as Matlab and numpy/scipy. Our results demonstrate speedups of orders of magnitude
compared to using the high-fidelity model alone.

I. Introduction
To meet the ever increasing demands on robustness and reliability of modern aircraft, it becomes necessary to

take into account the effects of uncertainties on the system performance during design and operation. Uncertainty
propagation is one task of uncertainty quantification that quantifies how uncertainties in the inputs of a system affect
the uncertainties in the outputs of that system. If the system inputs are modeled as random variables, then the outputs
of the system become random variables as well. The goal of uncertainty propagation is to characterize the output
random variable, for example by estimating its statistics such as the expected value and the variance. Monte Carlo
methods are widely used for uncertainty propagation. With a given numerical model that describes the input-output
relationship of the system of interest, Monte Carlo methods evaluate the model at many input samples of the input
random variable and estimate statistics from the corresponding outputs. Often a large number of model evaluations is
required to estimate the statistics of the output random variable with an acceptable accuracy, see Figure 1a. If each
evaluation of the model is computationally expensive, Monte Carlo estimation of statistics of the output random variable
can become computationally intractable. The multifidelity Monte Carlo (MFMC) method leverages low-cost low-fidelity
models of the high-fidelity model to speedup the estimation and occasionally uses recourse to the expensive high-fidelity
model to establish unbiased estimators. In this paper, we demonstrate on a coupled aero-structural analysis of a wing
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(a) high-fidelity model alone (b) low-fidelity model alone (c) multifidelity

Fig. 1 Multifidelity methods combine high- and low-fidelity models. The low-fidelity models are leveraged for
speedup and occasional recourse to the high-fidelity model is used to establish accuracy and/or convergence
guarantees. This figure is a modified figure from the survey [16] on multifidelity methods.

and a flutter problem that MFMC can achieve speedups of orders of magnitude compared to Monte Carlo estimators
that use the high-fidelity model alone.

Low-fidelity models provide approximations of the high-fidelity model outputs. The reduced accuracy compared to
the high-fidelity model is in favor of significantly reduced evaluation costs. Low-fidelity models can be categorized
into three different types. First, there are data-fit surrogate models [1, 2], e.g., kriging models [3–7], which are
fitted to input-output data of the high-fidelity model. Second, there are projection-based reduced models [8–13] that
solve the governing equations of the high-fidelity model in a problem-dependent reduced space, instead of the often
high-dimensional general solution space. Third, simplified models [14, 15] are derived by simplifying the high-fidelity
model, e.g., ignoring nonlinear effects and using a coarser grid to discretize the governing equations of the low-fidelity
model. The survey [16] discusses these three low-fidelity model types in more detail.

A typical approach to speedup uncertainty propagation is to construct a low-fidelity model with one-time high costs
and then use it to replace the high-fidelity model in the uncertainty propagation task. This means that the low-fidelity
model is evaluated instead of the high-fidelity model, see Figure 1b. However, since the high-fidelity model is replaced
by the low-fidelity model, the corresponding estimator is biased because the statistics of the low-fidelity model output
random variable are estimated instead of the statistics of the high-fidelity model output random variable.

Multifidelity methods combine, instead of replace, the high-fidelity model with one or multiple low-fidelity models
[16], see Figure 1c. The low-fidelity models are leveraged for speedup and occasional recourse to the high-fidelity model
establishes accuracy guarantees. In case of uncertainty propagation, accuracy guarantees typically means unbiasedness
with respect to the statistics of the high-fidelity model output random variable. Multifidelity methods rely on multiple
models, use them in concert to speedup computations, and provide the same accuracy guarantees as methods that use
the high-fidelity model alone. Many multifidelity methods can leverage heterogeneous types of low-fidelity models
and so exploit the full breath of available low-fidelity models. For uncertainty propagation, there is a line of work on
multifidelity methods [17–19] for stochastic collocation [20–22], which uses deterministic quadrature rules that can
exploit, e.g., smoothness properties in the high- and low-fidelity model, instead of Monte Carlo methods, which are
generally applicable but cannot exploit these problem structures. Multifidelity uncertainty propagation methods based
on Monte Carlo often rely on control variates [23, 24] to obtain a multifidelity estimator with a lower variance than a
single-fidelity Monte Carlo estimator of the same costs. The work [25, 26] uses reduced-basis models as control variates
to reduce the variance. The StackMC method [27] relies on data-fit surrogate models to construct control variates for
variance reduction. The multilevel Monte Carlo method [28, 29] exploits a hierarchy of coarse-grid approximations of
the governing equations of the high-fidelity model to construct control variates. An extension of the multilevel Monte
Carlo method to reduced-basis models is introduced in the work [30].

We focus here on the MFMC method [31, 32] that uses control variates to reduce the variance in Monte Carlo
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(a) evaluating model f (b) propagating input uncertainties through model f

Fig. 2 Uncertainty propagation is the task of propagating input uncertainties through a model to characterize
the uncertainties’ effects on the model outputs.

estimation and relies on low-fidelity models for constructing these control variates. MFMC optimally decides how
often each of the models has to be evaluated to minimize the mean-squared error (MSE) of the MFMC estimator for a
given computational budget. We demonstrate MFMC on a coupled aero-structural analysis and a flutter problem. The
low-fidelity models are derived with standard procedures available in Matlab. MFMC achieves speedups of orders of
magnitude in our results compared to using Monte Carlo estimators with the high-fidelity model alone.

