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Abstract. In many scientific applications, including model reduction and image processing,4
subspaces are used as ansatz spaces for the low-dimensional approximation and reconstruction of5
the state vectors of interest. We introduce a procedure for adapting an existing subspace based on6
information from the least-squares problem that underlies the approximation problem of interest7
such that the associated least-squares residual vanishes exactly. The method builds on a Riemman-8
nian optimization procedure on the Grassmann manifold of low-dimensional subspaces, namely the9
Grassmannian Rank-One Subspace Estimation (GROUSE). We establish for GROUSE a closed-form10
expression for the residual function along the geodesic descent direction. Specific applications of sub-11
space adaptation are discussed in the context of image processing and model reduction of nonlinear12
partial differential equation systems.13
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1. Introduction. Dimension reduction techniques play an important role in the19

application of computational methods—identifying inherent low-dimensional struc-20

ture in the problem at hand can often lead to significant reductions in computational21

complexity. Consider a set of state vectors embedded in the n-dimensional Euclidean22

space Rn, n ∈ N. The goal of dimension reduction is to restrict the space of state23

vector candidates to a subspace of Rn of low dimension p � n. In doing so, the24

n-degree-of-freedom problem of computing full-scale state vectors is replaced by the25

task of determining the p coefficients of a basis expansion in the reduced subspace.26

If, for example, the state vectors are solutions of a computational model, then this27

dimension reduction underlies the derivation of a projection-based reduced model. As28

another example, the state vectors might represent experimental data or other system29

samples such as representations of an image. In those cases, the dimension reduction30

seeks an efficient compression of the data and a low-dimensional subspace in which31

to reconstruct unknown states. When n is large, dimension reduction often leads to a32

tremendous reduction in computational complexity; however, acceptable accuracy is33

only retained if the full state vectors can be approximated well in the p-dimensional34

subspace. Thus, the identification and numerical representation of subspaces plays a35

critical role.36

In classical projection-based model reduction, the reduced subspace is determined37

once in a so-called offline phase. Subsequently, it stays fixed while the reduced model38

is evaluated during the so-called online phase. Online adaptive model reduction breaks39
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2 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

this division, and modifies the subspace during the evaluation process to better meet40

the current conditions for the reduced state vector prediction.41

Online subspace adaptation can be approached from a geometric perspective:42

The set of all subspaces U ⊂ Rn of a certain fixed dimension p forms the Grassmann43

manifold [2]. Subspaces are spatial locations on this manifold and are represented in44

numerical schemes by column-orthogonal matrices in Rn×p. One-parameter subspace45

modifications correspond to curves on the Grassmannian.46

In the special case, where the subspace adaptation is based on a linear least-47

squares residual function, the Grassmannian Rank-One Update Subspace Estimation48

(GROUSE, [7]) applies: When approximating an unsampled state vector in the sub-49

space U based on partial information, then the associated least-squares residual is50

related to a velocity vector of a geodesic curve on the Grassmannian. GROUSE shows51

that this geodesic curve corresponds to a matrix curve of rank-one modifications on52

the underlying column-orthogonal matrices that act as subspace representatives.53

Main contributions. We show that the GROUSE geodesic of rank-one updates54

crosses a subspace U∗ that allows for an exact representation of the given partial55

information. Mathematically, this is a nonlinear root-finding problem on the Grass-56

mann manifold. We derive a closed-form expression for the residual with respect to57

the partial information along the GROUSE geodesic. In particular, this allows us to58

read off the root, but it may be of potential use in general when analyzing GROUSE59

with other step size schemes. As an auxiliary, we establish a general formula for the60

rank-one update of orthogonal projectors. Moreover, we generalize the method to61

subspace adaptation based on general least-squares systems and to the adaptation of62

a subspace of the subspace in question.63

In the results section, we demonstrate that the proposed method applies in com-64

bination with the following well-established dimension reduction techniques: gappy65

proper orthogonal decomposition (gappy POD, [27, 17]) and discrete empirical inter-66

polation method (DEIM, [21]). More precisely, we consider an application to gappy67

POD image processing, and we combine the subspace adaptation with the DEIM68

to construct an adaptive reduced model for the time-dependent nonlinear FitzHugh-69

Nagumo partial differential equation system, which models the electrical activity in a70

neuron. In contrast to the standard use case in the GROUSE literature [7, 49], our71

focus is not on estimating a subspace from scratch based on potentially noisy data but72

to adapt a given subspace of valid approximations based on incomplete but noise-free73

observations. In the DEIM setting, it is not the final subspace that is of main interest74

but rather the enhanced approximation capabilities after each adaptation.75

Context and related work. The Grassmann manifold can be represented as a ma-76

trix manifold. For comprehensive background information on optimization on matrix77

manifolds, we refer to [2] and its extensive bibliography. Matrix manifolds appear78

frequently in image processing and computer vision [35], where they often take the79

form of subspace identification problems. A related field of application is low-rank80

matrix factorizations, which arise in data analysis problems of various kinds, among81

them matrix completion [7], [14]. The GROUSE method was introduced in [7] as82

a tool for both subspace identification from incomplete and/or noisy data and the83

matrix completion problem and was further developed and analyzed in [9, 31, 48, 49].84

A recent survey of model reduction methods for parametric systems is [13]. Most85

online adaptive model reduction techniques rely on pre-computed quantities that re-86

strict the way the reduced space can be changed online. One example is parametric87

model reduction based on the interpolation of reduced models, where reduced op-88

erators are interpolated on matrix manifolds [3, 23, 38, 4, 36, 50]. There are also89
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dictionary approaches [30, 34] that construct a reduced space online from a subset of90

a large number of pre-computed basis vectors, and localized reduced modeling tech-91

niques [5, 40, 26, 24] that select online one of several pre-computed reduced models.92

In contrast, we are here interested in online adaptive model reduction methods93

that derive updates to the reduced model with information that is obtained from94

the full model in the online phase; thus, the adaptation uses information that is95

unavailable in the offline phase. There are several approaches that generate new data96

from the full model in the online phase, or derive new reduced basis vectors with97

an h-refinement [20] based on an adjoint model of the full model, and then rebuild98

the reduced model [37, 39, 44, 45]; however, this is often computationally expensive.99

An efficient online adaptation that uses new data online was presented in [46, 22]100

for localized reduced models. A reference state is subtracted from the snapshots of101

localized reduced models. It is shown that this corresponds to a rank-one update of102

the reduced space corresponding to the localized reduced models; however, this is only103

a limited form of adapting a reduced model because each snapshot receives the same104

change. In [42, 41], dynamic reduced models are introduced that adapt to changes105

in the full model without requiring access to the high-fidelity operators; however, the106

approach is limited to linear problems and to problems where high-resolution sensor107

information is available that provides approximations of the full state vectors. For108

nonlinear problems, an adaptive DEIM was presented in [43], which derives low-rank109

updates to the DEIM basis from sparse data of nonlinear terms. In this paper we110

draw on the theory of Grassman manifolds and subspace updates to introduce a more111

flexible method for adaptive model reduction that applies to nonlinear problems and112

reproduces the inputed sparse data exactly.113

Notation and preliminaries. The (p× p)-identity matrix is denoted by Ip ∈ Rp×p.114

If the dimension is clear, we will simply write I. The (p× p)−orthogonal group, i.e.,115

the set of all square orthogonal matrices, is denoted by116

Op = {R ∈ Rp×p|RTR = RRT = Ip}.117

For a matrix U ∈ Rn×p, the subspace spanned by the columns of U is denoted by118

U := colspan(U) := {Uα ∈ Rn| α ∈ Rp} ⊂ Rn. The set of all p-dimensional119

subspaces U ⊂ Rn forms the Grassmann manifold120

Gr(n, p) := {U ⊂ Rn| U subspace, dim(U) = p}.121

The Stiefel manifold is the compact matrix manifold of all column-orthogonal122

rectangular matrices123

St(n, p) := {U ∈ Rn×p| UTU = Ip}.124

The Grassmann manifold can be realized as a quotient manifold of the Stiefel manifold125

(1) Gr(n, p) = St(n, p)/Op = {[U ]| U ∈ St(n, p)},126

where [U ] = {UR| R ∈ Op} is the orbit, or equivalence class of U under actions of127

the orthogonal group. Hence, by definition, two matrices U, Ũ ∈ St(n, p) are in the128

same Op-orbit if they differ by a (p× p)-orthogonal matrix:129

[U ] = [Ũ ] :⇔ ∃R ∈ Op : U = ŨR.130

A matrix U ∈ St(n, p) is called a matrix representative of a subspace U ∈ Gr(n, p), if131

U = colspan(U). We will also consider the orbit [U ] and the subspace U = colspan(U)132
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4 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

as the same object. As in [25], we will make use throughout of the quotient representa-133

tion (1) of the Grassmann manifold with matrices in St(n, p) acting as representatives134

in numerical computations. From the manifold perspective, each p-dimensional sub-135

space of Rn is a single point on Gr(n, p).136

For a rectangular, full column rank matrix X ∈ Rn×p, the orthogonal projection137

onto the column span of X is138

(2) ΠX : Rn → colspanX, y 7→ X(XTX)−1XT y.139

We will consider special orthogonal projectors associated with the Cartesian coordi-140

nate directions. Let ej ∈ Rn denote the jth canonical unit vector, j = 1, . . . , n. Given141

a subset of m ∈ N indices J = {j1, . . . , jm} ⊂ {1, . . . , n}, the (column-orthogonal)142

matrix P = (ej1 , . . . , ejm) ∈ {0, 1}n×m is called the mask matrix corresponding to143

the index set J . Left-multiplication of a vector with the transpose of P realizes144

the projection onto the selected components in the same order as listed in J , i.e.,145

PT y = (yj1 , . . . , yjm)T ∈ Rm for all y ∈ Rn. The matrix PPT is the canonical146

orthogonal projection onto the coordinate axes j1, . . . , jm.147

Throughout, whenever a mask matrix P ∈ Rn×m is applied to a subspace repre-148

sentative U ∈ St(n, p), we assume that m > p and that the matrix of selected rows149

PTU ∈ Rm×p has full column rank p.150

Organization. Section 2 recaps the GROUSE approach and transfers the idea of151

the geometric subspace adaptation to the context of model reduction. It also reviews152

the essentials on the numerical treatment of Grassmann manifolds. Section 3 presents153

the core methodological contributions of this paper, where we derive a closed-form154

of the Grassmann rank-one update that solves the underlying least-squares residual155

equation exactly. Example applications in the context of adaptive model reduction156

and image processing are presented in Section 4, and Section 5 concludes the paper.157

