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This paper develops a multifidelity method that enables estimation of fail-
ure probabilities for expensive-to-evaluate models via a new combination of
techniques, drawing from information fusion and importance sampling. We
use low-fidelity models to derive biasing densities for importance sampling
and then fuse the importance sampling estimators such that the fused mul-
tifidelity estimator is unbiased and has mean-squared error lower than or
equal to that of any of the importance sampling estimators alone. The pre-
sented general fusion method combines multiple probability estimators with
the goal of further variance reduction. By fusing all available estimators, the
method circumvents the challenging problem of selecting the best biasing
density and using only that density for sampling. A rigorous analysis shows
that the fused estimator is optimal in the sense that it has minimal vari-
ance amongst all possible combinations of the estimators. The asymptotic
behavior of the proposed method is demonstrated on a convection-diffusion-
reaction PDE model for which n = 105 samples can be afforded. To illustrate
the proposed method at scale, we consider a model of a free plane jet and
quantify how uncertainties at the flow inlet propagate to a quantity of inter-
est related to turbulent mixing. The computed fused estimator has similar
root-mean-squared error to that of an importance sampling estimator using
a density computed from the high-fidelity model. However, it reduces the
CPU time to compute the biasing density from 2.5 months to three weeks.
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1 Introduction

This paper considers estimation of failure probabilities for large-scale applications with
expensive-to-evaluate models. Such uncertainty propagation is needed in reliable engi-
neering design, where quantitative information about the probability of a systems failure
to meet specified requirements is often required. However, small-probability estimation is
computationally challenging with expensive-to-evaluate models. On the one hand, stan-
dard Monte-Carlo approaches require a large number of samples for low-variance esti-
mates. On the other hand, the numerical solution of large-scale computational models—
such as those arising from discretization of partial differential equations (PDEs)—incurs
prohibitive computational costs when repeated simulations for different input parame-
ters are required. Therefore, to make computations feasible, efficient methods aim to
reduce the number of samples at which the expensive model is evaluated, by exploiting
good sampling strategies and/or lower fidelity models.

An efficient variance reduction technique is importance sampling [Owen, 2013], which
allows for order-of-magnitude reductions in the number of samples needed to reliably
estimate a small probability. However, importance sampling shifts the problem to-
wards finding a good biasing distribution which in turn requires insight into the sys-
tem. Surrogate models can provide such information at much lower computational
cost. Multifidelity approaches that use surrogates for failure probability estimation via
sampling have seen great interest recently [Li et al., 2011, Chen and Quarteroni, 2013,
Li and Xiu, 2014, Elfverson et al., 2016, Ullmann and Papaioannou, 2015, Peherstorfer et al., 2016,
Fagerlund et al., 2016], but require that the user selects a good biasing density. To
circumvent the selection of densities, multifidelity methods that use a general suite
of surrogate models to generate importance sampling distributions were proposed in
[Peherstorfer et al., 2017a, Peherstorfer et al., 2017b]. Mixture sampling can increase
the variance of the estimator compared to sampling from the best biasing density
by a factor that is equal to the number of biasing densities [Owen and Zhou, 2000,
Peherstorfer et al., 2017a], but it avoids the selection of a single biasing density. Never-
theless, this framework requires all knowledge about the small probability event to be
available in the form of biasing densities, and is therefore only applicable for importance
sampling estimators.

This work considers a more general variance reduction method, namely informa-
tion fusion, that allows for the combination of probability estimators. Those could
be derived from experimental results, expert elicitations, analytical models, etc. Ex-
perimentalists and computational scientists alike have successfully used information fu-
sion to include all available information about a probability in a single estimator, see
[Clemen and Winkler, 1999, O’Hagan et al., 2006, Maŕın-Mart́ınez and Sánchez-Meca, 2010].
Moreover, a weighted multifidelity method that combines information from multiple
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models and sources has been successfully applied in data assimilation [Narayan et al., 2012].
We build on the information fusion framework in the context of sampling-based fail-

ure probability estimators, where in addition to the variance reduction from importance
sampling, we obtain further variance reduction through information fusion. In particu-
lar, we propose a new combination of techniques to enable small probability estimation
for large-scale, computationally expensive models that draws from prior work in infor-
mation fusion, importance sampling, and multifidelity modeling. In addition to the
computationally expensive model, more information about the system is available in
form of, e.g., analytical models, expert elicitation, and surrogate modeling. The pro-
posed multifidelity framework uses those surrogates to compute multiple unbiased failure
probability estimators. We then combine them optimally into a new unbiased estimator
that has minimal variance amongst all possible linear combinations of those estimators.
The method therefore avoids the selection of the best biasing density to be used for
sampling.

In Section 2 we formally introduce the problem of computing failure probabilities. Sec-
tion 3 details the proposed combination of techniques of information fusion, importance
sampling and multifidelity modeling. We then present in Section 4 a relatively cheap
convection-diffusion-reaction test case, where we illustrate the asymptotic behavior of
our approach. Section 5 discusses a turbulent jet model and demonstrates the computa-
tional efficiency of our proposed methods for this computationally expensive model. We
close with conclusions in Section 6.

2 Small probability events

We are interested in computing events with small probabilities, e.g., failure events, where
the system fails to meet critical constraints. Let Ω be a sample space which, together
with a sigma algebra and probability measure, defines a probability space. Define a d-
dimensional random variable Z : Ω 7→ D ⊆ Rd with probability density p, and let z be a
realization of Z. Let f : D ⊆ Rd 7→ Rd′ be an expensive-to-evaluate model of high fidelity
with corresponding d′-dimensional quantity of interest f(z) ∈ Rd′ . Let g : Rd′ 7→ R
denote a limit state function that defines failure of the system. If g(f(z)) < 0, then
z ∈ D is a configuration where the system fails. This defines a failure set

G := {z ∈ D | g(f(z)) < 0}.

Define the indicator function IG : D 7→ {0, 1} via

IG(z) =

{
1 , z ∈ G ,
0 , otherwise .