II. Uncertainty propagation with Monte Carlo estimation
This section sets up the problem and discusses Monte Carlo estimation for uncertainty propagation.

A. Problem setup
Consider a high-fidelity model that describes the response of a system of interest for given inputs. The inputs are

the components of a d-dimensional vector x = [x1, . . . , xd]T in an input domain X ⊆ Rd with d ∈ N. Evaluating the
high-fidelity model at an input x gives an approximation y ∈ Y of the system response in the output domain Y ⊆ R.
The output y is our quantity of interest. We denote the high-fidelity model as a function

f : X → Y

that maps inputs x ∈ X onto outputs y = f (x). In the following, we consider the case where f is computationally
expensive to evaluate. Each evaluation of f incurs costs w ∈ R with w > 0.

Consider now a random variable X : Ω→ X with sample space Ω. The random variable X describes the inputs and
accounts for the uncertainties in the inputs. Since X is a random variable, the output f (X ) becomes a random variable
as well. We are interested in estimating statistics of f (X ) for a given model f and a given input random variable X .
Figure 2 depicts this uncertainty propagation task. In the following, we restrict the discussion to estimating the expected
value

s = E[ f (X )] (1)

of the output random variable f (X ). The expected value is

E[ f (X )] =
∫
X

f (x)p(x)dx ,

with the probability density function p corresponding to the input random variable X .

B. Monte Carlo estimation
A Monte Carlo estimator of the expected value s of f (X ) is

ȳm =
1
m

m∑
i=1

f (xi ) , (2)

where x1, . . . , xm are m realizations of the random variable X . The Monte Carlo estimator ȳm is an unbiased estimator
of s because

E[ȳm] = s .
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The MSE of ȳm is defined as
e( ȳm ) = E

[
( ȳm − s)2

]
,

which simplifies to

e( ȳm ) =
Var[ f (X )]

m
,

because ȳm is unbiased. Thus, the MSE of the Monte Carlo estimator ȳm depends on the variance Var[ f (X )] and on
the number of samples m. The costs of the Monte Carlo estimator ȳm are

c( ȳm ) = wm ,

because one evaluation of the high-fidelity model f incurs costs w and the Monte Carlo estimator evaluates f at m
realizations of X . Note that only the evaluation costs of f are taken into account. Other costs, e.g., computing the sum
in (2) once the high-fidelity model f is evaluated at the realizations x1, . . . , xm , are typically negligible.

Depending on the variance Var[ f (X )] of the output random variable, a large number of realizations, and thus a large
number of high-fidelity model evaluations, can be necessary to obtain a Monte Carlo estimate of s with an acceptable
MSE. If the high-fidelity model is expensive to evaluate, i.e., if w is large, then Monte Carlo estimation without further
ado can become computationally intractable quickly.

III. Multifidelity Monte Carlo estimation for uncertainty propagation
ThemultifidelityMonte Carlo [31, 32] (MFMC)method aims to leverage low-cost low-fidelity models to obtain a mul-

tifidelity estimator that achieves the sameMSE as the standard Monte Carlo estimator (2) with significantly reduced costs.

Fig. 3 The MFMC method
leverages the low-fidelity models
f (2), . . . , f (k ) to speedup uncer-
tainty propagation and uses occa-
sional recourse to the high-fidelity
model f (1) to guarantee unbiased
estimators.

In a typical situation, large numbers of evaluations of the low-cost low-fidelity
models are taken and only a few evaluations of the high-fidelity model. The
large numbers of low-fidelity model evaluations help to reduce the variance of
the multifidelity estimator whereas the few and occasional evaluations of the
high-fidelity model establish unbiasedness of the multifidelity estimator. We
first introduce the notation for low-fidelity models in Section III-A and then
discuss MFMC in Section III-B. Implementation details of MFMC are given in
Section III-C.

A. Low-fidelity models
In the following, we denote the high-fidelity model as f (1) , i.e., with a

superscript (1), and the low-fidelity models as f (2), . . . , f (k ) with k ∈ R. Thus,
we have one high-fidelity model f (1) and k − 1 low-fidelity models f (2), . . . , f (k ) .
All i = 2, . . . , k low-fidelity models f (i) : X → Y map from the same input
domainX to the same output domainY as the high-fidelity model and approximate
the high-fidelity model output, see Figure 3. Evaluating a model f (i) incurs costs
wi with wi ∈ R and 0 < wi , for i = 1, . . . , k. No assumptions are made on the
low-fidelity models in the following. In particular, we do not make assumptions
on the type of the low-fidelity model, the costs, and their approximation quality
with respect to the high-fidelity model.