2. Problem statement. In this section, we first summarize GROUSE following158

Ref. [7]. We then develop the connection between the theory of GROUSE and the159

task of adapting a low-dimensional subspace for model reduction. Lastly, we discuss160

relevant concepts in the numerical treatment of Grassmann manifolds.161

2.1. GROUSE. Let P = (ej1 , . . . , ejm) ∈ {0, 1}n×m be a mask matrix, let U0 ⊂162

Rn be a p-dimensional subspace with matrix representation U0 = [U0], U0 ∈ St(n, p)163

and let b ∈ Rm be a given data vector, p < m < n. GROUSE considers the masked164

least-squares problem165

(3) y(U0) := arg min
ỹ∈U0

‖PT ỹ − b‖22 ,166

which features the (subspace dependent) unique solution167

(4) y(U0) = U0α(U0) ∈ Rn, α(U0) = (UT0 PP
TU0)−1UT0 Pb ∈ Rp.168

The corresponding residual vector r(U0) := b− PT y(U0) is, in general, non-zero. For169

a fixed mask matrix P and a fixed right-hand side b, the residual vector is associated170

with a differentiable function on Gr(n, p), the residual norm function171

(5) FP,b : Gr(n, p)→ R, U 7→ ‖r(U)‖22 = bT b− bTPTU(UTPPTU)−1UTPb.172

see [7, eq. (2), (3)]. (The matrix U in the definition of FP,b can be any representative173

U ∈ St(n, p) of the subspace U , see (1). The subscripts P, b will be dropped, when174
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SUBSPACE UPDATES FOR ADAPTIVE MOR 5

clear from the context.) Given a sequence of incomplete observations in form of data175

vectors bs ∈ Rm, s = 1, 2, . . . with corresponding mask matrices Ps, GROUSE adapts176

the initial subspace such that the objective177

(6) U 7→
∞∑
s=1

FPs,bs(U) =

∞∑
s=1

‖PTs y(U)− bs‖2178

is minimized, see [7, eq. (5)].1179

The GROUSE algorithm works sequentially by addressing one data vector bs at180

a time. It performs a step along the geodesic line on Gr(n, p) [25], [2, §4] in the181

direction of steepest descent, which is given by the negative of the gradient of (5)182

with respect to the subspace U0 = [U0]. The gradient is represented by the rank-one183

matrix G = −2P
(
bs − PTU0αs

)
αTs with αs = (UT0 PP

TU0)−1UT0 Pbs, see [7, eq. (9)],184

[25, eq. (2.70)]. The direction of steepest descent is H = −G. Because H is rank-one,185

its thin SVD H = ΦΣV T reduces to H = Pr
‖r‖ (σ1)vT , where r is the residual vector,186

v = αs
‖αs‖ and σ1 = 2‖r‖‖α‖ is the single non-zero singular value of H. Evaluating187

the Grassmann geodesic [25, §2.5.1] along this descent direction leads to188

(7) t 7→ U0(t) = U0 +

(
(cos(tσ1)− 1)U0v + sin(tσ1)

Pr

‖r‖

)
vT =: U0 + x̂(t)vT ,189

see [7, eq. (11), (12)]. At each iteration s = 1, 2, . . ., the GROUSE algorithm [7, Alg.190

1] chooses a step size t = ηs and replaces the previous subspace representative Us−1191

by Us = Us−1(ηs) according to (7). Local and global convergence results are given in192

[8, 48, 49].193

2.2. Subspace adaptation and model reduction. We consider here projec-194

tion-based model reduction methods. These methods make use of a subspace U0 ⊂ Rn195

of comparatively low dimension dim(U0) = p � n that is assumed to contain the196

essential information about a set X ⊂ Rn of state vectors over a range of operating197

conditions. More precisely, the fundamental assumption underlying the dimension198

reduction is that the n-dimensional state vectors y ∈ X may be approximated up to199

sufficient accuracy with only p degrees of freedom via200

(8) y ≈ ỹ(α) = U0α, α ∈ Rp,201

where U0 ∈ St(n, p) is a matrix representative of U0. The standard case in model202

reduction is that the set of state vectors X is the solution manifold of a parametric203

partial differential equation (PDE).204

In the following, we consider the special case that only incomplete information205

on a state vector y ∈ X is available. This case is encountered in the model reduction206

techniques gappy POD [27] and DEIM [21]. The incomplete data imposes equality207

constraints on the m < n components yj1 , . . . , yjm of a state vector y ∈ X via the208

equation209

(9) PT y =

yj1...
yjm

 =: b, P = (ej1 , . . . , ejm) ∈ {0, 1}n×m.210

1For complete data vectors bs ∈ Rn, (6) is the same as [49, eq. (2)].
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6 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Under the requirement that y be contained in U0, the underdetermined equation (9)211

translates into the overdetermined masked least-squares problem (3) with correspond-212

ing solution (4). This establishes a direct link to the GROUSE approach.213

The objective of our work is to find a subspace U∗ ∈ Gr(n, p) close to U0 such214

that the best subspace-restricted least-squares solution y(U∗) features an exact zero215

residual, ‖r(U∗)‖2 = 0. In solving this equation for the unknown U∗, we adapt216

the original reduced subspace U0 according to the least-squares problem arising from217

the new (partial) information about y. The requirement of U∗ being close to U0 is218

important in the context of model reduction because we want the approximation (8)219

to remain valid for U∗.220

We formalize the objective. Define the feasibility set221

(10) Z := {U ∈ Gr(n, p)| min
ỹ∈U
‖PT ỹ − b‖2 = 0}.222

The set Z is non-empty.2 From GROUSE, it is known that the geodesic curve t 7→ U(t)223

that starts in U(0) = U0 with velocity given by the direction of steepest descent of the224

residual norm function (5) is a matrix curve of rank-one updates on the initial subspace225

U0, see (7). We will show that this curve crosses the feasibility set Z and determine the226

first intersection point. By writing the residual vector as r(U0) = b− ΠPTU0
b, where227

ΠPTU0
is the orthogonal projection (2) onto colspan(PTU0), this objective becomes228

a nonlinear equation on the Grassmann manifold:229

(11) solve b−ΠPTU(t∗)b = 0 for t∗ ∈ R.230

The condition b−ΠPTU(t∗)b = 0 is equivalent to [U(t∗)] ∈ Z.231

A contribution of this paper is an explicit formula for the time-dependent residual232

r(U(t)) = b − ΠPTU(t)b derived in Section 3, from which the solution to (11) can be233

read off in closed form. In contrast to GROUSE, whose overall aim is the iterative234

global minimization of (6), we focus on the single adaptation steps and the nonlinear235

residual equation on Gr(n, p). We arrive in this way at the same formula for t∗ that236

was obtained in [49, Alg. 1, §3.1, App. C] as the optimal greedy step size in an237

iterative subspace updating scheme based on complete right-hand side vectors.238

In summary, our approach is a method for determining a subspace U∗ contained239

in the set Z from (10) that can be reached via a geodesic path along the descent240

direction starting in U0. Figure 1 below and Section S1 from the supplement illustrate241

this principle. In Subsection 3.3, we show that this is not restricted to the special242

case of masked least-squares problems ‖PT ỹ− b‖2 but can be generalized to arbitrary243

underdetermined systems ‖Aỹ − b‖2, A ∈ Rm×n.244

2.3. Numerical aspects of the Grassmann manifold. Our approach to solve245

(11) is presented in Section 3 and builds on geometric concepts on the Grassmann246

manifold Gr(n, p). This subsection reviews a few essential aspects of the numerical247

treatment of Grassmann manifolds. We refer to [1, 2, 25] for details.248

Tangent spaces and normal coordinates. The tangent space TUGr(n, p) at a point249

U ∈ Gr(n, p) can be thought of as the space of velocity vectors of differentiable250

curves on Gr(n, p) passing through U . For any matrix representative U ∈ St(n, p) of251

U ∈ Gr(n, p) the tangent space of Gr(n, p) at U is represented by252

TUGr(n, p) =
{

∆ ∈ Rn×p| UT∆ = 0
}
⊂ Rn×p,253

2Any subspace U that contains a vector y = Pb+ v, where v ∈ Rn is in the (n−m)-dimensional
kernel of PT is in Z.
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Fig. 1. Graphical illustration of the geometric subspace adaptation: The sphere visualizes the
Grassmann manifold Gr(n, p). The solid line marks the set Z of all subspaces in Gr(n, p) that
contain zero-residual solutions to the least-squares problem (3). The black triangle shows the initial
subspace U0. The dashed line is the geodesic starting in U0 with velocity given by minus the gradient
of the least-squares residual function. Our goal is to compute the subspace U∗, where the geodesic
meets the set Z.

its canonical metric being 〈∆, ∆̃〉Gr = tr(∆T ∆̃), [25, §2.5]. Endowing each tan-254

gent space with this metric turns Gr(n, p) into a Riemannian manifold. A geodesic255

t 7→ U(t) on Gr(n, p) is a locally length-minimizing curve. A geodesic is uniquely de-256

termined by its starting point U(0) and its starting velocity U̇(0) = ∆ ∈ TU0Gr(n, p),257

[2, p. 102].258

The corresponding Riemannian exponential mapping is259

ExpU0 : TU0Gr(n, p)→ Gr(n, p), ∆ 7→ ExpU0(∆) := U(1).260

The Riemannian exponential maps a tangent vector ∆ ∈ TU0Gr(n, p) to the endpoint261

U(1) of a geodesic path U : [0, 1] → Gr(n, p) starting at U(0) = U0 ∈ Gr(n, p) with262

velocity ∆ ∈ TU0Gr(n, p).263

An efficient algorithm for evaluating the Grassmann exponential is derived in [25,264

§2.5.1]. The explicit form of the associated geodesic is265

(12) U(t) = ExpU0(t∆) = [U0V cos(tΣ)V T + Φ sin(tΣ)V T ], ∆
SVD
= ΦΣV T .266

The exponential mapping gives a local parametrization from the (flat, Euclidean)267

tangent space to the manifold. This is also referred to as to representing the manifold268

in normal coordinates [32, §III.8], [33, Lem. 5.10].269

Distance between subspaces. Given two subspaces [U ], [Ũ ] ∈ Gr(n, p), the ith270

canonical or principal angle between [U ] and [Ũ ] is θi := arccos(σi) ∈ [0, π2 ], where σi271

is the ith-largest singular value of UT Ũ ∈ Rp×p [29, §12.4.3].272

The Riemannian distance between [U ], [Ũ ] ∈ Gr(n, p) is273

(13) dist([U ], [Ũ ]) := ‖Θ‖2, Θ = (θ1, . . . , θp) ∈ Rp.274

Normal coordinates are radially isometric with respect to the Riemannian dis-275

tance on Gr(n, p) and the canonical metric on TU0Gr(n, p) in the following sense: the276
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8 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

length of a tangent vector ∆ as measured by the metric in TU0Gr(n, p) is the same277

as the Riemannian distance dist(U0, ExpU0(∆)) on Gr(n, p), provided that ∆ is in a278

neighborhood of 0 ∈ TU0Gr(n, p), where the exponential is invertible, [33, Lem. 5.10279

& Cor. 6.11].280

The Grassmann manifold is a compact homogeneous space [32]. In particular, by281

[47, Thm 8(b)], any two points on Gr(n, p) can be connected by a geodesic of length282

≤
√
p

2 π. This is related to the so-called injectivity radius of the Grassmann manifold283

[47], which is the maximal radius ρ such that the exponential map at any point284