The failure probability is then evaluated by the average of the indicator function over
the parameter domain, i.e.,

P = Ep[IG [Z]] =

∫
D
IG(z)p(z)dz =

∫
I{g(f(z))<0}(z)p(z)dz. (1)
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The standard Monte Carlo estimator of the failure probability integral (1) uses n real-
izations z1, . . . , zn of the random variable Z and estimates

Pn =
1

n

n∑
i=1

IG(zi). (2)

In the special case of small probabilities, standard Monte Carlo may be unfeasible due
to the large number of samples needed to obtain good estimators. Since failure prob-
abilities are generally small, most realizations zi will be outside the failure domain G,
and conversely, only a small fraction of the n samples lies in the failure region. The
coefficient of variation (also called relative root-mean-squared error) of the estimator Pn
is given by

eCV(Pn) =

√
V[Pn]

(E[Pn])2
=

√
P (1− P )

nP 2
=

√
1− P
nP

. (3)

Thus, to obtain estimators with a small coefficient of variation, a large number of samples
is necessary. For instance, if the small probability is P = 10−4 and if we want eCV = 10−1

we would need n = O(106) samples via standard Monte Carlo approaches. This challenge
is amplified by the presence of an expensive-to-evaluate model, such as the model of a
free plane jet in Section 5.

3 Computational Methods and Analysis

We present a new combination of techniques, drawing from information fusion, impor-
tance sampling and multifidelity modeling that allows us to estimate small-probabilities
as introduced above. Section 3.1 presents a method to optimally fuse probability estima-
tors, which applies to a broad class of estimators that are derived, e.g., from analytical
models, expert elicitation [O’Hagan et al., 2006] as well as computational models. In
this work, we obtain the estimators via multifidelity importance sampling, as detailed
in Section 3.2, where we also give the complete algorithm. In Section 3.3, we present
measures of convergence of the estimators and introduce sampling-based estimates of
the statistics.

3.1 Fusion of probability estimators

We formulate the fusion of probability estimators in Section 3.1.1 and derive expressions
for the mean and variance of the fused estimator in Section 3.1.2. In Section 3.1.3,
we derive the optimal weights for the fused estimator. Section 3.1.4 then discusses the
special case of uncorrelated estimators.

3.1.1 Problem formulation

Consider the situation where k unbiased estimators, P1, . . . , Pk, of the probability P are
available, that is

E[Pi] = P, i = 1, . . . , k.
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These estimators have corresponding variances 0 < σ2
i < ∞, i = 1, . . . k. We next

specify the computational problem that we solve in this paper.

Problem 1. Find an unbiased probability estimator for P by fusion of the available
estimators P1, . . . , Pk of the form

Pα =

k∑
i=1

αiPi, (4)

such that it attains minimal variance amongst all estimators of the form (4). That is,
find the optimal weights αi ∈ R, i = 1, . . . , k such that

min
α

V[Pα] s.t. E[Pα] = P. (5)

3.1.2 Mean and variance of fused estimator

We start with the observation that if the weights αi sum to one, then the fused estimator
Pα is unbiased:

k∑
i=1

αi = 1 ⇔ E[Pα] =
k∑
i=1

αiE[Pi] = P
k∑
i=1

αi = P.

To compute the variance of the fused estimator Pα we have to consider covariances
between the individual estimators. Define the Pearson product-moment correlation co-
efficient as

ρi,j =
Cov(Pi, Pj)

σiσj
, (6)

where Cov(Pi, Pj) = E[(Pi − E[Pi])(Pj − E[Pj ])] = E[PiPj ] − P 2. We also define the
symmetric, positive semi-definite covariance matrix Σij = Cov(Pi, Pj) as:

Σ =


σ2

1 σ1σ2ρ1,2 . . . . . . σ1σkρ1,k

σ2σ1ρ2,1 σ2
2 σ2σ3ρ2,3 . . . σ2σkρ2,k

...
. . .

... σ2
k−1 σk−1σkρk−1,k

σkσ1ρk,1 σkσ2ρk,2 . . . σkσk−1ρk,k−1 σ2
k

 . (7)

It is worth noticing that if the estimators P1, . . . , Pk are independent, then Σ is diago-
nal. With this notation, we obtain an explicit expression for the variance of the fused
estimator.

Proposition 1. Let the estimators P1, . . . , Pk and the covariance matrix Σ be given.
Then the variance of the fused estimator Pα from (4) is

V[Pα] = αTΣα =
k∑
i=1

α2
i σ

2
i + 2

k∑
i=1

k∑
j>i

αiαjσiσjρi,j . (8)
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Proof.

V[Pα] = V

[
k∑
i=1

αiPi

]
=

k∑
i=1

α2
iV[Pi] + 2Cov

 k∑
i=1

αiPi,
k∑
j=1

αjPj


=

k∑
i=1

α2
i σ

2
i + 2

k∑
i=1

k∑
j>i

αiαjσiσjρi,j .

In the following section, we provide an explicit formula to find the optimal weights α
for the general case of (possibly)-correlated estimators P1, . . . , Pk; while in Section 3.1.4
we discuss the case of independent estimators, such as those constructed in Section 3.2.

3.1.3 Optimizing the weights for minimum-variance estimate

The goal of the optimization problem (5) is to find the optimal α such that the variance
in (8) is minimized and Pα remains unbiased. In this section, we show that such weights
exist, are unique, and present a closed-form solution, provided that the covariance matrix
Σ is invertible. This is summarized in the following result.

Proposition 2. Let P = [P1, . . . , Pk]
T be the vector of probability estimators and assume

that Σ is not singular. Define 1k = [1, . . . , 1]T as a column-vector of length k. The
optimization problem (5) has the unique solution

α =
Σ−11k

1TkΣ−1 1k
.

That is, the minimal variance unbiased estimator Pα is such that

Pα =
1TkΣ−1 P

1TkΣ−1 1k
, V[Pα] =

1

1TkΣ−1 1k
.