B. Multifidelity Monte Carlo estimation
Consider evaluating the high-fidelity model f (1) m1 times, low-fidelity model

f (2) m2 times, and so on, and evaluating low-fidelity model f (k ) mk times. In the
following, we have 0 < m1 ≤ m2 ≤ · · · ≤ mk , which means that the high-fidelity
model m1 is evaluated at least once and fewer or equal many times as the low-fidelity model f (2) , and so on. The
low-fidelity model f (k ) is evaluated the most times. Consider now mk realizations

x1, . . . , xmk
(3)

of the random variable X . Evaluate model f (i) at the first mi realizations x1, . . . , xmi of the realizations (3) to obtain
the outputs

f (i) (x1), . . . , f (i) (xmi ) , (4)
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for i = 1, . . . , k. Thus, the high-fidelity model f (1) is evaluated at the first m1 realizations x1, . . . , xm1 , low-fidelity
model f (2) is evaluated at the realizations x1, . . . , xm2 , and so on. With the outputs (4), define the Monte Carlo
estimators

ȳm1 =
1

m1

m∑
j=1

f (1) (x j ) , ȳ(i)
mi
=

1
mi

mi∑
j=1

f (i) (x j ) , ȳ(i)
mi−1
=

1
mi−1

mi−1∑
j=1

f (i) (x j ) , (5)

for i = 2, . . . , k. The Monte Carlo estimator ȳm1 is derived from high-fidelity model outputs, and the Monte Carlo
estimators ȳ(i)

mi
and ȳ(i)

mi−1 are derived from low-fidelity model outputs. The estimator ȳ(i)
mi

uses all evaluations
f (i) (x1), . . . , f (i) (xmi ) of the low-fidelity model f (i) , whereas the estimator ȳ(i)

mi−1 uses the first mi−1 evaluations of the
low-fidelity model f (i) only.

The MFMC method combines the Monte Carlo estimators (5) into the MFMC estimator

ŝ = ȳm1 +

k∑
i=2

αi

(
ȳ(i)
mi
− ȳ(i)

mi−1

)
. (6)

The MFMC estimator depends on the coefficients α2, . . . , αk ∈ R and on the number of model evaluations m1, . . . ,mk .
Before we can specify how to select m1, . . . ,mk, α2, . . . , αk , we first have to define the costs of the MFMC estimator.
The costs of ŝ are

c(ŝ) =
k∑
i=1

miwi , (7)

because model f (i) is evaluated mi times and each evaluation incurs costs wi for i = 1, . . . , k. The MFMC method
selects m1, . . . ,mk, α2, . . . , αk such that the costs of the MFMC estimator are equal to a given computational budget
c(ŝ) = p and the MSE of the MFMC estimator is minimal. Thus, the MFMC estimator is optimal in the sense that
m1, . . . ,mk, α2, . . . , αk are selected that minimize the MSE while the costs of the MFMC estimator equal the given
computational budget p.

Key to optimally select the m1, . . . ,mk, α2, . . . , αk are the correlation coefficients between the low-fidelity models
and the high-fidelity model. To define the correlation coefficient, let Z1 and Z2 be two random variables. The correlation
coefficient of Z1 and Z2 is

ρ =
Cov[Z1, Z2]

√
Var[Z1] Var[Z2]

,

where
Cov[Z1, Z2] = E [(Z1 − E[Z1])(Z2 − E[Z2])]

is the covariance of Z1 and Z2. The correlation coefficient is normalized such that −1 ≤ ρ ≤ 1. If |ρ| ≈ 1, then Z1 and
Z2 are highly correlated, which means that Z1 and Z2 behave similarly. If |ρ| ≈ 0, then Z1 and Z2 are weakly correlated,
and the behavior of Z1 gives only little information about the behavior of Z2 and vice versa. The MFMC method uses
the correlation coefficients between the high-fidelity model output random variable f (1) (X ) and the low-fidelity model
output random variables f (i) (X )

ρi =
Cov[ f (1) (X ), f (i) (X )]√
Var[ f (1) (X )] Var[ f (i) (X )]

, i = 2, . . . , k , (8)

and the costs w1, . . . ,wk of the models to optimally select the number of model evaluations m1, . . . ,mk and the
coefficients α2, . . . , αk . If a low-fidelity model f (i) is cheap to evaluate, i.e., the costs of the low-fidelity model are
significantly lower than the costs of the high-fidelity model wi � w1, and the low-fidelity model output random variable
f (i) (X ) is highly correlated to the high-fidelity model output random variable f (1) (X ), then the low-fidelity model
provides valuable information about the high-fidelity model at low costs. Thus, in this situation, MFMC tends to
evaluate this low-fidelity model many times. In contrast, if a low-fidelity model is computationally expensive and
weakly correlated, then MFMC tends to evaluate the low-fidelity model only a few times or does not evaluate it at all.
Expressions for the optimal m1, . . . ,mk, α2, . . . , αk with respect to the costs w1, . . . ,wk and the correlation coefficients
ρ2, . . . , ρk are available [32].
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C. Implementation of MFMC estimation
A detailed algorithm that implements MFMC estimation is given in the work [32]. A Matlab implementation

of MFMC is available on GitHub∗. The MFMC implementation requires estimates of the costs w1, . . . ,wk and of
the correlation coefficients ρ2, . . . , ρk of the high-fidelity model output random variable and the low-fidelity model
output random variables, see Section III-B and equation (8). All these quantities can be estimated from pilot runs with
the models f (1), . . . , f (k ) , as described in detail in [32, Section 3.6]. The estimates of the costs and the correlation
coefficients are required to optimally select the number of model evaluations m1, . . . ,mk and the coefficients α2, . . . , αk .
Errors in the estimates of the costs and the correlation coefficients affect the choice of m1, . . . ,mk, α2, . . . , αk only and
cannot introduce a bias into the MFMC estimator of s. Thus, crude estimates of the costs and correlation coefficients
are typically sufficient, cf. the discussion in [32, Section 3.4].