[U ] ∈ Gr(n, p) is a diffeomorphism onto the open ball B(0, ρ) ⊂ T[U ]Gr(n, p) around285

the origin in the corresponding tangent space. The injectivity radius of the Grassmann286

manifold is ρ = π
2 , [47]. This concept is relevant to the step of conducting the line287

search within Grassmann optimization schemes. We make the following observation:288

Using the explicit formulas for the exponential mapping and its (local) inverse, called289

the logarithmic mapping Log[U ], see [11, §3], one can show that Log[U ]◦Exp[U ](∆) = ∆290

for all tangent vectors ∆ of spectral norm ‖∆‖2 = σ1(∆) < π/2, where σ1(∆) is the291

largest singular value of ∆. As a consequence, we have292

Observation 1. For all [U ] ∈ Gr(n, p), let293

B[U ],spec(0, π/2) :=
{

∆ ∈ T[U ]Gr(n, p)| σ1(∆) <
π

2

}
.294

Then the exponential mapping Exp[U ] is a radial isometry on B[U ],spec(0, π/2).295

This observation is important for numerical computations because296

B[U ],spec(0, π/2) ⊃
{

∆ ∈ T[U ]Gr(n, p)|
√
〈∆,∆〉Gr = ‖(σ1, . . . , σp)T ‖2 <

π

2

}
,297

i.e., the spectral π/2-ball in the tangent space encloses the canonical π/2-ball in298

the tangent space. The above observation leads to the next proposition which has299

implications on the uniqueness of solutions to (11).300

Proposition 1. Let [U ] ∈ Gr(n, p), ∆ ∈ T[U ]Gr(n, p) and Ũ = Exp[U ](∆).301

If ‖∆‖2 < π
2 , then dist

(
[U ], [Ũ ]

)
= ‖∆‖Gr. In particular, the length of the geodesic302

path starting in [U ] and ending in [Ũ ] is less than
√
p

2 π.303

Proof. Let ∆
SVD
= ΦΣV T with Σ = diag(σ1, . . . , σp) and σ1 = ‖∆‖2 < π

2 . The304

exponential projection of ∆ onto Gr(n, p) is [Ũ ] = Exp[U ](∆) = [UV cos(Σ)V T +305

Φ sin(Σ)V T ].306

The SVD of UT Ũ is V cos(Σ)V T , so that 0 ≤ θk := arccos(cos(σk)) = σk <
π
2 .307

Hence, (σ1, . . . , σp)
T = (θ1, . . . , θp)

T := Θ ∈ Rp is precisely the vector of canonical308

angles between [U ] and [Ũ ] (when listing the canonical angles in descending order),309

see (13). As a consequence,310

dist
(

[U ], [Ũ ]
)

= ‖Θ‖2 =
√
tr(Σ2) =

√
tr(∆T∆) = ‖∆‖Gr.311

Since σ1 <
π
2 , we have ‖∆‖Gr =

(∑p
i=1 σ

2
p

)1/2
<
√
p

2 π.312

A subtlety of Proposition 1 is that the length condition on ∆ is with respect to the313

spectral norm rather than the canonical norm.314
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3. Solving the Grassmann residual equation. We now return to our goal315

formulated in Subsection 2.2: the solution of eq. (11) . In Subsection 3.1, we derive a316

general update formula for orthogonal projectors under rank-one modifications. Sub-317

section 3.2 derives an explicit time-dependent expression for the Grassmann residual318

along the GROUSE geodesic. In particular, this allows us to read off the closed-form319

solution to (11). A generalization to least-squares systems featuring arbitrary matri-320

ces rather than mask matrices as operators is given in Subsection 3.3. Subsequently,321

Subsection 3.4 introduces an extension for performing the Grassmann subspace adap-322

tation over selected directions of the subspace only.323

3.1. A closed-form rank-one update for orthogonal projectors. In this324

subsection, we derive a formula for orthogonal projectors under rank-one updates that325

turns out to be an essential building block in solving (11). As this result is also of326

independent interest, we state it in a more general setting.327

Let X ∈ Rm×p. Recall from (2) that the orthogonal projection onto colspanX is328

ΠX = X(XTX)−1XT . Let X
SVD
= QΣRT be the thin SVD of X with Q ∈ St(m, p),329

Σ ∈ Rp×p diagonal, R ∈ Op orthogonal. Then ΠX is expressed alternatively as330

ΠX = QQT .331

Let x ∈ Rm, v ∈ Rp and consider the rank-one update332

Xnew = X + xvT ∈ Rm×p.333

We are interested in an expression ΠXnew = QnewQ
T
new, where Qnew ∈ St(m, p). One334

standard way to approach this is via rank-one SVD updates, [18, 16]. However, this335

requires an auxiliary SVD of a (p× p)-matrix. Here, we can avoid this, since we are336

not interested in the fully updated Xnew
SVD
= QnewΣnewR

T
new or even in Qnew alone337

but only in QnewQ
T
new.338

Lemma 2. As in the above setting, let X
SVD
= QΣRT , Xnew = X + xvT and339

define340

q̃ = x−QQTx, q =
q̃

‖q̃‖2
∈ Rm,(14a)341

g =

(
gp
gp+1

)
=

(
−Σ−1RT v

1
‖q̃‖2 (1 + xTQΣ−1RT v)

)
∈ Rp+1.(14b)342

343

Then the orthogonal projection onto colspan(Xnew) is344

(15) ΠXnew = (Q, q)

(
QT

qT

)
− 1

‖g‖22
(Q, q)ggT

(
QT

qT

)
.345

Proof. We start with a decomposition inspired by [16, eq. (3)]. Note that (Q, q) ∈346

St(m, p+ 1) by construction. It holds that347

X + xvT = (Q, q)

(
ΣRT +QTxvT

‖q̃‖vT
)

=: (Q, q)M,348

where M ∈ R(p+1)×p. Let M
SVD
= Q̃Σ̃R̃T be the thin SVD of M , i.e., Q̃ ∈ St(p +349

1, p), Σ̃, R̃T ∈ Rp×p. Formally, the updated SVD is350

X + xvT =
(

(Q, q)Q̃
)

Σ̃R̃T =: QnewΣnewR
T
new.351
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10 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Let g ∈ Rp+1 be such that (Q̃, g
‖g‖ ) ∈ Op+1 is an orthogonal completion of Q̃. Because352

of Ip+1 = (Q̃, g
‖g‖ )(Q̃,

g
‖g‖ )

T , we have353

Q̃Q̃T = Ip+1 −
1

‖g‖2
ggT354

and, as a consequence,355

(16) QnewQ
T
new = (Q, q)Q̃Q̃T

(
QT

qT

)
= (Q, q)

(
Ip+1 −

1

‖g‖2
ggT

)(
QT

qT

)
.356

Hence, it is sufficient to determine g, which is characterized up to a scalar factor by357

Q̃T g = 0. Since colspan(M) = colspan(Q̃), this condition is equivalent to MT g = 0.358

Let gp ∈ Rp denote the first p components of g and let gp+1 ∈ R be the last entry359

such that gT = (gTp , gp+1). When writing the equation gTM = 0 as360

(gTp , gp+1)

(
Σ QTx
0 ‖q̃‖2

)(
RT

vT

)
= 0,361

it is straightforward to show that g =

(
−Σ−1RT v

1
‖q̃‖2 (1 + xTQΣ−1RT v)

)
∈ Rp+1 and any362

scalar multiple of this vector is a valid solution. Using this vector in (16) proves the363

lemma.364

3.2. An explicit expression for the Grassmann residual function along365

the GROUSE geodesic. We now state our main theorem on the solution of the366

nonlinear equation (11) .367

Theorem 3. Let U0 = [U0] ∈ Gr(n, p) be represented by U0 ∈ St(n, p). Let368

P = (ej1 , . . . , ejm) ∈ {0, 1}(n×m) be a mask matrix. Moreover, let b ∈ Rm and suppose369

that UT0 Pb 6= 0.370

Let α = (UT0 PP
TU0)−1UT0 Pb be the optimal coefficient vector corresponding to371

the masked least-squares problem372

min
α̃∈Rp

‖PTU0α̃− b‖2373

and let r = b − PTU0α the associated residual vector. Set v = α
‖α‖2 and s1 =374

2‖r‖2‖α‖2. Moreover, write PTU0
SVD
= QΣRT ∈ Rm×p and gp = −Σ−1RT v.375

The t-dependent residual vector along the geodesic descent direction is376

r([U(t)]) = b−ΠPTU(t)b =
‖r‖2 − ‖α‖2 tan(ts1)

1 + tan2(ts1)‖gp‖2

(
r

‖r‖2
− tan(ts1)

‖α‖2
QΣ−2QT b

)
.377

Proof. Reconsider (7) and let378

x(t) = PT x̂(t) = (cos(ts1)− 1)PTU0v + sin(ts1)
r

‖r‖2
,379

v =
α

‖α‖2
, α = (UT0 PP

TU0)−1UT0 Pb,380
381

so that382

PTU(t) = PTU0 + x(t)vT .383
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Since PTU(t) is a rank-one update of PTU0, Lemma 2 applies. Introducing PTU0
SVD
=384

QΣRT ∈ Rm×p, we obtain r = b − QQT b and α = RΣ−1QT b. The t-dependent385

orthogonal projection onto colspan(PTU(t)) is386

(18) ΠPTU(t) = (Q, q(t))

(
QT

qT (t)

)
− 1

‖g(t)‖22
(Q, q(t))g(t)gT (t)

(
QT

qT (t)

)
,387

where388

q̃(t) = x(t)−QQTx(t), q(t) =
q̃(t)

‖q̃(t)‖2
∈ Rm,389

g(t) =

(
gp

gp+1(t)

)
=

(
−Σ−1RT v

1
‖q̃(t)‖2 (1 + xT (t)QΣ−1RT v)

)
∈ Rp+1.390

391

We have QT r = 0 and thus QTx(t) = cos(ts1)−1
‖α‖2 QT b. This leads to q̃(t) = sin(t)

‖r‖2 r392

and ‖q̃(t)‖2 = | sin(t)| as well as q(t) = sign(sin(t)) r
‖r‖2 = ±q, were we standardize393

q = r
‖r‖2 . Moreover,394

xT (t)QΣ−1RT v =
1

‖α‖22
(cos(ts1)− 1) bTQΣ−2QT b︸ ︷︷ ︸

‖α‖22

= (cos(ts1)− 1),395

so that g(t) is396

g(t) =

(
− 1
‖α‖2 Σ−2QT b

cos(ts1)
| sin(ts1)|

)
∈ Rp+1.397

It holds cos(ts1)
| sin(ts1)|q(t) = cos(ts1)

sin(ts1)
q. Hence, according to (18), we may consistently work398

with +q and cos(ts1)
sin(ts1)

= cot(ts1). In order to evaluate the updated projection (18), we399

compute400

(Q, q)

(
gp

gp+1(t)

)
= − 1

‖α‖2
QΣ−2QT b+ cot(ts1)q,401

gTp Q
T b = − 1

‖α‖2
bTQΣ−2QT b = −‖α‖2 and402

qT b =
1

‖r‖2
rT b =

1

‖r‖2
(bT b− bTQQT b︸ ︷︷ ︸

‖r‖22

) = ‖r‖2.403

404

Substituting these identities in (18), we arrive at405

r([U(t)]) = b−ΠPTU(t)b = b−QQT b− qqT b(20)406

+
1

‖g(t)‖2
(
Qgp + cot(ts1)q

) (
gTp Q

T b+ cot(ts1)qT b
)

407

=
cot(ts1)‖r‖2 − ‖α‖2

‖g(t)‖22

(
cot(ts1)

r

‖r‖2
− 1

‖α‖2
QΣ−2QT b

)
,408

as was claimed.409

Note that the only special property of P that is exploited in the proof is that PTPr =410

r. Hence, the result holds when P is replaced with an arbitrary column-orthogonal411

matrix.412

There is a number of conclusions that can be drawn from Theorem 3:413
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12 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Corollary 4. 1. The t-dependent residual norm along the steepest descent414

direction is415

(21) ‖r([U(t)])‖2 = ‖b−ΠPTU(t)b‖2 =
|‖r‖2 − ‖α‖2 tan(ts1)|√

1 + ‖gp‖22 tan2(ts1)
.416

2. The residual norm function is continuous and π
s1

-periodic along the steepest
descent direction with

‖r([U(0)])‖2 = ‖r‖2 and ‖r([U
(
π

2s1

)
])‖2 =

‖α‖2
‖gp‖2

=
‖α‖22

‖QΣ−2QT b‖2
.