Proof. We have seen above that
∑k

i=1 αi = 1 if and only if E[Pα] = P . Define the cost
function J(α) := V[Pα] = αTΣα by using Proposition 1. Therefore, the optimization
problem (5) can be written as the quadratic program

min
α
J(α) = αTΣα, s.t. αT1 = 1. (9)

Letting L(α, λ) := αTΣα+ λ(αT1− 1) denote the Lagrangian cost function associated
to (9), the optimality conditions are ∇αL(α, λ) = 0 and dL

dλ (α, λ) = 0. This optimality
system is written as [

Σ 1k
1Tk 0

] [
α
λ

]
=

[
0k
1

]
. (10)
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For invertible Σ, the unique weights to this quadratic program are then obtained by

α =
Σ−11

1TkΣ−1 1k
, (11)

and the expression for the variance follows by inserting these weights into (9). The
estimator is obtained by inserting the weights into (4).

The weights can be expressed explicitly in terms of the components of the covariance
matrix as

αi =
1

σ2
i

 1∑k
l=1

1
σ2
l

1 +

k∑
l=1

1

σ2
l

k∑
j>l

αjσlσjρl,j

− k∑
j>i

αjσiσjρi,j

 . (12)

Note, that the weights are inversely proportional to the variance of the individual esti-
mators and the weight αi depends on the covariance between the estimators Pi and Pj .
Also, note that if Pi are correlated some weights may be negative, while for a diagonal
Σ all weights αi are strictly positive. In the next section, we have a closer look at the
uncorrelated case.

3.1.4 The special case of uncorrelated estimators

In the situation where all estimators are uncorrelated, we recover the classical result of
the inverse variance-weighted mean [Meier, 1953]. As a corollary from Proposition 2 we
get the following result.

Corollary 1. Consider the setting from Proposition 2, and let Σ = diag(σ2
1, . . . , σ

2
k) be

diagonal. Then the unique solution to the optimization problem (5) is given by

αi =
1

σ2
i

∑k
i=1

1
σ2
i

, V[Pα] =
1∑k
i=1

1
σ2
i

. (13)

A few observations about this special case are in order:

1. The optimal coefficients αi of the combined estimator Pα are inversely proportional
to the asymptotic variance σi of the corresponding estimator Pi. To reduce the
variance via a weighted combination of estimators, smaller weights are assigned to
estimators with larger variance.

2. If one variance is small compared to all other ones, say σ2
1 � σ2

i , i = 2, . . . , k,

then
∑k

i=1
1
σ2
i
≈ 1

σ2
1

so that V[Pα] ≈ σ2
1. The estimators with large variance can

not reduce the variance of the fused estimator much more.

3. If all estimators have equal variance, σ2
1 = . . . = σ2

k, then
∑k

i=1
1
σ2
i

= k
σ1

so that

V[Pα] =
σ2
1
k . Hence, combining the estimators reduces the variance by a factor of

k.
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4. Since 0 < αi < 1,∀i, it follows from both equations in (13) that

V[Pα] =
1∑k
i=1

1
σ2
i

= σ2
i αi < σ2

i ,∀i ⇒ V[Pα] < min
i=1,...,k

σ2
i . (14)

Consequently, we are guaranteed to reduce the variance in Pα by combining all
estimators in the optimal way described above.

3.2 Fusion of multifidelity importance sampling estimators

We now use the general fusion framework to obtain a failure probability estimate, where
the individual importance-sampling estimators are derived with the help of surrogate
models. We briefly review importance sampling in Section 3.2.1. We then introduce
surrogate models and briefly review the multifidelity importance sampling framework
from [Peherstorfer et al., 2016] in Section 3.2.2. We then present the complete algorithm
for our fusion-based framework in Section 3.2.3.

3.2.1 Importance sampling

Importance sampling achieves variance reduction by using realizations of a random vari-
able Z ′ : Ω 7→ D with probability density q. This random variable Z ′ is chosen such that
its probability density function q has higher mass (compared to the nominal density p) in
the region of the event of interest. For a general introduction to importance sampling,
see [Owen, 2013, Sec.9]. Define the support supp(p) = {z ∈ D | p(z) > 0}, and let
supp(p) ⊆ supp(q). Then

P =

∫
D
IG(z)p(z)dz =

∫
D
IG(z)

p(z)

q(z)
q(z)dz (15)

is well defined, where p(z)/q(z) is the likelihood ratio—in the context of importance
sampling also called importance weight. The importance-sampling estimate of the failure
probability P then draws n realizations z′1, . . . , z

′
n of the random variable Z ′ with density

q and evaluates

P IS
n =

1

n

n∑
i=1

IG(z′i)
p(z′i)

q(z′i)
. (16)

The variance of the importance sampling estimator is

V[P IS
n ] =

σ2
q

n
, (17)

where

σ2
q =

∫
D

(
IG(z′)p(z′)

q(z′)
− P

)2

q(z′)dz′. (18)

If supp(p) ⊆ supp(q), and by using (15), one can show that the importance sampling
estimator P IS

n is an unbiased estimator of the failure probability, i.e.,

Eq[P IS
n ] = Ep[IG(Z)] = P.
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The importance sampling estimator P IS
n has mean P and variance σ2

q/n, and by the cen-
tral limit theorem converges in distribution to the normal random variable N (P, σ2

q/n).
Constructing a good biasing density that leads to small σ2

q is challenging [Owen, 2013].
We next introduce low-fidelity surrogate models, which are then used to construct biasing
densities.

3.2.2 Multifidelity Importance Sampling (MFIS)

Recall that by f : D 7→ Rd′ we denote an expensive-to-evaluate model of high fidelity
with corresponding quantity of interest f(z) ∈ Rd′ . Let k surrogates

f (i) : D 7→ Rd
′
, i = 1, . . . , k

of lower fidelities be available, which are faster to evaluate than the high-fidelity model
f(·). We do not assume any information about the accuracy of the f (i)(·) with respect
to the high-fidelity model f(·). Section 4.2 and 5.3 detail the specific surrogate models
used for the respective applications.

We use the MFIS method from [Peherstorfer et al., 2016] to obtain k estimators of
the failure probability P . First, MFIS evaluates the surrogate models f (i) at mi samples
to obtain a surrogate-model specific failure set G(i). Second, MFIS computes a biasing
density qi by fitting a distribution in form of a Gaussian mixture model to the parameters
in the failure set. We use the expectation-minimization algorithm to find the best-fit
Gaussian mixture model. We refer to [Peherstorfer et al., 2016] for details of the MFIS
method. The above steps produce k biasing densities q1, . . . , qk.