IV. Numerical experiments
We demonstrate MFMC on two examples. In Section IV-A, we use MFMC to propagate uncertain environment

conditions through a coupled aero-structural wing analysis to quantify the uncertainty in the fuel burn. In Section IV-B
and Section IV-C, we consider a flutter problem with a high-aspect-ratio wing. All runtime measurements are performed
with Matlab and python on compute nodes with Intel Xeon E5-1660v4 and 64GB RAM.

A. Uncertainty propagation in a coupled aero-structural analysis
This sections uses MFMC to propagate uncertain flight conditions and uncertain environmental conditions through

a coupled aero-structural analysis of a wing.

1. Problem setup
The high-fidelity model corresponds to a coupled aero-structural analysis code called OpenAeroStruct† [33] that

utilizes a vortex-lattice method and a 6 degree of freedom 3-dimensional spatial beam model. The code simulates
aerodynamic and structure analysis using lifting surfaces. The code is built with the framework OpenMDAO [34],
which is a platform for systems analyses and multidisciplinary optimization. An illustration of a wing analyzed with the
high-fidelity model is given in Figure 4.

We consider wing meshes of 5 evenly spaced spanwise and 2 chordwise points, which is the default configuration
in the code. The input is a three-dimensional vector x = [x1, x2, x3]T , with x1 describing the angle of attack (deg),
x2 air density (kg/m3), and x3 Mach number. The rest of the parameters of OpenAeroStruct are set to their default
values. The output is fuel burn. The input domain is X = R3 and the output domain is Y = R. The high-fidelity model
f (1) : X → Y uses OpenAeroStruct to map a realization x of the input random variable X onto fuel burn.

To model uncertainties in the inputs, we consider the input random variable X . The distribution of X is a mixture
distribution of two normal distributions with mean µ1 = [5, 0.38, 0.80]T and covariance

Σ1 =



0.01 0 0
0 0.001 0
0 0 0.001


and mean µ2 = [5, 0.38, 0.84]T and covariance

Σ2 =



0.01 0 0
0 0.001 0
0 0 0.006



.

With the mixture distribution, we model small variations about the base values µ1 and µ2, in contrast to variations
in intervals, as with uniform distributions. The base values µ1 and µ2 are given as examples in the OpenAeroStruct
code. Note that MFMC is applicable to any input distribution that satisfies certain mild assumptions, e.g., that E[X ] and
Var[X] exist in R, see [32] for details. In particular, the components of the input random variable can be correlated. A
realization of X is an input x that can be used to evaluate the high-fidelity model to obtain the corresponding fuel burn.
Our goal is to estimate the expected fuel burn E[ f (1) (X )].

∗https://github.com/pehersto/mfmc/
†https://github.com/johnjasa/OpenAeroStruct/
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Fig. 4 Illustration of a wing that can be analyzed with the OpenAeroStruct code. Figure fromOpenAeroStruct
documentation†.

Table 1 Coupled aero-structural analysis: The high-fidelity model f (1) is six orders of magnitude more
expensive to evaluate than the low-fidelity model f (2) and f (3) in this example. The costs of constructing (“offline
costs”) the low-fidelity model f (2) are almost three times higher than the costs of constructing the low-fidelity
model f (3) .

model evaluation costs [s] offline costs [s] correlation coefficient
high-fidelity model f (1) 1.61 × 10−1 - -
low-fidelity model f (2) , n = 7 1.23 × 10−7 55.382 9.9552 × 10−1

low-fidelity model f (3) , n = 5 1.21 × 10−7 20.183 9.9192 × 10−1

2. Low-fidelity models
Spline interpolants of the high-fidelity model f (1) serve as low-fidelity models. Let n ∈ N and consider an equidistant

grid with n grid points in each direction in the domain

[4.5, 5.5] × [0.2, 0.6] × [0.3, 1.25] ⊂ R3 . (9)

Note that the OpenAeroStruct code uses a linear method for the aerodynamic analysis and therefore fails to capture the
behavior in the transonic regime. The distribution of the input random variable X gives realizations that correspond to
the transonic regime with a very low probability. To avoid numerical problems with outliers that fall into the transonic
regime, the domain for constructing the low-fidelity models (9) includes Mach numbers x3 > 1.

To construct a spline interpolant, the high-fidelity model f (1) is evaluated at all grid points and the interpolant is
constructed with the griddedInterpolant that is built in Matlab. The costs of constructing a spline interpolant are
n3 × w1, because n3 evaluations of the high-fidelity model are required and each evaluation of the high-fidelity model
incurs costs w1.

We consider two low-fidelity models: The low-fidelity f (2) is constructed with n set to n = 7, i.e., from n3 = 73 = 343
outputs of the high-fidelity model. The low-fidelity model f (3) is constructed with n = 5. The properties of the low-
and the high-fidelity models are summarized in Table 1. The costs and the correlation coefficients are estimated from
1000 samples following the procedure described in [32, Section 3.6].