3. The first root along the geodesic descent direction is at417

(22) t∗ =
1

s1
arctan

(
‖r‖2
‖α‖2

)
∈
(

0,
π

2s1

)
.418

The associated matrix U∗ := U0 +
(

(cos(t∗s1)− 1)U0v + sin(t∗s1) Pr‖r‖

)
vT is419

such that the subspace U∗ := [U∗] is contained in the set Z from (10), i.e.,420

(23) F (U∗) = min
α̃∈Rp

‖PTU∗α̃− b‖2 = 0.421

Stated differently, it holds that b is contained in colspan (PTU∗), that is,422

b = ΠPTU∗b.423

4. The coefficient vector associated with U∗ = [U∗] = (23) is α∗ =
√

1 +
‖r‖22
‖α‖22

α.424

The associated y∗ ∈ Rn is y∗ = U∗α∗ = U0α + Pr = U0α + P (b − PTU0α).425

Hence, y∗ can be readily obtained without computing any of t∗, α∗, U∗.426

5. The first maximum along the geodesic descent direction is at

tmax =
1

s1

(
π − arctan

(
‖α‖2

‖r‖2‖gp‖22

))
∈
(
π

2s1
,
π

s1

)
with corresponding value ‖r([U(tmax)])‖2 =

√
‖r‖22 +

‖α‖22
‖gp‖22

.427

Proof. By taking into account that r is orthogonal to colspan(Q), Pythagoras’428

Theorem gives ‖
(

cot(ts1) r
‖r‖2 −

1
‖α‖2QΣ−2QT b

)
‖2 =

√
cot2(ts1) + ‖gp‖22 = ‖g(t)‖2.429

The formula (21) is now an immediate consequence of (20). From (21), the statements430

2., 3., and 5. of the corollary are straightforward.431

On statement 4.: From 3., we know that there exists α∗ ∈ Rp such that PTU∗α∗−b =432

0. After plugging in the explicit expression for U∗, we obtain the equation433

PTU0

(
α∗ − αTα∗

‖α‖22
α

)
+

(
αTα∗

‖α‖2
√
‖α‖22 + ‖r‖22

− 1

)
b = 0.434

If the unmodified least-squares problem (3) features a nonzero residual, then b is not435

contained in colspanPTU0. Hence, both quantities in the round brackets must be zero,436

which leads to α∗ = αTα∗

‖α‖22
α =

√
‖α‖22+‖r‖22
‖α‖2 α. The calculation of y∗ is straightforward.437

Appendix A features a short cut to statements 3. and 4. of Corollary 4. An example438

of a plot of the residual norm function (21) from a practical application is displayed439

in Figure 5.440
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Remark 5. The GROUSE convergence analysis in [9] is based on local consider-441

ations and a step length of t̃ = 1
s1

arcsin
(
‖r‖2
‖α‖2

)
, which matches the t∗ in (22) up to442

terms of third order, when the residual and therefore the ratio ‖r‖2/‖α‖2 is small.443

In the fully sampled case, that is, when complete right-hand side data is available,444

Ref. [49] shows that the same t∗ of (22) is also the greedy-optimal step with respect445

to the determinant-similarity and the Frobenius norm discrepancy of two subspaces446

in an iterative subspace updating scheme, see [49, §3.1 & App. C]. In contrast, we447

arrived at t∗ from the independent approach of solving the nonlinear equation (11)448

and with a different proof that relies on Lemma 2. Combining these facts shows that449

the subspace discrepancy is maximal if and only if the subspace update is such that450

the residual vanishes exactly.451

The proof of Proposition 1 shows that the distance between the subspaces [U0] and452

[U∗] is t∗s1 = arctan
(
‖r‖2
‖α‖2

)
< π

2 . Hence, when performing the t∗-optimal rank-one453

update on [U0] according to Corollary 4, we stay within the injectivity radius. As454

a consequence from general differential geometry, the geodesic t 7→ [U(t)] is length-455

minimizing, that is, there is no shorter curve on Gr(n, p) that connects [U0] and456

[U∗].3457

We emphasize that the update formula of Lemma 2 for orthogonal projectors458

under rank-one modifications was used as an intermediate theoretical fact in proving459

Theorem 3 but that it is not required to actually compute the rank-one update and the460

associated quantities Q, q, g in order to obtain the optimal t∗ and the subspace [U∗] =461

[U(t∗)]. MATLAB code that considers this fact is in the supplement in Section S4.462

We draw a corollary that corresponds to the special case where the mask matrix463

P is the identity In, i.e., the case where complete data is available. Recall that the464

best least-squares approximation to a given vector b that is contained in a subspace465

U0 is the orthogonal projection U0U
T
0 b of b onto U0, with an associated residual of466

r = b−U0U
T
0 b. The SVD of PTU0 is now trivially PTU0 = QΣRT = U0IpI

T
p so that467

the expressions involving Q,Σ, R simplify.468

Corollary 6. Let U0 = [U0] ∈ Gr(n, p) be represented by U0 ∈ St(n, p). Let469

b ∈ Rn and suppose that α := UT0 b 6= 0. Set v = α
‖α‖2 and s1 = 2‖r‖2‖α‖2. Then the470

t-dependent residual norm is471

‖r([U(t)])‖2 = ‖b−ΠU(t)b‖2 =
|‖r‖2 − ‖α‖2 tan(ts1)|√

1 + tan2(ts1)
.472

Define473

t∗ =
1

s1
arctan

(
‖r‖2
‖α‖2

)
.474

Then U∗ := U(t∗) := U0 +
(

(cos(t∗s1)− 1)U0v + sin(t∗s1) r
‖r‖

)
vT is such that b is475

contained in the subspace U∗ := [U∗], i.e., b = ΠU∗b.476

Remark 7. Corollary 6 has a connection with rank-one SVD updates as consid-477

ered in [18, 15, 16]. One application in [16, Table 1] is to revise an existing SVD478

U0Σ0V
T
0 = (X, c) such that the column c is replaced with a column b in the modified479

SVD U ′Σ′V ′T = (X, b). In terms of the associated orthogonal projectors, we have480

U ′U ′T b = b. With Corollary 6, we obtain a subspace [U∗] that also contains b. Yet,481

3This does not necessarily mean that there is no other point [Ũ∗] ∈ Z that is closer to [U0].
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14 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

this is not achieved by explicitly exchanging a column c of the original data matrix for482

the new column b. Rather, via the update U0+
(

(cos(t∗s1)− 1)U0v + sin(t∗s1) r
‖r‖

)
vT483

=: U0 + x∗vT , the missing residual part is distributed over all columns of the original484

representative U0. In order to emulate this with the ‘revise’-approach of [16, Table485

1], one first has to rotate the subspace representative with Φ = (v⊥, v) ∈ Op, so that486

(U0 + x∗vT )Φ = U0Φ + (0, . . . , 0, x∗), i.e., the rank-one update acts on a single direc-487

tion of the new representative U0Φ. Allowing for rotations of the representative U0488

in the update scheme enables more general updates than when working with a fixed489

representative U0. Hence, we expect that dist([U0], [U∗]) ≤ dist([U0], [U ′]). This is490

confirmed in the example featured in Subsection 4.2.491

Another relation between GROUSE and the incremental SVD of [15] was exposed492

in [8]. The approach considered in [8] corresponds to first attaching new column493

data to a given subspace representative. Then, the SVD update is performed on494

the augmented matrix representative and consequently retruncated to its original495

dimensions. It is shown that this procedure can be emulated via GROUSE when496

a specific step size is chosen for the rank-one increment. However, the modified U ′497

obtained in this way does not feature the property U ′U ′T b = b, i.e., it does not498

correspond to a subspace that reproduces b exactly. More details can be found in499

Section S2.500

3.3. The general case. When the operator in the underlying least-squares501

problem (3) is not a mask matrix but an arbitrary real matrix, then the Grassmann502

gradient associated with the residual function is still rank-one so that GROUSE con-503

tinues to apply. Convergence results for GROUSE with arbitrary sampling matrices504

are given in [48].505

Mind that Corollary 4 remains valid with the same proof, when the mask matrix506

P is replaced with an arbitrary column-orthogonal matrix. For general subspace-507

restricted least-squares problems508

min
α̃∈Rp

‖AU0α̃− b‖2,509

where the operator A ∈ Rm×n, m ≤ n is arbitrary but such that AU0 has full column510

rank, we can proceed as follows. Let QR = AT be the thin qr-decomposition of AT511

with Q ∈ St(n,m), R ∈ Rp×p. Then512

‖AU0α̃− b‖2 = ‖RT
(
QTU0α̃− (RT )−1b

)
‖2513

Since Q is column-orthogonal, we may apply Theorem 3, Corollary 4 to the least-514

squares problem515

min
α̃
‖QTU0α̃− (RT )−1b‖2516

to produce a modified U∗ such that α̂ := arg minα̃∈Rp ‖QTU∗α̃− (RT )−1b‖2 fulfills517

0 = ‖QTU∗α̂− (RT )−1b‖2. As a consequence, ‖AU∗α̂− b‖2 = 0. In summary:518

Theorem 8. Let p < m ≤ n. Consider the general subspace restricted least-519

squares problem520

min
α̃∈Rp

‖AU0α̃− b‖2, A ∈ Rm×n, b ∈ Rm, [U0] ∈ Gr(n, p), rank(AU0) = p.521

Let QR = AT and suppose that R is regular. Then there exists a subspace [U∗] ∈522
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Gr(n, p) such that523

min
α̃∈Rp

‖AU∗α̃− b‖2 = 0 and dist([U0], [U∗]) = arctan

(
‖r‖2
‖α‖2

)
= τ∗,524

where α = arg minα̃∈Rp ‖QTU0α̃− (RT )−1b‖2, r = (RT )−1b−QTU0α.525

The subspace U∗ is given by526

U∗ = U0 +

(
(cos(τ∗)− 1)U0

α

‖α‖2
+ sin(τ∗)