Let zi,j , j = 1, . . . , ni be independent samples from the density qi. The importance
sampling estimate of the failure probability P with ni samples is

P IS
ni =

1

ni

ni∑
j=1

IG(zi,j)
p(zi,j)

qi(zi,j)
, i = 1, . . . , k. (19)

The variance of the importance sampling estimator is given by (17) with n = ni and
σq = σqi , with σ2

qi being the asymptotic variance from (18) with q = qi. The importance
sampling estimate (19) requires evaluating the high-fidelity model at ni (biased) samples.
While not required, we use ni = n/k, i = 1, . . . , k to distribute the computational load
evenly. This results in k estimators P IS

ni for i = 1 . . . , k. The fusion framework then
assigns the largest weight to the estimator with the lowest variance.

3.2.3 Fused multifidelity importance sampling—Complete Algorithm

We solve Problem 1 in the context of sampling-based failure probability estimators so
that Pi = P IS

ni . Our proposed method optimally fuses the k MFIS estimators from (19),
such that

Pα =
k∑
i=1

αiP
IS
ni , (20)
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with the optimal weights chosen as in Proposition 2 and
∑k

i=1 ni = n. Algorithm 1

describes the computational procedure; we denote sampling-based estimates as P̂ IS
ni ,

which are realizations of the estimator P IS
ni .

Algorithm 1 Computing failure probability estimate P̂α via fused importance sampling

Input: Nominal distribution p, biasing distributions {qi}ki=1, # of evaluations {ni}ki=1,
limit state function g(·).

Output: Failure probability estimate P̂α and variance estimate V[P̂α]
1: for j = 1 : k do {Loop over all surrogates}
2: Draw zj,1, . . . , zj,nj independent realizations from Zj with density qj and compute

P̂ IS
nj =

1

nj

nj∑
i=1

IG(zj,i)
p(zj,i)

qj(zj,i)
(21)

3: Compute the sample variances

σ̂2
qj =

1

nj − 1

nj∑
i=1

(
IG(zj,i)

p(zj,i)

qj(zj,i)
− P̂ IS

nj

)2

(22)

4: end for
5: Define the vector P = [P̂ IS

n1
, . . . , P̂ IS

nk
]T

6: Let Σ̂ = diag(σ̂2
q1/n1, . . . , σ̂

2
qk
/nk)

7: Compute the fused estimate as in (9):

P̂α =
1Tk Σ̂

−1
P

1Tk Σ̂
−1

1k
, V[P̂α] =

1

1Tk Σ̂
−1

1k
(23)

The estimator Pα fuses the k estimators P IS
ni with biasing distribution qi, with es-

timator i computed from ni samples. Thus Pα uses n =
∑k

i=1 ni samples. We now
discuss how Pα compares to a single importance sampling estimator with n samples.
Consider the estimator P IS

j′ that uses n samples drawn from a single biasing density
qj′ for j′ ∈ {1, . . . , k}. This estimator requires selection of the best biasing density, a
formidable task. The next results compares Pα and P IS

j′ , and gives a criterion for which
the former has lower variance than the latter.

Proposition 3. Let k estimators P IS
ni with n1 = n2 = . . . = nk samples be given. Let

j′ ∈ {1, . . . , k}, and qj′ be a biasing density that is used to derive an IS estimator P IS
j′

with n = kn1 samples. If

k − 1 <
∑
i 6=j′

σ2
q′j

σ2
qi

, (24)
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then the variance of the fused estimator Pα in (20) with n samples is smaller than the
variance of the estimator with biasing density qj′ with n samples, i.e.,

V[Pα] < V[P IS
j′ ]. (25)

Proof. Set ni = n/k, i = 1, . . . , k, so that all estimators use the same number of samples.
According to equation (13),

V[Pα] =
1∑k

i=1
ni
σ2
qi

=
k

n
∑k

i=1
1
σ2
qi

(26)

as well as V[P IS
j′ ] =

σ2
qj′
n , so that

V[Pα] =
k

n
∑k

i=1
1
σ2
qi

<
σ2
qj′

n
= V[P IS

j′ ] (27)

⇔ k < σ2
qj′

k∑
i=1

1

σ2
qi

(28)

⇔ k − 1 <
k∑

i 6=j′

σ2
qj′

σ2
qi

. (29)

3.3 Error measures and practical computation

The failure probability estimate P̂ IS
ni is computed as in (21) and the sample variance σ̂2

qi

as in (22). The root-mean-squared-error (RMSE) of the estimate P̂ni is

eRMSE(P̂ni) =

√
σ̂2
qi

ni
, (30)

and the relative mean-squared-error, or coefficient of variation is computed as

eCV(P̂ni) =

√
σ̂2
qi

ni(P̂ IS
ni )

2
. (31)

4 Test case: Convection-diffusion-reaction

We first consider a PDE model whose solution can be numerically evaluated with mod-
erate computational cost. Here, we demonstrate the asymptotic behavior of our method
because we can afford to sample the high-fidelity model n = 105 times, which will be
too costly for the model in Section 5. The test problem is the convection-diffusion-
reaction PDE introduced in Section 4.1. Its discretizations and reduced-order models
are described in Section 4.2. Numerical results are presented in Section 4.3.

11



4.1 Convection-diffusion-reaction PDE model

We consider a simplified model of a premixed combustion flame at constant and uniform
pressure, and follow the notation and setup in [Buffoni and Willcox, 2010, Sec.3]. The
model includes a one-step reaction of the species

2H2 +O2 → 2H2O

in the presence of an additional non-reactive species, nitrogen. The physical combustor
domain is 18mm in length (x-direction), and 9mm in height (y-direction), as shown in
Figure 1.

Ω

18mm

9mm

ΓN

3mm

3mmΓD,0

ΓD,iInflow

Figure 1: Set-up of combustor, with details of the boundary conditions in Table 1.