3. Results
We estimate E[ f (1) (X )] with MFMC using the models with properties reported in Table 1. We first compute a

reference estimate of E[ f (1) (X )] using MFMC and a computational budget that is equal to the costs of 104 evaluations
of the high-fidelity model. This computation is repeated 50 times and the average of the corresponding estimates is our
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Table 2 Coupled aero-structural analysis: Table reports the number of times the low- and the high-fidelity
models are evaluated in the Monte Carlo and the MFMC estimators. For example, for online costs of about 800
seconds, theMonte Carlo estimator evaluates the high-fidelity model 5000 times, whereas theMFMC estimators
split these 800 seconds between evaluating the low- and high-fidelity models. In case of the MFMC estimator
that uses all three models f (1), f (2), f (3) , the high-fidelity model is evaluated about 4950 times and the remaining
50 high-fidelity model evaluations are traded for millions of evaluations of the low-fidelity models.

Monte Carlo MFMC with f (1), f (2) MFMC with f (1), f (3) MFMC with f (1), f (2), f (3)

online costs [s] #evals f (1) #evals f (1) #evals f (2) #evals f (1) #evals f (3) #evals f (1) #evals f (2) #evals f (3)

7.99 × 100 50 4.90 × 101 4.48 × 105 4.90 × 101 5.97 × 105 4.90 × 101 5.07 × 104 5.99 × 105

1.61 × 101 100 9.90 × 101 8.95 × 105 9.90 × 101 1.19 × 106 9.90 × 101 1.01 × 105 1.20 × 106

8.07 × 101 500 4.96 × 102 4.48 × 106 4.95 × 102 5.97 × 106 4.95 × 102 5.07 × 105 5.99 × 106

1.61 × 102 1000 9.93 × 102 8.95 × 106 9.90 × 102 1.19 × 107 9.90 × 102 1.01 × 106 1.20 × 107

8.07 × 102 5000 4.97 × 103 4.48 × 107 4.95 × 103 5.97 × 107 4.95 × 103 5.07 × 106 5.99 × 107

reference estimate ŝRef. Note that the MFMC estimator is guaranteed to be unbiased (and consistent) and therefore using
MFMC with a large computational budget to compute the reference estimate is reasonable. We then estimate E[ f (1) (X )]
with three different estimators: The single-fidelity Monte Carlo estimator ŝHF that uses the high-fidelity model f (1)

alone. The single-fidelity Monte Carlo estimator ŝLF that uses the low-fidelity model f (3) alone. The MFMC estimator
ŝMFMC that combines the high-fidelity model f (1) and the low-fidelity model f (3) . We repeat the estimation 100 times
to obtain the estimates ŝHF1 , . . . , ŝHF100 from the high-fidelity model alone, the estimates ŝLF1 , . . . , ŝ

LF
100 from the low-fidelity

model alone, and the MFMC estimates ŝMFMC
1 , . . . , ŝMFMC

100 . The estimated relative MSE of the corresponding estimators
is

ê(ŝ) =
1
100

100∑
i=1

(
ŝi − ŝRef

)2
(
ŝRef

)2 ,

where ŝ stands for either ŝHF, ŝLF, or ŝMFMC.
Figure 5a reports the estimated relative MSE of the two single-fidelity and the multifidelity estimator for different

online costs. The online costs equal the computational budget p that is available for evaluating the high-fidelity and the
low-fidelity models, see equation (7). It includes the evaluation costs only and ignores the costs of constructing the
low-fidelity models. Furthermore, the online costs are with respect to one estimation, instead of the sum of all 100
estimations over which the relative MSE is estimated. The estimated relative MSE corresponding to the single-fidelity
estimator that uses the low-fidelity model alone levels off, which demonstrates that using the low-fidelity model alone
introduces a bias. For the same online costs, the MFMC estimator achieves an estimated relative MSE that is more
than one order of magnitude lower than the single-fidelity Monte Carlo estimator that uses the high-fidelity model
alone. The estimated relative MSE of the MFMC estimator is reduced as the online costs are increased, which indicates
that the MFMC estimator is unbiased, even though the low-fidelity model is used to obtain speedups compared to
using the high-fidelity model alone. Figure 5b shows the estimated relative MSE corresponding to the three MFMC
estimators that use different combinations of the three models f (1), f (2), f (3) . The MFMC estimator that uses f (1) and
f (2) achieves a comparable estimated MSE error as the MFMC estimator that uses f (1) and f (3) , which is in agreement
with Table 1 that shows that both low-fidelity models have similar properties in terms of costs and correlation coefficients.
Combining all three models f (1), f (2), f (3) seems to give a small improvement compared to using two models only,
which again can be explained with the similar properties of the two low-fidelity models.