Qr

‖r‖2

)
αT

‖α‖2
.527

3.4. Adapting a subspace of a subspace. There are many applications where528

it might be desirable to keep some directions of a given subspace fixed while adapting529

the remaining ones. In the context of adaptive model reduction, such situations are530

likely to occur if the columns spanning the subspace in question stem from a principal531

component analysis or proper orthogonal decomposition (POD), and are thus ordered532

by information content. In these cases, the user might want to keep the most dominant533

subspace directions fixed, while adapting the portion of the subspace spanned by534

the less important basis vectors. This subsection describes the modifications to the535

methodology for doing so, a sample application is presented in Subsection 4.2.536

Let f : Gr(n, p) → R, [U ] 7→ f([U ]) be a differentiable function. Let us divide537

the column set of a subspace representative U ∈ St(n, p) into a constant portion538

Uc ∈ St(n, p − l) and a portion Ul ∈ St(n, l) that is subject to change, so that539

U = (Uc, Ul) ∈ St(n, p−l)×St(n, l). By fixing Uc, we obtain a function fl : Gr(n, l)→540

R, fl([Ul]) = f([Uc, Ul]) with gradient Gl := ∇fl([Ul]) ∈ Rn×l. The gradient induces541

the search direction Hl = −Gl. The geodesic associated with the search direction542

Hl
SVD
= ΦlSlV

T
l ∈ Rn×l is represented by543

(24) Ul(t) = Exp[Ul](tHl) = UlVl cos(tSl)V
T
l + Φl sin(tSl)V

T
l .544

Note that Sl and Vl are (l × l)-matrices. For each t, the matrix Ul(t) ∈ St(n, l) is a545

feasible orthogonal subspace representative. Yet, we have to consider the possibility546

that the compound matrix (Uc, Ul(t)) ceases to be a valid subspace representative in547

St(n, p).4 It is even conceivable that [Ul(t)] moves towards the subspace [Uc] spanned548

by the fixed basis vectors so that the compound matrix (Uc, Ul(t)) not only loses the549

orthogonal-columns property but even becomes rank deficient. One way to avoid this,550

is to re-orthogonalize Ul(t) against Uc, say, by conducting an extra Gram-Schmidt551

procedure. However, Proposition 9 below implies that the orthogonality between the552

columns of the matrices Ul(t) and the constant columns of the matrix block Uc is553

preserved along the geodesic path in direction of the least-squares gradient, so that in554

this case, the corresponding compound matrix (Uc, Ul(t)) is also an orthogonal matrix555

representative in St(n, p) and a Gram-Schmidt re-orthogonalization is unnecessary.556

Proposition 9. Let f : Gr(n(, p)→ R be differentiable. Suppose that557

(25) T[U]Gr(n,p) 3 ∇[U ]f =
(
∇[Uc]fc,∇[Ul]fl

)
∈ (T[Uc]Gr(n,p−l))×(T[Ul]

Gr(n,l)),558

where it is understood that ∇[Uc]fc and ∇[Ul]fl denote the gradients of the restrictions559

fc : [Uc] 7→ f([Uc, Ul]) and fl : [Ul] 7→ f([Uc, Ul]), respectively.560

Let [U0] = [(Uc, Ul,0)] ∈ Gr(n, p) . Let t 7→ [Ul(t)] ⊂ Gr(n, l) be the geodesic path561

along the descent direction −∇[Ul,0]fl. Then UTc Ul(t) = 0 for all t.562

4Appendix B shows that this actually may happen even along search directions of rank one.
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Therefore, the corresponding curve of concatenated matrices (Uc, Ul(t)) ⊂ Rn×p is a563

curve of orthogonal matrices in St(n, p). Hence, for each t, [(Uc, Ul(t))] ∈ Gr(n, p), in564

consistency with the quotient space view point (1).565

Proof. Let U0 = (Uc, Ul,0) ∈ St(n, p), where Uc ∈ St(n, p− l) and Ul,0 ∈ St(n, l).566

The gradient with respect to f is a tangent vector in T[U0]Gr(n, p), hence UT0 ∇[U0]f =567

0. By (25),568

(26) 0 = UT0 ∇[U0]f =

(
UTc
UTl,0

)(
∇[Uc]fc,∇[Ul,0]fl

)
.569

In particular, UTc ∇[Ul,0]fl = 0. Writing ∇[Ul,0]fl
SVD
= −ΦlSlV

T
l ∈ Rn×l, we have570

UTc Φl = 0, since the columns of Φl span the same space as the columns of ∇[Ul]fl.571

Hence, the geodesic at t, Ul(t) = Ul,0Vl cos(tSl)V
T
l + Φl sin(tSl)V

T
l is also orthogonal572

to Uc, i.e., UTc Ul(t) = 0.573

As can be seen from the proof, the proposition is not specific to the GROUSE context574

nor does it depend on the rank of the gradient. It holds in general, whenever the575

gradient splitting of (25) holds. This, however, is not always the case, see Appendix B.576

The objective function F of (5) features this property: When allowing only the last577

l directions of (Uc, Ul) to vary, we obtain a differentiable Fl : Gr(n, l)→ R with578

Fl([Ul]) = bT b− bTPT (Uc, Ul)(

(
UTc
UTl

)
PPT (Uc, Ul))

−1
(
UTc
UTl

)
Pb.579

The associated gradient, now a rank-one (n× l)-matrix, reads580

Gl := ∇[Ul]Fl = −2P
(
b− PTUα

)
αT
(

0(p−l)×l
Il

)
, α = (UTPPTU)−1UTPb,581

where U = (Uc, Ul). The next corollary transfers the result of Corollary 4 to the582

setting of adapting only the last l columns of a given subspace representative.583

Corollary 10. Let U0 = [U0] ∈ Gr(n, p) be represented by U0 ∈ St(n, p). Let584

P = (ej1 , . . . , ejm) ∈ {0, 1}(n×m) be a mask matrix and let b ∈ Rm.585

Let α = (UT0 PP
TU0)−1UT0 Pb be the optimal coefficient vector corresponding to586

the masked least-squares problem587

min
α̃∈Rp

‖PTU0α̃− b‖2588

and let r = b − PTU0α be the associated residual vector. Let l ∈ N, l ≤ p and write589

column-wise U0 = (Uc, Ul,0), Uc =
(
u10, . . . , u

p−l
0

)
, Ul,0 =

(
up−l+1
0 , . . . , up0

)
. Moreover,590

let αl =
(
0(p−l)×l, Il

)
α and vl = αl

‖αl‖2 ∈ Rl.591

Set s1 = 2‖r‖2‖αl‖2 and define592

t∗ =
1

s1
arctan

(
‖r‖2
‖αl‖2

)
593

and Ul(t
∗) = Ul,0 +

(
(cos(t∗s1)− 1)Ulvl + sin(t∗s1) Pr‖r‖

)
vTl .594

Then U∗ := U(t∗) := (Uc, Ul(t
∗)) is such that the subspace U∗ := [U∗] is contained595

in the set Z from (10), i.e.,596

F (U∗) = min
α̃∈Rp

‖PTU∗α̃− b‖2 = 0,597

which means that t∗ solves (11) .598
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Proof. According to Proposition 9, the concatenated matrix (Uc, Ul(t)) is a valid599

subspace representative in St(n, p) for all t. Applying the mask operator P to600

(Uc, Ul(t)) leads to the matrix curve601

PTU(t) = PT (Uc, Ul(t)) = PT (Uc, UlVl cos(tSl)V
T
l + Φl sin(tSl)V

T
l ).602

Because Φl, Sl, Vl stem from an SVD of the rank-one gradient −Gl, we have that603

Sl = diag(s1, 0, . . . , 0), s1 = 2‖r‖2‖αl‖2. It follows that604

PTU(t) = PT (Uc, Ul,0) +
(

0n×(p−l), (cos(ts1)− 1)PTUlvl + sin(ts1) r
‖r‖2

)
605

= PT (Uc, Ul,0) + x(t)
(
01×(p−l), v

T
l

)
,606607

where vl = αl
‖αl‖2 is the first column of Vl. This is again a rank-one update on PTU(t)608

and the rest of the proof is analogous to the proof of Theorem 3.609

Remark 11. When we are adapting only the last column up0 of the initial matrix610

U0 = (u10, . . . , u
p
0) ∈ St(n, p), then the resulting U∗ is given by (u10, . . . , u

p−1
0 , up0(t∗)),611

where the last column evaluates to up0(t∗) = 1√
‖r‖22+|αp|2

(up0αp + Pr). This is pre-612

cisely the same result that is obtained by replacing the last column of U0 with the613

vector U0α + Pr and re-orthogonalization the new last column against the columns614

of Up−10 := (u10, . . . , u
p−1
0 ) via a single Gram-Schmidt step (I −Up−10 (Up−10 )T )(U0α+615

Pr) = (up0αp + Pr). In this case, the t∗-GROUSE update applied to the last column616

of the subspace representative U0 and the ([U ]-part of the) ‘revise’ SVD update of617

[16, Table 1, p.23] coincide, cf. Remark 7. For more details, see Section S2.618

4. Application to adaptive model reduction. This section applies the geo-619

metric rank-one subspace update in the specific contexts of online adaptive model re-620

duction and image reconstruction. For each application, we describe how the subspace621

adaptation is employed and we demonstrate the method with numerical examples.622

4.1. Adaptation for POD-DEIM reduced models. We present an online623

adaptive DEIM that is based on our geometric rank-one subspace update. In contrast624

to the standard use case in the GROUSE literature [7, 49], the focus here is not on625

estimating a subspace from scratch based on a global objective function (6) but to626

adapt a subspace that is already a good approximant for the underlying simulation627

process during the online phase.628

We first formulate our online adaptive DEIM for nonlinear dynamical systems and629

then present numerical results for the FitzHugh-Nagumo system. To ease exposition630

and to focus on benchmarking our online adaptive DEIM reduced models, we consider631

dynamical systems without parameters and inputs. Thus, the aim of the following632

reduced models is to reproduce well the solution of the full-order dynamical system,633

instead of predicting solutions for new parameters and inputs. We note, however,634

that the following POD-DEIM and our online adaptive POD-DEIM reduced models635

are applicable to parametrized models and models with inputs, see [43, 13].636

4.1.1. POD-DEIM-Galerkin reduced models. Consider a nonlinear dynam-637

ical system in the time interval [0, T ] ⊂ R, with end time T > 0. Let t0, t1, . . . , tK ∈638