The velocity field U is set to be constant in the positive x direction, and divergence free.
The molecular diffusivity κ is modeled as constant, equal and uniform for all species.
The partial differential equation model is given by

0 = κ∆s− U∇s+ F(s, z) ∈ Ω (32)

where the state is comprised of the components s = [T, YH2 , YO2 , YH2O], with the Yi
being the mass fractions of the species (fuel, oxidizer, product), and T denoting the
temperature. Referring to Figure 1, we have that ΓD = ΓD,i ∪ ΓD,0 is the Dirichlet part
of the boundary and ΓN combines the top, bottom and right boundary, where Neumann
conditions are prescribed. In sum, ∂Ω = ΓD ∪ΓN ; the boundary conditions are imposed
as given in Table 1. The nonlinear reaction term F(s, z) = [FT ,FH2 ,FO2 ,FH2O](s, z) is
of Arrhenius type [Cuenot and Poinsot, 1996], and modeled as

Fi(s, z) = −νi
(
Wi

ρ

)(
ρYF
WF

)νF (ρYO
WO

)νO
A exp

(
− E

RT

)
, i = H2, O2, H2O (33)

FT (s, z) = Q FH2O(s, z). (34)

The parameters of the model are defined in Table 2. The uncertain parameters are
the pre-exponential factor A and the activation energy E of the Arrhenius model. The
domain for these parameters is denoted as D. In particular, we have that

z = [A,E] ∈ D = [5.5× 1011, 1.5× 1013]× [1.5× 103, 9.5× 103].
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Table 1: Boundary conditions for the combustion model from
[Buffoni and Willcox, 2010].

Boundary Temperature Species

ΓD,i T = 950K YH2 = 0.0282, YO2 = 0.2259, YH2O = 0
ΓD,0 T = 300K YH2 = 0, YO2 = 0, YH2O = 0
ΓN ∇T · n = 0 ∇Yi · n = 0

Table 2: Parameters for the combustion model from [Buffoni and Willcox, 2010].

quantity physical meaning assumptions value

κ molecular diffusivity const., equal, uniform ∀i 2.0 cm2

s
U velocity const. 50 cm

s
WH2 molecular weight const. 2.016 g

mol
WO2 molecular weight const. 31.9 g

mol
WH2O molecular weight const. 18 g

mol
ρ density of mixture const. 1.39× 10−3 g

cm3

R univ. gas constant const. 8.314472 J
mol K

Q heat of reaction const. 9800K
νH2 stochiometric coefficient const. 2
νO2 stochiometric coefficient const. 1
νH2O stochiometric coefficient const. 2

4.2 Discretization and reduced-order models

The model is discretized using a Finite Difference approximation in two spatial dimen-
sions, with 72 nodes in x direction, and 36 nodes in y direction, leading to 10, 804
unknowns in the model. The nonlinear system is solved with Newton’s method. Let
T(z) be the vector with components corresponding to the approximations of the tem-
perature T (x, y; z) at the grid points. The high-fidelity model (HFM) is f : D 7→ R and
the quantity of interest is the maximum temperature over all grid points:

f(z) = max T(z).

Reduced-order models provide a powerful framework to obtain surrogates for expensive-
to-evaluate models. In the case of nonlinear systems, reduced-order models can be
obtained via reduced-basis methods [Jan S Hesthaven et al., 2016], dynamic mode de-
composition [Kutz et al., 2016], proper orthogonal decomposition [Berkooz et al., 1993],
and many others; for a survey, see [Benner et al., 2017]. Here, we compute reduced-order
models f (i) for our multifidelity approach via Proper Orthogonal Decomposition and the
Discrete Empirical Interpolation Method (DEIM) for an efficient evaluation of the nonlin-
ear term. The training snapshots are generated from solutions to the high-fidelity model
on a parameter grid of 50× 50 equally spaced values z ∈ D. The three surrogate models
are built from 2, 10, 15 POD basis vectors, and accordingly 2, 5, 10 DEIM interpolation
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points. The corresponding models are denoted as ROM1, ROM2, ROM3, respectively.

We denote by T
(i)
r (z) the approximation to the temperature T (x, y; z) via the ith ROM.

The surrogate models f (i) are the mappings f (i) : D 7→ R with corresponding quantity
of interest denoted as

f (i)(z) = max T(i)
r (z), i = 1, . . . , k.

We refer the reader to [Buffoni and Willcox, 2010] for more details on the discretization
and ROM construction for this convection-diffusion-reaction model.

4.3 Results for multifidelity fusion of failure probabilities

We define a failure of the system when the maximum temperature in the combustor
exceeds 2430K, so that the limit state function is

g(f(z)) = 2430− f(z), (35)

and likewise for the reduced-order models g(f (i)(z)) = 2430− f (i)(z).
To compute the biasing densities, we draw m̂ = 20, 000 samples from the uniform

distribution on D, compute surrogate-based solutions, and evaluate the limit state func-
tion for those solutions. If the limit state function indicates failure of the system for a
solution obtained from the ith surrogate model, the corresponding parameter is added
to G(i), the failure set computed from the ith surrogate model. Next, we compute the
biasing densities q1, q2, q3 via MFIS (see Section 3.2.2) as Gaussian mixture distributions
with a single component.

For reference purposes, a biasing density is constructed by performing the same steps
as above using the HFM with m̂ = 20, 000 samples. Based on this density, we compute an
importance sampling estimate of the failure probability with n = 105 samples, resulting
in P̂ IS

105 = 2.3707× 10−4.
In Figure 2 we show the quantity of interest, i.e., the maximum temperature. The plots

are obtained by generating m = 105 samples from the nominal distribution (left) and the
respective biasing distributions (right), and evaluating the HFM at those samples. Figure
2, left, shows that the typical range of the quantity of interest is between approximately
1200K and 2440K. However, only the events where the quantity of interest is above 2430K
are relevant for the failure probability computation. By using the biasing distributions
in Figure 2, right, a large portion of the outputs leads to a failure of the system. This
indicates that the biasing distributions are successful in generating samples at the failure
region of the high-fidelity model.
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Figure 2: Quantity of interest f(z) in [K] of HFM ordered by magnitude versus # of
samples z, for m = 105 samples. Left: Samples are from the nominal (uniform)
distribution. Right: The parameter samples are drawn from different biasing
distributions (biased towards failure above 2430K). This demonstrates that the
biasing distributions are good since the outputs are largely above the failure
threshold. Here, ROM1 did not have any parameters in the failure domain,
and hence defaulted to being the nominal distribution and is therefore not
plotted.