Table 2 reports the number of evaluations of the low- and high-fidelity models for different online costs and estimators.
The MFMC estimators evaluate the low-fidelity models orders of magnitude more often than the high-fidelity model.
For example, for online costs of about 800 seconds, the high-fidelity model can be evaluated 5000 times, which means
that the single-fidelity Monte Carlo estimator that uses the high-fidelity model alone is derived from 5000 realizations
of f (1) (X ). In contrast, for online costs of about 800 seconds, the MFMC estimator that uses the low-fidelity models
f (2), f (3) and the high-fidelity model f (1) , evaluates f (1) about 4950 times, model f (2) more than five million times,
and model f (3) almost 60 million times.

Figure 6 reports the estimated relative MSE of the estimator with respect to the total costs, which includes the online
costs of evaluating the models and the offline costs of constructing the low-fidelity models. Since the offline costs are
small compared to the online costs in this example, the MFMC estimator achieves similar speedups with respect to the
total costs as with respect to the online costs.
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(a) comparison of single-fidelity estimators to MFMC (b) MFMC estimator with different models

Fig. 5 Coupled aero-structural analysis: The multifidelity approach achieves a speedup of about two orders of
magnitude. The online costs are the costs of evaluating the high-fidelity and the low-fidelitymodels. For example,
for online costs of about 800 seconds, the high-fidelity model can be evaluated 5000 times, cf. Table 1. Note
that the error curve in plot (a) corresponding to the single-fidelity approach that uses the low-fidelity model f (3)

alone levels off because using the low-fidelity model alone introduces a bias into the estimator. The multifidelity
approach avoids that bias by combining, instead of replacing, the high-fidelity model with the low-fidelity model.

B. Uncertainty propagation of flutter of a high-aspect-ratio wing
This numerical experiment studies the flutter of a highly flexible, high-aspect-ratio wing, see Figure 7. The air

density and the root angle of attack are uncertain inputs and the expected value of the flutter speed is the statistic of the
output random variable that is to be estimated.

1. Problem setup
The flutter problem that we consider was studied experimentally and theoretically by Tang and Dowell [36]. The

aeroelastic response of the wing is analyzed in the context of a structural design optimization method in [35] and a
sensitivity analysis of the flutter speed of this wing is carried out in [37]. In [37], flutter speed and analytical sensitivities
of flutter speed with respect to input parameters are computed to near machine precision with regards to temporal
discretization, thus removing this source of error from the Monte Carlo and MFMC estimates reported below. For the
wing model and the parameter space studied here, the flutter solutions appear unique and well behaved. The consistency
of the flutter solutions with time-domain analysis has previously been established by the second author. We refer to [38]
for a detailed discussion on aeroelasticity and uncertainty quantification, where the authors establish that non-uniqueness
in the flutter solution can be modeled as bi-modal distributions.

We briefly summarize the wingmodel here and refer to the literature [35–37] for details. The elastic and geometrically
nonlinear behavior of the wing is modeled by the Hodges-Dowell equations [35]. Nonlinear terms of third order or
higher are neglected. The structural equations are discretized [35] using l ∈ N finite elements on an equidistant grid
from wing root to tip. The aerodynamic model is the ONERA stall model of Tran and Petot [39]. The resulting
aerodynamical model is composed of 6(l + 1) degrees of freedom, which leads to 10l + 6(l + 1) equations if coupled
with the structural equations in first-order form. We consider two inputs to the high-fidelity model, which are the root
angle of attack x1 (rad/s) and the air density x2 (kg/m3). The input domain is

X = [0.0332, 0.0367] × [1.1638, 1.2863] .

The inputs vary about their base value 0.0349 (about 2 degrees) and 1.225, respectively, by up to 5%. The output
domain is Y = R and the output is the flutter speed. We set the number of finite elements to l = 10 and define the
high-fidelity model f (1) : X → Y that maps the root angle of attack and the air density onto the flutter speed. To
account for uncertainties in the root angle of attack and the air density, we consider the input random variable X that
follows a uniform distribution in the input domain X. The goal is to estimate the expected flutter speed E[ f (1) (X )].
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(a) comparison of single-fidelity estimators to MFMC (b) MFMC estimator with different models

Fig. 6 Coupled aero-structural analysis: The plots report the estimated relative MSE with respect to the total
costs that include the construction of the low-fidelity models and the model evaluation costs, in contrast to
Figure 5 that reports the MSE with respect to the online costs that include the evaluation costs of the models
only. The reported results indicate that the costs of constructing the low-fidelity models are small compared to
the online costs in this example.

Fig. 7 Schematic ofmodel of high-aspect-ratio wing. In the figure,U denotes air speed and x, y, z the coordinate
directions. Figure reproduced from the work [35].

2. Low-fidelity models
Low-fidelity models are derived via spline interpolation from the high-fidelity model f (1) . Let n ∈ N be the number

of equidistant grid points in each direction of the input domain X. A spline interpolant is constructed with the Matlab
function griddedInterpolant. We consider the low-fidelity model f (2) that is derived from n = 2 grid points in each
direction. Since we are interested in small variations of the root angle of attack and the air density only, and the problem
seems insensitive to small perturbations [37], a few interpolation points are sufficient to obtain a low-fidelity model with
an acceptable accuracy for MFMC estimation. The properties of the high- and low-fidelity model are summarized in
Table 3. The costs and correlation coefficients are estimated as in Section IV-A-2.