[0, T ] ⊂ R be K + 1 ∈ N time steps with t0 = 0 and tK = T . Discretizing with, e.g.,639

the forward Euler method leads to the system of equations640

(28) Eyi = Ayi−1 + f(yi−1) , i = 1, . . . ,K ,641
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18 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

corresponding to the time steps t1, . . . , tK , respectively. Let n ∈ N denote the di-642

mension of the discrete state space. We have the system matrices A ∈ Rn×n and643

E ∈ Rn×n. The nonlinear function f : Rn → Rn corresponds to the nonlinear terms644

of the dynamical system. The state vector at time step ti is denoted as yi ∈ Rn. The645

initial condition is y0 ∈ Rn. We consider here the case where the nonlinear function f646

is evaluated componentwise at the state vector yi, see, e.g., [21]. We further assume647

the well-posedness of (28).648

To derive a reduced model of the full model (28), we select a set of ns ∈ N649

snapshots {yj1 , . . . , yjns } ⊂ {y1, . . . , yK} at the time steps tj1 , . . . , tjns with indices650

j1, . . . , jns ∈ {1, . . . ,K}. POD constructs orthonormal basis vectors v1, . . . , vnr ∈ Rn651

of the nr-dimensional POD space that is the solution to the minimization problem652

min
v1,...,vnr∈Rn

ns∑
i=1

∥∥∥∥∥yji −
nr∑
l=1

(vTl yji)vl

∥∥∥∥∥
2

2

.653

The POD basis V = (v1, . . . , vnr ) is formed of the left-singular vectors of the snapshot654

matrix Y = (yj1 , . . . , yjns ) ∈ Rn×ns corresponding to the nr largest singular values.655

The POD-Galerkin reduced model of (28) is656

(29) Ẽỹi = Ãỹi−1 + V T f(V ỹi−1) ,657

where ỹi ∈ Rnr is the reduced state vector at time step ti for i = 1, . . . ,K, and658

Ẽ = V TEV, Ã = V TAV are the reduced operators.659

Solving (29) requires evaluating the nonlinear function f(V ỹi−1) at the n-dimen-660

sional vector V ỹi−1 ∈ Rn, which can be computationally expensive. DEIM derives661

an approximation of f(V ỹi−1) to avoid evaluating f at all n components of V ỹi−1.662

To this end, DEIM constructs p ∈ N DEIM basis vectors u1, . . . , up ∈ Rn using663

POD on the nonlinear snapshots f(yj1), . . . , f(yjns ) ∈ Rn. The DEIM basis vectors664

are the columns of the DEIM basis matrix U = (u1, . . . , up) ∈ Rn×p. Additionally,665

DEIM selects p ∈ N DEIM interpolation points q1, . . . , qp ∈ {1, . . . , n} using a greedy666

strategy, see [21]. The DEIM mask matrix is P = (eq1 , . . . , eqp) ∈ {0, 1}n×p. The667

DEIM interpolant is the pair (U,P ). The DEIM approximation of the nonlinear668

function f evaluated at the vector V ỹi is given as669

(30) f(V ỹi) ≈ U(PTU)−1PT f(V ỹi) .670

The POD-DEIM-Galerkin reduced model of (28) at a time step ti, i = 1, . . . ,K is671

(31) Ẽỹi = Ãỹi−1 + V TU(PTU)−1PT f(V ỹi−1) .672

The reduced model (31) is often orders of magnitude faster to solve than the full model673

(28) and the reduced state vectors ỹ1, . . . , ỹK ∈ Rnr lead to accurate approximations674

V ỹ1, . . . , V ỹK ∈ Rn of the full state vectors y1, . . . , yK ∈ Rn, respectively.675

4.1.2. Online adaptive model reduction. We adapt the DEIM interpolant676

of the nonlinear function f in the online phase, i.e., we adapt the DEIM basis U677

and the DEIM mask matrix P during the time stepping. We proceed as follows.678

Let U0 denote the DEIM basis matrix, which is derived using POD as discussed in679

Section 4.1.1. Let further q01 , . . . , q
0
p ∈ {1, . . . , n} be the DEIM interpolation points680

and P0 = (eq01 , . . . , eq0p) the mask matrix that are derived with the DEIM procedure681

in the offline phase, see Section 4.1.1. Consider now the online phase at time step t1.682
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To compute the reduced state vector ỹ1, we first adapt the DEIM basis matrix U0683

and the mask matrix P0 to U1 and P1, respectively, and then use the adapted DEIM684

interpolant (U1, P1) in the reduced model (31) to compute the reduced state vector685

ỹ1. The DEIM basis matrix U0 is adapted to U1 using the GROUSE rank-one update,686

as we will discuss in detail in Section 4.1.3. This process is continued iteratively, i.e.,687

at time step ti, we adapt Ui−1 and Pi−1 to obtain Ui and Pi, respectively, and then688

use the adapted interpolant (Ui, Pi) for computing the reduced state vector ỹi at time689

step ti. Note that the POD basis matrix V and the reduced linear operators Ẽ and690

Ã are kept unchanged online (although in principle they too could be adapted).691

4.1.3. Subspace adaptation in online adaptive model reduction. We use692

the GROUSE rank-one update with the residual-annihilating step size (22) to adapt693

the DEIM basis matrix. Consider time step ti for i = 1, . . . ,K. To adapt the DEIM694

basis matrix Ui−1 to Ui at time step ti, we follow [43] and oversample the DEIM695

approximation. Let {qip+1, . . . , q
i
p+s} ⊂ {1, . . . , n} \ {qi−11 , . . . , qi−1p } be a set of s ∈ N696

additional indices that are drawn uniformly from the set {1, . . . , n}\{qi−11 , . . . , qi−1p },697

where qi−11 , . . . , qi−1p are the DEIM interpolation points of the previous time step ti−1.698

The extended mask matrix Si ∈ {0, 1}n×m, m = p+s, is assembled from the points in699

the set {qi−11 , . . . , qi−1p , qip+1, . . . , q
i
p+s} as Si = (eqi−1

1
, . . . , eqi−1

p
, eqip+1

, . . . , eqip+s). The700

matrix Si corresponds to m = p+ s > p point indices, and therefore the interpolation701

problem (30) of the classical DEIM approximation with the interpolant (Ui−1, Pi−1)702

becomes an overdetermined least-squares problem using the extended mask matrix Si703

(32) α = arg min
α̃∈Rp

‖STi Ui−1α̃− STi f(V ỹi−1)‖22704

with705

f(V ỹi−1) ≈ Ui−1α .706

The solution α of (32) is707

α = (UTi−1SiS
T
i Ui−1)−1UTi−1SiS

T
i f(V ỹi−1) .708

The regression problem (32) fits into the framework of the GROUSE subspace adap-709

tation approach of Subsection 2.2, so that we can find the adapted DEIM basis matrix710

Ui with the low-rank update derived in Corollary 4. In addition to updating the DEIM711

basis matrix, the DEIM interpolation points qi−11 , . . . , qi−1p are updated to qi1, . . . , q
i
p.712

For this task we use the algorithm introduced in [43, Section 4]. The entire DEIM713

online adaptivity procedure is summarized in Algorithm 1.714

4.1.4. Example of DEIM subspace adaptation. We apply the online sub-715

space adaptation to the DEIM interpolant of a reduced model of the FitzHugh-716

Nagumo system. The FitzHugh-Nagumo system is used in the original DEIM paper717

[21] as a benchmark example. The number of time steps is K = 106 and the dimension718

of the discretized state space is n = 2048. The state vectors y0, y1000, y2000, . . . , yK ∈719

Rn at every 1000th time step are used as snapshots to construct nr = 10 POD basis720

vectors and the corresponding POD basis matrix V ∈ Rn×nr . The nonlinear func-721

tion is evaluated at the snapshot time instances to obtain the nonlinear snapshots722

f(y(t0)), f(y(t1000)), f(y(t2000)), . . . , f(y(tK)).723

We compare the error of a static reduced model without online subspace adapta-724

tion to the error of an adaptive reduced model as in Alg. 1. We report the average of725

the relative L2 error of the approximation V ỹi to the reference yi at the time steps726

This manuscript is for review purposes only.



20 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Algorithm 1 Time stepping a reduced model with online adaptive DEIM

Input: System matrices E,A, nonlinear function f , initial condition y0, POD basis
matrix V , DEIM basis matrix U0, DEIM interpolation points matrix P0, number
of sampling points s, adaptation interval l

1: Set ỹ0 = V T y0
2: for i = 1, . . . ,K do
3: if mod (i, l) == 0 then
4: {Adapt DEIM interpolant every l-th time step}
5: Set qi−11 , . . . , qi−1p to the interpolation points of Pi−1
6: Draw qip+1, . . . , q

i
p+s uniformly from {1, . . . , n} \ {qi−11 , . . . , qi−1p }

7: Construct mask matrix Si from points qi−11 , . . . , qi−1p , qip+1, . . . , q
i
p+s

8: Evaluate nonlinear function at sampling points b = STi f(V ỹi−1)
9: {Employ Corollary 4 to adapt Ui−1}

10: Set α = (UTi−1SiS
T
i Ui−1)−1UTi−1Sib, and r = b− STi Ui−1α

11: Set v = α/‖α‖2, s1 = 2‖r‖2‖α‖2, and t∗ = s−11 arctan(‖r‖2/‖α‖2)
12: Adapt basis matrix

Ui = Ui−1 + ((cos(t∗s1)− 1)Ui−1v + sin(t∗s1)(Sir)/‖r‖2) vT

13: Adapt interpolation points matrix Pi−1 to Pi with [43, Algorithm 2]
14: else
15: Set Ui = Ui−1 and Pi = Pi−1 {No adaptation}
16: end if
17: f̃i = V TUi(P

T
i Ui)

−1PTi f(V ỹi−1) {Approximate nonlinear function}
18: Solve reduced model Ẽỹi = Ãỹi−1 + f̃i for ỹi
19: end for
Output: Reduced states ỹ0, . . . , ỹK
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Fig. 2. The average relative L2 error of a static reduced model is compared to the error of
a reduced model with an online adaptive DEIM interpolant. The online adaptation based on the
low-rank updates achieves an up to an order of magnitude improvement in the L2 error compared
to the static DEIM interpolant.
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Fig. 3. The plot reports the error of the online adaptive POD-DEIM reduced model for different
step sizes. The label “adapt, optimal” refers to the residual annihilator derived in Corollary 4,
“adapt, asym. optimal” refers to the step size t̃ mentioned in Remark 5, “adapt, constant” to the
constant step size 0.05, and “adapt, decaying step size” to the step size 0.05/i, where i is the counter
variable in Algorithm 1. Note that the curves of “adapt, optimal” and “adapt, asym. optimal” are
on top of each other.

t500, t1500, . . . , tK−500. Thus, the error is measured at time steps other than where the727

snapshots were taken.728

Figure 2(a) compares the L2 error of the states of the reduced model (31) with729

a static DEIM interpolant to the error of the reduced model with an adaptive DEIM730

interpolation. The dimension of the DEIM subspace is varied over the range p ∈731