We compare the computational cost of computing the biasing distributions from the
various ROMs and the HFM in Figure 3. Computing a biasing density using the high-
fidelity model with m = 105 samples costs approximately 11.4 hours in CPU time. By
evaluating the low-fidelity models ROM2 and ROM3 at m = 105 samples to construct
the biasing density, we reduce the computational time by three orders of magnitude, i.e.
to approximately one minute in CPU time. Note, that ROM1 is the reduced-order model
that is cheapest to execute per model evaluation, but it is also the least accurate. In our
case, ROM1 did not produce any samples in the failure region, even after m = 5 × 105

samples. This higher number of samples led to increased computational cost to compute
the biasing distribution in Figure 3. It is not unexpected that ROM1 is so inaccurate,
since only two POD modes are not enough to resolve the important character of this
problem. ROM1 is included to demonstrate how the fusion approach can be effective
even in the presence of highly inaccurate surrogate models.
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Figure 3: CPU time to generate the biasing densities from three reduced-order models
described in Section 4.2. HFM, ROM2 and ROM3 were evaluated at m = 105

and produced enough samples to fit a good biasing distribution. ROM1 was
evaluated m = 5 × 105 times, and still did not produce any samples in the
failure region.

To assess the quality of the fused estimator Pα, we consider the error measures in-
troduced in Section 3.3. In Figure 4, left, we show the root mean-squared error of the
importance sampling estimators P̂ IS

ni as well as the combined estimator P̂α. Figure 4,
right, shows the coefficient of variation defined in (31) for the estimators. The fused
estimator is competitive in RMSE and coefficient of variation with the estimator using
the high-fidelity biasing density, but comes at a much cheaper computational cost.
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Figure 4: Left: Root mean-squared error from (30); Right: Coefficient of variation as
defined in (31) for the convection-diffusion-reaction simulation.

5 Failure probability estimation related to a free plane jet

We apply the proposed fusion of estimators to quantify the influence of uncertain pa-
rameters at the inlet of a free plane jet on a measure of turbulent mixing. This is
a challenging problem, since it involves an expensive-to-evaluate model for which the
naive computation of low probabilities requires thousands of hours of computation. We
reduce this number significantly with our multifidelity importance sampling framework
via a fusion of estimators.

The remainder of this section is organized as follows. Section 5.1 introduces the free
plane jet, followed by details of the model and its governing equations in Section 5.2. In
Section 5.3 we discuss the low-fidelity surrogate models we use in our fusion of estimators.
Finally, we present the results for multifidelity fusion of small probability estimators in
Section 5.4.

5.1 Large-scale application: Free plane jet

Free turbulent jets are prototypical flows believed to represent the dynamics in many en-
gineering applications, such as combustion and propulsion. As such, free jet flows are the
subject of several experimental [Gutmark and Wygnanski, 1976, Gutmark et al., 1978,
Krothapalli et al., 1981] and numerical investigations [Zhou et al., 1999, Ribault et al., 1999,
Stanley et al., 2002, Klein et al., 2003, Klein et al., 2015] and constitute an important
benchmark for turbulent flows. These investigations show that the evolution of the jet
is very dependent on the conditions at the inlet.
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Here we focus our attention on a free plane jet flow at Reynolds number ranging from
5,000 to 15,000. Figure 5 shows a flow field typical of the cases considered here. Our

(a) Contours of turbulent kinetic energy. (b) Streamlines colored by the intensity of the ve-
locity.

Figure 5: Flow field of a two-dimensional plane jet at Reynolds number 10,000, computed
with a RANS model.

expensive-to-evaluate model is based on the two-dimensional incompressible Reynolds-
averaged Navier-Stokes (RANS) equations. Although this model is incapable of resolving
all relevant turbulent features of the flow, it still represents a challenging large-scale
application for the computation of small probabilities.

In particular, we investigate the influence of uncertain parameters at the inlet of the jet
on the amount of turbulent mixing produced by the jet, with the caveat that this is the
mixing predicted by our RANS model. We quantify the mixing using a relatively simple
metric: the width of the jet. We consider two uncertain parameters: the intensity of the
velocity and the mixing length at the inlet boundary. The first is a physical parameter
that reflects uncertainty in the setup of the flow (e.g., operating conditions of an engine).
Since we keep other physical parameters constant, by varying the velocity intensity we
effectively change the Reynolds number of the flow. The second parameter is part of
the k − ε turbulence model used to describe the dynamics of the flow, as detailed in
Section 5.2. Thus, this parameter reflects an uncertainty due to model inadequacy.

5.2 Modeling and governing equations

We consider a free plane jet in conditions similar to the ones reported in [Klein et al., 2003,
Klein et al., 2015]. Namely, the flow exits a rectangular nozzle into quiescent surround-
ings with a prescribed top-hat velocity profile and turbulence intensity. The nozzle
has width D, and is infinite along the span-wise direction. The main difference be-
tween the free plane jet we considered here and the one described in [Klein et al., 2003,
Klein et al., 2015] is the Reynolds number at the exit nozzle. Here, the Reynolds number
varies between 5,000 and 15,000.

Our simulation model computes the flow in a rectangular domain Ω located at a
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distance 5D downstream from the exit of the jet nozzle, as illustrated in Figure 6. By
doing so, modeling the conditions at the exit plane of the jet nozzle is avoided. Instead,
direct numerical simulation data are used to define inlet conditions at the surface Γin.
The dynamics are modeled with the incompressible Reynolds-averaged Navier-Stokes

Figure 6: Illustration of the free plane jet setup. The diameter of the nozzle is denoted
by D. The simulation domain Ω is composed of a 30D × 10D box situated at
a distance 5D downstream to the nozzle exit.

equations, complemented by the k − ε turbulence model [Launder and Spalding, 1974]:

(v · ∇)v +
1

ρ
∇p−∇ · ((ν + νt)

¯̄S(v)) = 0, (36)

∇ · v = 0, (37)

v · ∇k − 2νt(
¯̄S(v) : ¯̄S(v)) + ε−∇ ·

((
ν +

νt
σk

)
∇k
)

= 0, (38)

v · ∇ε− 2C1ε
ενt
k

( ¯̄S(v) : ¯̄S(v)) + C2ε
ε2

k
−∇ ·

((
ν +

νt
σε

)
∇ε
)

= 0, (39)

where v = [vx, vy] denotes the velocity vector, p denotes pressure, ρ = 1.0 kg/m3 is the

density, ν = 0.0001 m2/s is the kinematic viscosity, and ¯̄S is the strain rate tensor given
by

¯̄S(v) =
1

2
(∇v + (∇v)T ).