While the flutter analysis procedure provides sensitivities with respect to the problem parameters, these sensitivities
are not exploited in the MFMC method discussed herein. There is potential for the use of this sensitivity data to improve
the quality of the low-fidelity models (e.g., gradient enhance kriging) or by using the linearization itself as a low-fidelity
model.

3. Results
We estimate E[ f (1) (X )] with MFMC and standard Monte Carlo estimators and compare the estimated relative MSEs.

We follow the same procedure as described in Section IV-A-3. The reference estimate ŝRef is obtained with MFMC
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Table 3 Flutter problem: The table reports the costs and correlation coefficients of the low- and high-fidelity
model.

model evaluation costs [s] offline costs [s] correlation coefficient
high-fidelity model f (1) 1.51 × 101 - -
low-fidelity model f (2) , n = 2 5.39 × 10−8 60.517 9.9981 × 10−1
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(a) online costs (b) total costs that include low-fidelity model construction

Fig. 8 Flutter problem: Using the low-fidelity model alone to speedup uncertainty propagation typically leads
to biased estimators, as indicated by the leveling off of the error curve corresponding to the Monte Carlo
estimator that uses the low-fidelity model alone. TheMFMC approach leverages the low-fidelity model to obtain
about three orders of magnitude speedup compared to using the high-fidelity model alone and guarantees an
unbiased estimator.

using the high-fidelity model f (1) and the low-fidelity model f (2) . The budget is equal to the costs of evaluating the
high-fidelity model 1000 times. The MFMC estimation is repeated 100 times and the average estimate is our reference
estimate ŝRef. Figure 8 compares the estimated relative MSE of the single-fidelity Monte Carlo estimator that uses
the high-fidelity model alone, the single-fidelity Monte Carlo estimator that uses the low-fidelity model alone, and
the MFMC estimator that combines the low-fidelity with the high-fidelity model. The relative MSEs are estimated
over 100 runs, as in Section IV-A-3. The results reported in Figure 8 show that the estimated relative MSE of the
single-fidelity Monte Carlo estimator that uses the low-fidelity model alone levels off. The MFMC estimator leverages
the low-fidelity model to obtain about three orders of magnitude speedup compared to the single-fidelity Monte Carlo
estimator that uses the high-fidelity model alone and guarantees unbiasedness by occasional recourse to the high-fidelity
model. The number of model evaluations of the estimators are summarized in Table 4. The MFMC estimator evaluates
the low-fidelity model six orders of magnitude more often than the high-fidelity model.

Table 4 Flutter problem: The table reports the number of times the low- and the high-fidelity models are
evaluated in the MFMC estimator and compares the number of high-fidelity model evaluations to the number
of high-fidelity model evaluations in the standardMonte Carlo estimator that uses the high-fidelity model alone.

Monte Carlo MFMC with f (1), f (2)

online costs [s] #evals f (1) #evals f (1) #evals f (2)

7.56 × 101 5 4.00 × 100 4.30 × 106

1.51 × 102 10 9.00 × 100 8.61 × 106

7.56 × 102 50 4.90 × 101 4.30 × 107
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Table 5 Flutter problem with three inputs: The table reports the costs and correlation coefficients of the low-
and high-fidelity models. The output random variable corresponding to low-fidelity model f (2) is significantly
higher correlated to the high-fidelity output random variable than the output random variable corresponding
to model f (3) .

model evaluation costs [s] offline costs [s] correlation coefficient
high-fidelity model f (1) 1.51 × 101 - -
low-fidelity model f (2), n = 7 1.29 × 10−7 4923 9.9999997323 × 10−1

low-fidelity model f (3), n = 3 1.18 × 10−7 387.53 9.9987563563 × 10−1

C. Uncertainty propagation of flutter of a high-aspect-ratio wing with three inputs and strong variations
This section considers the same flutter problem as studied in Section IV-B but with additional inputs and stronger

variations in the inputs.

1. Problem setup and low-fidelity models
The flutter problem of Section IV-B takes the root angle of attack x1 and air density x2 as inputs. We now consider

the same flutter problem but with the mass of the tip x3 (kg/m3) as an additional input. The input domain is

X = [8.72 × 10−3, 4.3 × 10−2] × [1.1638, 1.2863] × [3.9615 × 10−2, 4.3785 × 10−2] ,

such that the variation of root angle of attack is from about 0.5 degrees to about 2.5 degrees. Note that this is a
significantly stronger variation than in the flutter problem studied in Section IV-B. The air density and mass of the tip
vary 5% around their base value 1.225 and 4.17× 10−2, respectively. Detailed description of these inputs and their effect
on the flutter speed can be found in [37]. The high-fidelity model f (1) : X → Y is derived with 10 finite elements, see
Section IV-B, and maps the inputs onto the flutter speed. The input random variable X has independent components
and is uniformly distributed in X. Our goal is to estimate the expected flutter speed E[ f (1) (X )].

We construct two low-fidelity models with spline interpolation as discussed in Section IV-B-2. The low-fidelity
model f (2) is derived from n = 7 grid points in each direction of the input domain X, and the low-fidelity model f (3) is
derived from n = 3 grid points in each direction. The properties of the high- and low-fidelity model are summarized in
Table 5.