{2, 4, 6, 8, 10}. The DEIM subspace and the DEIM interpolation points are adapted732

every 50th time step, which means that we set l = 50 in Alg. 1. At each adaptation733

step, the geometric rank-one update of Corollary 4 is performed to adapt the DEIM734

basis matrix based on s ∈ {200, 400, 600} sampling points. Note that the computa-735

tional costs of the rank-one update are bounded by O(np). The error of the static736

and the online adaptive reduced model decreases with the DEIM dimension, which737

shows that the POD space, which is static and derived from snapshots taken over738

the whole time interval, approximates well the full-order state vectors, see Subsec-739

tion 4.1.1. The online adaptive DEIM interpolant can further reduce the error by740

about an order of magnitude. Figure 2(b) reports results for the online adaptive re-741

duced model, where the DEIM interpolant is adapted every 50th, 100th, and 200th742

time step with a fixed number of s = 200 samples. This means that Algorithm 1 is run743

with l = 50, 100, 200, respectively. The results confirm that increasing the number of744

adaptivity steps increases the accuracy of the results.745

Figure 3 shows results for the online adaptive DEIM interpolant where different746

step sizes are used. We compare four different step size selections in Figure 3. The747

curve with the label “adapt, optimal” refers to the residual annihilator t∗, which is748

derived in Corollary 4 and implemented in Algorithm 1. The curve with label “adapt,749

asym. optimal” corresponds to the step size t̃ = 1
s1

arcsin
(
‖r‖2
‖α‖2

)
that is discussed in750

the GROUSE convergence analysis of [9], see also Remark 5. We additionally compare751

to the constant step size 0.05 in “adapt, constant” and a decaying step size 0.05/i752

in “adapt, decaying step size”, as in, e.g., the GROUSE numerical experiments in753

[7], where i is the counter variable in the for-loop in Algorithm 1. The number of754
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samples is set to s = 400 and the DEIM subspace and the DEIM interpolation points755

are adapted every 50th time step. The optimal and the asymptotically optimal step756

size lead to similar results (the curves are on top of each other), which was to be757

expected, since the functions arctan and arcsin match up to terms of third order.758

The less sophisticated choices “adapt, constant” and “adapt, decaying step size” lead759

to poor results which are even worse than those produced by the static subspace for760

DEIM basis dimensions of 8 and 10. This shows that for the application at hand,761

it is crucial to select a residual-related step size based on the ratio ‖r‖2
‖α‖2 , e.g., the762

minimizer t∗ from Corollary 4.763

4.2. Subspace adaptation for gappy POD image reconstruction. In this764

section, the geometric subspace update is applied in combination with the method of765

gappy POD [27, 17] on an image processing problem, where we use the method to766

implant a new feature into a given subspace.

Fig. 4. Face database used for gappy POD example.

767

We briefly summarize gappy POD. Given a set of snapshots {yk| k = 1, . . . , ns} ⊂768

Rn, let U = colspan(U) be the associated POD subspace represented by U ∈ St(n, p)769

with p ≤ ns. Let further yg ∈ Rn be an incomplete snapshot associated with an index770

set J = {j1, . . . , jm} ⊂ {1, . . . , n} of cardinality m ∈ N; yg is incomplete in the sense771

that only components with indices in J are considered as accurate information. Gappy772

POD computes a vector contained in U that best fits the incomplete snapshot yg in773

a least-squares sense. Employing the mask matrix P = (ej1 , . . . , ejm) ∈ {0, 1}n×m,774

the gappy POD approximation ygpod ∈ Rn is determined by the masked least-squares775

minimization problem776

(33) ygpod = Uαgpod, αgpod = arg min
α∈Rp

‖PTUα− PT yg‖2.777

(Notice the similarities to the DEIM approach from Section 4.1.4. Ref. [28] exposes778

further details on the relation between gappy POD and the Empirical Interpolation779

Method (EIM, [10]), which predates DEIM.) In our concrete example of image pro-780

cessing, the snapshot set is taken from the so-called Yale Database [12], see also [19,781

§5.2].5 Representing each image as a snapshot vector yk ∈ Rn, n = 4096, yields a782

snapshot matrix of dimension Y ∈ R4096×10. The snapshots are displayed in Fig. 4.783

The single image with glasses has been deliberately omitted from the snapshot set,784

so that no picture in the snapshot ensemble features the property ‘glasses-on’. The785

‘glasses’-detail from this picture, displayed in the lower left corner of Fig. 6, acts as786

a vector of gappy data yg ∈ R4096 with m = 1336 non-zero entries and corresponding787

mask matrix P . The gappy POD objective is to find the linear combination of snap-788

shots that comes closest to represent the ‘glasses’–feature in a least-squares sense.789

The resulting image is displayed in the second column of Fig. 6 with the top picture790

showing the gappy POD solution and the bottom picture showing the reference image791

5More precisely, we have used row 11 of the set of 165 Yale images in (64×64)-MATLAB format
provided by Deng Cai at http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
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Fig. 5. Plot of two periods of residual norm function (21) corresponding with the gappy POD
subspace adaptation. The circle locates the first root and the star indicates the global maximum.

Reference

Training set

Gappy POD reconstruction
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onto init. subspace
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adapted subspace

Reference projection
onto adapted subspace
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with last column adapted

Reference projection onto
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Fig. 6. Gappy POD approximation of a picture excerpt. To be read column-wise: Reference
picture and training excerpt. Gappy POD reconstruction based on the excerpt and projection of
complete reference onto the POD subspace. Gappy POD reconstruction using an adapted POD
subspace and projection of complete reference thereon. Gappy POD reconstruction after adapting
only the last column of POD subspace and projection of complete reference thereon.

projected onto the subspace spanned by the POD modes. The gappy POD recon-792

struction is a poor approximation of the reference picture because the POD space793

does not contain any information required to represent glasses.794

Now, we use the GROUSE rank-one update combined with Corollary 4 to annihi-795

late the gappy POD residual, which corresponds to solving the nonlinear equation (11)796

on Gr(n, p) = Gr(4096, 10). The input data are the mask matrix P ∈ Rn×m associ-797

ated with the picture excerpt, the corresponding right-hand side b = PT yg ∈ Rm, and798

the subspace representative U0 ∈ St(n, p) stemming from a POD of the input snap-799

shots. A plot of the residual norm function along the rank-one update is displayed in800

Figure 5.801

The update leads to a subspace representative U∗ that allows for a perfect re-802
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Fig. 7. Initial face data set (bottom row) and its projection onto the corresponding POD
subspace with only the last column adapted to the training excerpt (middle row) and its projection
onto the fully-adapted POD subspace (top row).

production of the picture excerpt but also makes use of the information that was803

previously sampled. We repeat the exercise with modifying only the last column of804

the initial POD subspace representative U0 according to Corollary 10.805

The gappy POD approximations using the adapted subspaces are shown in the806

last two columns of Fig. 6, again in comparison with the projection of the reference807

image onto the respective subspace. As is clear from Corollary 4,6808

The important thing is how the adapted subspaces have changed. This can be809

visualized by projecting the initial snapshot ensemble onto the adapted subspaces,810

see Fig. 7. Apart from the fact that the bright white spots in the original data811

set are reproduced in a graying way when projected onto the last-column adapted812

subspace, these two data sets look almost the same (Fig. 7, bottom rows). In contrast,813

the original data set projected onto the fully adapted subspace features the property814

‘glasses-on’ throughout (Fig. 7, top row). Nevertheless, the subspace distance between815

[U0] and the fully adapted [U∗] is 0.1273, while the distcance between [U0] and the816

subspace [U∗] with only the last column adjusted is 1.2828, more than ten times as817

large. Recall from Remark 7 that the latter [U∗] corresponds to an SVD update with818

respect to a column-replacement in the original subspace representative U0.819

Additional experiments are featured in Section S3 from the supplement. The sup-820

plement also includes MATLAB code for the adapted gappy POD examples discussed821

here.822

5. Summary and conclusion. Subspace update problems arise in model reduc-823

tion, machine learning, pattern recognition and computer vision. This paper focuses824

on the particular use case of subspace adaptation in combination with the model re-825

duction methods of gappy POD and DEIM. These methods have in common that a826

mask matrix is utilized to extract the features deemed most important to the under-827

lying problem. In both cases, the objective of the downstream subspace adaptation is828

to produce subspaces that contain elements that match the selected components. We829

6which transfers in an analogous form to the sub-subspace setting of Subsection 3.4 both recon-
structed images coincide since they both correspond to copying the training set to the respective
entries of the unmodified gappy POD solution.
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have formalized this objective as a nonlinear equation on the Grassmann manifold and830

have provided a closed-form solution that builds on the GROUSE approach [7, 49].831

In the DEIM test case, discussed in Section 4.1.4, the mask matrix operates on832

vectors contained in the subspace that represents the nonlinear terms of the underlying833

discretized PDE. In the gappy POD test cases, discussed in Section 4.2, the mask834

matrix selects the important components from vectors contained in the subspace of835

state vector solution candidates. In the test case of DEIM-based model reduction,836

the Grassmann subspace update is used as an online adaptation method to improve837

the fit of the components sampled from the nonlinear term. The reduced model with838

online subspace updating achieves an average error of about one order of magnitude839

lower than a classical reduced model without the adaptation. In the gappy POD840

image processing example, the Grassmann subspace update is applied to implement a841

new feature in the subspace of solution candidates that is not contained in the sample842

data set. We expect the method to show similar advantages when used in combination843

with the missing point estimation [6], because of the similarities to DEIM and gappy844

POD.845
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Appendix A. A direct solution of the Grassmann residual equation854

(11). This appendix features a short solution of (11). Obviously, (11) is solved,855

if we can find t∗ ∈ R and α∗ ∈ Rp such that PTU(t∗)α∗ = b, where U(t∗) := U0 +856 (
(cos(t∗s1)− 1)U0v + sin(t∗s1) Pr‖r‖

)
vT . (All occurring quantities to be understood as857

introduced in Theorem 3.) Mind that v = α/‖α‖2. Using an additional real parameter858

λ and the ansatz α∗ = λα = λv‖α‖2 leads to the equation859

(34) λ cos(t∗s1)

((
1− tan(t∗s1)

‖α‖2
‖r‖2

)
PTU0α+ tan(t∗s1)

‖α‖2
‖r‖2

b

)
= b.860

By setting t∗ = 1
s1

arctan
(
‖r‖2
‖α‖2

)
, the terms involving PTU0 cancel which leaves an861

equation for λ:862

λ cos(arctan

(
‖r‖2
‖α‖2

)
)b = b.863

The solution is λ = 1

cos(arctan
(
‖r‖2
‖α‖2

) =
√

1 +
‖r‖22
‖α‖22

.864

In addition to its concision, this approach has the advantage that it simultaneously865

gives both t∗ and the associated vector of coefficients α∗ =
√

( ‖r‖2‖α‖2 + 1)α ∈ Rp. On866

the other hand it does not allow to keep track of the residual depending on t, because867

for t 6= t∗, a defining equation is missing and α(t) and α are not collinear.868

Nevertheless, we remark that the above short cut approach may be adapted to869

apply also in the setting of Corollary 10 from Subsection 3.4. In this case, one can870

work from the ansatz α∗ = (α1, . . . , αp−l, λ(αp−l+1, . . . , αp))
T

.871
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One may also start by first applying the orthogonal coordinate transformation872