In the k − ε turbulence model, k denotes the turbulent kinetic energy, ε denotes the
turbulent dissipation, νt denotes the turbulent kinematic viscosity,

νt = Cµ
k2

ε
,

and the constants1 of the model are

Cµ = 0.09 σk = 1.00, σε = 1.30, C1ε = 1.44, and C2ε = 1.92.

1We use σk and σε here as model constants, which is typical notation in this community. These are
only used in this section, and throughout the paper σ’s are variances.
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At the inlet surface Γin Dirichlet boundary conditions are imposed. Data obtained by
the direct numerical simulation described in [Klein et al., 2015] are used to determine
reference inlet profiles for velocity, vref, and for turbulent kinetic energy, kref. Further-
more, inlet conditions are allowed to vary by defining a velocity intensity (U) scale,
which is applied to the reference profiles. Finally, turbulent dissipation at the inlet is
estimated by assuming a mixing length model. Thus, the boundary conditions at the
inlet surface are given by

v|Γin = Uvref, k|Γin = U2kref, ε|Γin = Cµ
k3/2

`m
,

where `m denotes the mixing length parameter.
At the symmetry axis surface, Γsym, no-flux boundary conditions are imposed through

a combination of Dirichlet and Neumann conditions of the form

vy|Γsym = 0,
∂vx
∂n

∣∣∣∣
Γsym

= 0,
∂k

∂n

∣∣∣∣
Γsym

= 0,
∂ε

∂n

∣∣∣∣
Γsym

= 0.

Finally, at the surface Γff “far-field” conditions that allow the entrainment of air around
the jet are imposed through weak Dirichlet conditions, as detailed in [Villa and Marques, 2017].

The complete model includes additional features that make it more amenable to nu-
merical discretization. The most delicate issue in the solution of the RANS model is the
possible loss of positivity of the turbulence variables. To avoid this issue, we introduce
an appropriately mollified (and thus smoothly differentiable) max function to ensure
positivity of k and ε. In addition, if inflow is detected at any point on the far-field
boundary, the boundary condition is switched from Neumann to Dirichlet by means of a
suitably mollified indicator of the inflow region. Finally, we stabilize the discrete equa-
tions using a strongly consistent stabilization technique (Galerkin Least Squares, GLS,
stabilization) to address the convection-dominated nature of the RANS equations. The
complete formulation is shown in [Villa and Marques, 2017].

The model equations described above are solved numerically using a finite element dis-
cretization. The discretization is implemented in FEniCS [Alnæs et al., 2015] by specify-
ing the weak form of the residual, including the GLS stabilization and mollified versions
of the positivity constraints on k and ε and the switching boundary condition on the
outflow boundary. To solve the nonlinear system of equations that arise from the finite
element discretization, we employ a damped Newton method. The bilinear form of the
state Jacobian operator is computed using FEniCS’s symbolic differentiation capabilities.
Finally, we use pseudo-time continuation to guarantee global convergence of the Newton
method to a physically stable solution (if such solution exists) [Kelley and Keyes, 1998].
The finite element solver is detailed in [Villa and Marques, 2017].

In this investigation, the uncertain parameters are considered to be the velocity in-
tensity (U) and the mixing length (`m) at the inlet surface:

z = [U, `m].

The parameter domain is z ∈ D = [0.5, 1.5] × [0.05, 0.15], and the nominal distribution
of parameters is assumed to be uniform in D. Figure 7 illustrates a typical solution
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behavior for this turbulent jet by plotting contours of the turbulent kinetic energy for
selected samples in D.

Figure 7: Samples of the flow solution computed in different regions of the input param-
eter space D. The plots show the turbulent kinetic energy.

The quantity of interest is the width of jet measured at x = 27.5D:

w(v; z) =
1

vx0D

∫ 10D

0
vx(x = 27.5D, y; z) dy, (40)

where vx0 = vx(x = 27.5D, y = 0; z).

5.3 Simplified-physics surrogate models

We consider four surrogate models to represent the dynamics of the free plane jet flow.
The models are based on two distinct computational grids (fine and coarse), and on two
representations of turbulent effects. The fine computational grid contains 10,000 ele-
ments and 5,151 nodes, while the coarse grid contains 2,500 elements and 1,326 nodes.
Furthermore, the models are based either on the complete k − ε turbulence model de-
scribed in the previous section, or on a prescribed turbulent viscosity field. In the latter
case, the turbulent viscosity field is estimated by a bilinear interpolation based on 81
conditions that span the input parameter space D uniformly. At each of these 81 condi-
tions, the turbulent viscosity field is computed with the k− ε turbulence model and the
fine computational grid. The following four low-fidelity models are increasingly complex
in terms of either modeled physics or grid resolution:

• LFM1–CI: Coarse, interpolated; combines the interpolated turbulence viscosity
field with the coarse computational grid (3,978 degrees of freedom); average com-
putational time 13.9s

• LFM2–FI: Fine, interpolated; combines the interpolated turbulence viscosity field
with the fine computational grid (15,453 degrees of freedom); average computa-
tional time 89.1s
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• LFM3–CKE: Coarse k− ε; combines the k− ε turbulence model with the coarse
computational grid (6,630 degrees of freedom); average computational time 105.3s

• HFM: High-fidelity model; combines the k − ε turbulence model with the fine
computational grid (25,755 degrees of freedom); average computational time 669.3s

Note that the models based on an interpolated turbulent viscosity field run approxi-
mately 7.5 times faster than the corresponding models based on the k − ε turbulence
model. This speedup results from eliminating (38)–(39) from the governing equations,
which leads to a reduction in the total number of degrees of freedom (elimination of
variables k and ε) and simplifications in the numerical discretization.