2. Results
Figure 9 reports the estimated relative MSEs of single-fidelity Monte Carlo and MFMC estimators. The reference

estimate ŝRef is the average over 100 estimates obtained with MFMC with models f (1), f (2), f (3) and a budget that is
equal to the costs of 1000 high-fidelity model evaluations. The relative MSEs of the estimators in Figure 9 are obtained
over 100 runs as in Section IV-A and Section IV-B. Consider first the MFMC estimator that uses models f (1) and f (3) .
The MFMC estimator achieves more than two orders of magnitude speedup compared to the single-fidelity Monte Carlo
estimator that uses the high-fidelity model alone. The MFMC estimator that combines the high-fidelity model f (1)

with two low-fidelity models f (2), f (3) achieves speedups of more than six orders of magnitude. The large increase
in speedup is obtained because the low-fidelity output random variable f (2) (X ) and the high-fidelity output random
variable f (1) (X ) are significantly higher correlated than the low-fidelity output random variable f (3) (X ) and f (1) (X ),
while both low-fidelity models have about the same costs. Table 6 reports the numbers of evaluations of the low- and
high-fidelity models for various estimators. The MFMC estimator with models f (1), f (3) evaluates the high-fidelity
model significantly more often than the MFMC estimator with all three models f (1), f (2), f (3) . Furthermore, by adding
model f (2) , the MFMC estimator f (1), f (2), f (3) seems to make better use of model f (3) , because f (3) is more often
evaluated in the MFMC estimator with all three models than in the MFMC estimator with f (1), f (3) . This emphasizes
that the interaction between the models is what drives the efficiency of MFMC, rather than each of the models separately
[32].

V. Conclusions
We demonstrated multifidelity uncertainty propagation with MFMC on two numerical examples. MFMC guarantees

unbiased estimators, in contrast to typical techniques that use a low-fidelity model alone. MFMC optimally decides
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Fig. 9 Flutter problem with three inputs: Combining the low-fidelity model f (3) and the high-fidelity model
f (1) into an MFMC estimator leads to a speedup of more than two orders of magnitude compared to using the
high-fidelity model alone. Combining all three models f (1), f (2), f (3) leads to an even higher speedup. While f (2)

and f (3) have about the same costs, the output random variable corresponding to the low-fidelity model f (2) is
higher correlated to the high-fidelity output random variable f (1) (X ) than f (3) (X ), and therefore the MFMC
estimator with all three models achieves a higher speedup than the MFMC estimator that uses f (1) and f (3)

only.

Table 6 Flutter problemwith three inputs: The table reports the number of times the low- and the high-fidelity
models are evaluated in the MFMC estimators. The MFMC estimator that uses f (1), f (3) performs significantly
more high-fidelity model evaluations than the MFMC estimator that combines all three models f (1), f (2), f (3) .

Monte Carlo MFMC with f (1), f (3) MFMC with f (1), f (2), f (3)

online costs [s] #evals f (1) #evals f (1) #evals f (3) #evals f (1) #evals f (2) #evals f (3)

7.56 × 101 5 4.00 × 100 3.46 × 106 3.00 × 100 2.56 × 106 1.70 × 108

1.51 × 102 10 9.00 × 100 6.93 × 106 7.00 × 100 5.13 × 106 3.39 × 108

7.56 × 102 50 4.90 × 101 3.46 × 107 3.50 × 101 2.56 × 107 1.70 × 109

1.51 × 103 100 9.90 × 101 6.93 × 107 7.10 × 101 5.13 × 107 3.39 × 109

7.56 × 103 500 4.97 × 102 3.46 × 108 3.57 × 102 2.56 × 108 1.70 × 1010

how often to evaluate each of the available models based on estimates of the evaluation costs and the correlation
coefficients of the low- and high-fidelity models. Rough estimates of the correlation coefficients obtained from pilot
runs are sufficient, because the unbiasedness of the MFMC estimator is independent of the error in the estimated
correlation coefficients. MFMC is applicable to any type of low-fidelity model. We derived data-fit surrogate models
with procedures that are built in Matlab and achieved orders of magnitude speedups in our examples. Extensions
of the MFMC method to estimate higher-order moments of f (X ), e.g., the variance of f (X ), are available [40]. A
Matlab implementation of MFMC is available on GitHub https://github.com/pehersto/mfmc.

For the flutter study, we used a wing model for which the flutter solution seemed unique and well-behaved. The
applicability of the MFMC approach to more complicated aeroelastic models, e.g., of complete aircraft, should be
assessed. This assessment would be interesting in situations where there are multiple flutter modes, when establishing
the dominant mode may be difficult, owing either to the direct nature of the flutter analysis used here, or to the potential
shifting of dominance between fidelity levels. Furthermore, in more realistic flutter studies, the number of uncertain
inputs is high, which means that the construction of data-fit surrogate models (e.g., kriging) suffers from the curse of
dimensionality. MFMC can be applied to simplified-physics models, e.g., full-potential computational fluid dynamics
versus Navier-Stokes solutions, to cope with these high-dimensional problems. A detailed studied is necessary to
evaluate how effective MFMC is with simplified-physics models, for which typically the speedup compared to the
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high-fidelity model is significantly lower than the speedup obtained with data-fit low-fidelity models and response
surface surrogates.
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