Let vi, i = HFM, LFM1, LFM2, LFM3, denote the velocity field computed with the
models above. The high-fidelity model is the mapping from the inputs to the quantity
of interest (jet width from (40)) for a velocity field computed with the most complex
representation of the flow dynamics, vHFM:

f : D 7→ R, f(z) = w(vHFM; z).

The surrogate models are defined in a similar fashion as

f (i) : D 7→ R, f (i)(z) = w(vi; z), i = LFM1, LFM2, LFM3.

5.4 Results for multifidelity fusion of small probability estimators

We define a design failure when the jet width is below 2.10. Hence, the limit state
function is given by

g(f(z)) = f(z)− 2.10. (41)

We compute the biasing distributions qi, i = 1, 2, 3 from the three low-fidelity surrogate
models via MFIS (see Section 3.2.2). In each case, we draw m̂ = 10, 000 parameter
samples from the uniform distribution on D and evaluate the limit state function applied
to the resulting quantity of interest. If the limit state function indicates failure of
the system for a solution obtained from the ith surrogate model, the corresponding
parameter is added to G(i), the failure set computed from the ith surrogate model. We
then fit a multivariate Gaussian to the samples in G(i), resulting in the biasing densities
q1, q2, q3. As reference, we repeat the same process with the high-fidelity model, resulting
in the biasing distribution qHFM.

The CPU run times in hours on an Intel Core i7-2600 to compute the biasing densities
via this approach are listed in Table 3. The significant time difference between the
high-fidelity model and the lower-fidelity models can have important implications for
engineering practice. For illustration, LFM1 would need 1.5 days in CPU time for the
exploration, whereas LFM2 and LFM3 would need seven and twelve days of CPU time,
respectively. These are considerable savings compared to using the high-fidelity model
to get a good biasing distribution, which would require 2.5 months of CPU time in this
case.
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Table 3: CPU time in hours on an Intel Core i7-2600 for 10,000 model evaluations, and
the number of samples in the failure domain. The samples are drawn from the
uniform distribution on D.

LFM1 LFM2 LFM3 HFM

# of samples drawn 10,000 10,000 10,000 10,000

# of samples in failure domain G(i) 36 26 9 45
time needed 38.7[h] 247.6[h] 292.6[h] 1859.1[h]

Next, we investigate the quality of the biasing distributions. For reference, Figure 8,
left, shows the result of 103 uniform sample evaluations with the four computational
models. Note, that hardly any samples are below the failure threshold. In contrast, the
quantity of interest computed from samples of the four biasing distributions is shown
in Figure 8, right. Here, the situation reversed, and all models have more than 90% of
the samples in the failure domain, contributing in turn to the evaluation of the failure
probability from (19). Comparing the y-axis scaling of both figures, note that even
the samples above the failure threshold in Figure 8, right, are relatively close to the
threshold level. This leads to the conclusion that the biasing distributions are indeed
biased towards failure of the samples, and therefore the multifidelity strategy provides
a viable way of saving computational time to inform a biasing distribution.
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Figure 8: Quantity of interest, the width of the jet at x = 27.5D, for n = 103 samples.
Left: The input parameters are drawn from the nominal distribution. Right:
The input parameters are drawn from different biasing distributions (biased
towards failure below 2.10). Note that the majority of outputs falls below the
failure threshold, thus indicating the effectiveness of the biasing distributions.

The reference failure probability is computed via importance sampling with n = 10, 000
samples drawn from the HFM biasing distribution and is P̂ IS

10,000,qHFM
= 3.5763× 10−3.
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Table 4: Weights of the fused estimator P̂α with n samples.

n = 100 n = 200 n = 400 n = 800 n = 1000

α1 0.8210 0.8075 0.8202 0.8740 0.8662
α2 0.1016 0.1044 0.0734 0.0637 0.0673
α3 0.0773 0.0881 0.1064 0.0623 0.0664

We then compute the estimators P IS
ni , i = 1, 2, 3 with n = 103 samples from the bias-

ing densities qi from the three surrogate models. We compare these estimators with
an estimator that uses n = 103 samples from the HFM biasing density qHFM. We
obtain the fused multifidelity estimator Pα as described above in Algorithm 1 with
ni = bn/3c, i = 1, 2, 3, samples by fusing the three surrogate-model-based importance
sampling estimators. The fused estimator thus uses a total of n = 103 samples. The
estimators and the error measures below are averaged over three independent runs. The
root-mean-square-error from (30) and coefficient of variation (31) are shown in Figure 9.
Table 4 shows the three weights for the fused estimator P̂α as given in Proposition 2. As
seen in that proposition, the estimates with the lowest variance (which is proportional
to the RSME in Figure 9) get assigned the largest weights.

The fused estimator has the lowest root-mean-squared-error among the five computed
estimators. While there is no guarantee that this is the case, we are always guaranteed
to improve over the worst estimator, see Proposition 3. With respect to the coefficient
of variation, the high-fidelity model gives the best improvement among all the models.
The fused estimator is only slightly worse in coefficient of variation than the estimator
with the high-fidelity biasing density, but is much cheaper.
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Figure 9: Left: Root-mean-squared error from (30); Right: Coefficient of variation as
defined in (31) for the free plane jet application.
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6 Conclusions

We enabled the estimation of small probabilities for expensive-to-evaluate models via a
new combination of techniques from importance sampling, multifidelity modeling and
information fusion. The effectiveness of the proposed approach is demonstrated on
a convection-diffusion-reaction PDE, where asymptotic numerical results could be ob-
tained. The strength of the proposed framework is then shown on the target application
of the turbulent jet, a challenging problem for small-probability computation due to its
high computational cost. The proposed framework was illustrated for the special case
of importance-sampling based estimators, but in fact applies to a much broader class of
estimators, as long as the estimators are unbiased. By fusing different estimators, we
avoid the complicated biasing density selection problem. We also showed that this strat-
egy always outperforms sampling from the worst biasing density. The numerical results
suggest that the fused estimator is often comparable to an estimator that samples from
the best biasing density only.
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