Φ = (v, Z) ∈ Op to the subspace representative U0, where Z ∈ Rp×(p−1) contains873

an arbitrary orthonormal basis of v⊥, and then work with U0Φ, U(t∗)Φ. This course874

of action essentially leads to (34) appearing in the first column of U(t∗)Φ and the875

rest of the argument is analogous. See [49, App. C, Proof of Lemma 4] for related876

considerations.877

Appendix B. Addendum to Subsection 3.4. A simple example of a differ-878

entiable Grassmann objective function for which Proposition 9 does not hold is879

f : Gr(n, p)→ R, [U ] 7→ xTUUT y,880

where x, y ∈ Rn are not orthogonal to [U ].881

By using the basic fact thatDX(vTXw) =
(

∂
∂xij

vTXw
)
ij

= vwT and the product882

rule, we see that the Grassmann gradient is883

∇[U ]f = (I − UUT )DUf = (I − UUT )
(
xyT + yxT

)
U,884

where DUf =
(

∂f
∂ui,j

)
i,j
∈ Rn×p, see [25, eq. (2.70)]. (Note that ∇[U ]f is of rank two

in general, but of rank one, if x = y.) Introducing U = (U1, U2) with U1 ∈ St(n, p− l),
U2 ∈ St(n, l), we may write UUT = U1U

T
1 +U2U

T
2 . By fixing U1, f becomes a function

f2 : Gr(n, l)→ R, [U2] 7→ xTU1U
T
1 y + xTU2U

T
2 y. The gradient is

∇[U2]f2 = (I − U2U
T
2 )
(
xyT + yxT

)
U2 ∈ Rn×l.

Likewise, for f1 : Gr(n, p− l)→ R, [U1] 7→ xTU1U
T
1 y + xTU2U

T
2 y, we obtain

∇[U1]f1 = (I − U1U
T
1 )
(
xyT + yxT

)
U1 ∈ Rn×l.

Splitting up the original gradient into an (n× (p− l)) and an (n× l) matrix gives885

∇[U ]f =
(
(I − UUT )(xyT + yxT )U1, (I − UUT )(xyT + yxT )U2

)
886

6=
(
(I − U1U

T
1 )(xyT + yxT )U1, (I − U2U

T
2 )(xyT + yxT )U2

)
887

=
(
∇[U1]f1,∇[U2]f2

)
.888

In particular, UT1 ∇[U2]f2 = UT1 xy
TU2 + UT1 yx

TU2 6= 0 and the geodesic U2(t) in
Gr(n, l) along the gradient direction ∇[U2]f2 is not orthogonal to U1,

UT1 U2(t) 6= 0.

A sufficient condition for (25) and Proposition 9 to hold is (I − UUT )DUf = DUf889

or, in short, UTDUf = 0.890
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SUPPLEMENTARY MATERIALS: GEOMETRIC SUBSPACE1

UPDATES WITH APPLICATIONS TO ONLINE ADAPTIVE2

NONLINEAR MODEL REDUCTION∗3

RALF ZIMMERMANN† , BENJAMIN PEHERSTORFER‡ , AND KAREN WILLCOX§4

S1. Supplementary example to Subsection 2.2. This section illustrates the5

basic objective introduced in Subsection 2.2 via an example in Gr(3, 1). Points on6

Gr(3, 1) are represented by orthogonal (3×1)-matrices, i.e., vectors on the unit sphere7

S2 = {(x, y, z)T ∈ R3| x2 + y2 + z2 = 1}, and can thus be conveniently visualized.8

Suppose that a starting subspace U0 = [u0] ∈ Gr(3, 1) ∼= S2 is given, where u0 ∈ S2.9

Suppose further that target data for the x and y coordinates are specified, say, x =10

b1, y = b2. We are looking for a subspace U∗ = [u∗], u∗ ∈ S2 that contains vectors11

that match the target data:12

(S1)

[u∗] ∈ Z := {[u] ∈ Gr(3, 1)|min
α∈R
‖PTuα− b‖2 = 0}, PT =

(
1 0 0
0 1 0

)
, b =

(
b1
b2

)
.13

The set Z contains infinitely many global solutions to the least-squares optimization14

problem. Any unit-2-norm vector u ∈ S2 whose first two components are in the span15

of the target vector b, (u1, u2)T = λ(b1, b2)T represents a global optimum. Hence, the16

set of global optima is17

Z =


 λb1

λb2√
1− λ2‖b‖22

 | λ ∈
[
− 1

‖b‖2
,

1

‖b‖2

]
\ {0}

 .18

This corresponds to (10). For example, two ‘easy-to-construct’ trivial solutions are19

utr1 :=
(b1, b2, 0)T

‖(b1, b2, 0)T ‖2
, utr2 :=

(b1, b2, u03)T

‖(b1, b2, u03)T ‖2
,20

i.e., we simply take the target data and fill up with zeros (‘tr1’) or we copy the target21

data to the x and y coordinates of the starting point u0 and renormalize (‘tr2’).22

In the academic case at hand, it is straightforward to compute the minimizer to23

the following nonlinear constrained Grassmann optimization problem24

(S2) [z∗] := arg min
[u]∈Gr(3,1)

dist([u0], [u]), s.t. [u] ∈ Z,25

which is given by26

z∗ := Z(λ∗), λ∗ = ± |〈b, PTu0〉|√
u203‖b‖2 + 〈b, PTu0〉2‖b‖

.27
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(The sign of λ∗ depends on the sign of 〈b, PTu0〉.)28

We may construct another solution via following a shortest path along the negative29

of the gradient of the Grassmann function F from (5) that is associated with (S1).30

It turns out that this path crosses the feasibility set Z. We denote the resulting31

solution by [u∗] ∈ Gr(3, 1). In Section 3, we derive a closed formula for computing32

such subspaces [U∗] on Grassmann manifolds of arbitrary dimension.33

Figure S1 displays the base point u0, the set of global least-squares optima Z,34

the exact optimum z∗ = Z(λ∗) of the constrained Grassmann problem (S2) as well35

as u∗, utr1, utr2, where36

u0 =

0.6548
0.3706
0.6587

 , b =

(
0.7046
0.6601

)
.37

Z(λ)

u
0

u*

u
tr1

u
tr2

z*

Fig. S1. Reference point u0 and the set of least-squares optimal solutions Z = {Z(λ)} to the
problem (S1). The associated subspaces are spanned by the vectors pointing to the curve Z. On Z
lie the arbitrary ‘trivial’ solutions utr1, utr2 as well as the optimal solution Z(λ∗) to (S2) and the
solution u∗ obtained by following a shortest path along the negative of the gradient associated with
(S1) starting in u0.

38

S2. Additional comments on the connection of GROUSE and rank-39

one SVD updates. In Remark 7 and Remark 11, we have briefly commented on40

the connection between the residual-annihilating GROUSE t∗-update and the SVD41

update procedures of [S3, S2] and [S1]. In particular, it was claimed in Remark 1142

that the ‘revise’-method of [S2, Table 1] and the GROUSE t∗-update restricted to the43

last column of a given initial subspace representative U0 coincide. Here is the proof:44

Written column-wise, U0 = (u10, . . . , u
p−1
0 |up0). When using the method of Sub-

section 3.4 applied to the last column up0, we arrive at

U∗ = (u10, . . . , u
p−1
0 |up0(t∗)).
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According to Corollary 10,45

(S3) up0(t∗) =
1√

‖r‖22 + α2
p

(up0αp + Pr) =
(up0αp + Pr)

‖ (up0αp + Pr) ‖2
,46

where P is the mask matrix and r = b− PTU0α, α = (α1 . . . , αp)
T .47

The ‘revise’-method of [S2, Table 1] proceeds as follows: In our setting, U0 =48

(u10, . . . , u
p−1
0 |up0) ∈ Rn×p plays the role of [X, c] from [S2, Table 1]. The objective49

is to replace the column c = up0 with a new column d = U0α + Pr. Obviously50

PT d = PTU0α + PTPr = PTU0α + r = PTU0α + (b − PTU0α) = b. This means51

that a subspace that contains this direction d is in the ‘feasibility set’ Z introduced52

in (10).53

In [S2], the column exchange is rewritten as a rank-one update of the following form:54

U ′S′V ′T = USV T + abT
here
= U0 + abT , a = d− c, bT = eTp = (0, . . . , 0, 1).55

The matrix U0 + abT is precisely the matrix U0 with the last column replaced by d,
i.e.,

U0 + abT = (Up−10 |d) = (Up−10 |U0α+ Pr).

In particular, for the U ′-factor in the revised SVD:56

(S4)

colspan(U ′) = colspan((Up−10 |U0α+ Pr)) = colspan(

(
Up−10 |

Πp−1
⊥ (U0α+ Pr)

‖Πp−1
⊥ (U0α+ Pr)‖

)
)57

where Πp−1
⊥ = (I − Up−10 (Up−10 )T ) is the orthogonal projection onto the orthogo-58

nal complement of colspan(Up−10 ). This is just the Gram-Schmidt step. Note that59

Πp−1
⊥ (U0α+ Pr) = up0αp + Pr, so that the last column of (S4) indeed coincides with60

the last column of (S3). All additional operations like subspace rotations that are61

inherent in the procedure of [S2] do not affect the column-span.62

In order to comment on the connection to [S1], we go into full detail. The method63

of [S2] starts with a detour via p+ 1 columns in the factorization64

(S5) U0 + abT = (U0, q)

(
Ip UT0 a
0 ‖q̃‖2

)(
Ip
eTp

)
, q =

q̃

‖q̃‖
, q̃ = (I − UUT )a.65

The above matrix product reduces to66

U0 + abT = (U0, q)︸ ︷︷ ︸
n×(p+1)

(
Ip + UT0 ae

T
p

0, . . . , 0, ‖q̃‖2

)
︸ ︷︷ ︸

(p+1)×p

= (U0, q)

 Ip−1 (UT0 a)p−11

0, . . . , 0 〈up0, a〉+ 1
0, . . . , 0 ‖q̃‖2

 =: (U0, q)M.67

Note that UT0 a = UT0 (d− c) = UT0 (U0α+ Pr − up0) = α− ep. Thus,68

(S6) M =


Ip−1

α1

...
αp−1

0, . . . , 0 αp
0, . . . , 0 ‖q̃‖2

 .69
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Reference

snapshot mean face + excerpt

Gappy reconstruction: "add"

Gappy reconstruction: "adapt"

Fig. S2. The geometric rank-one subspace adaptation in comparison with brute-force approaches
to implant the picture excerpt into the subpace.

The qr-decomposition of the matrix M ∈ Rp+1×p is70

M = QR =

 Ip−1 0
0, . . . , 0 x
0, . . . , 0 y


︸ ︷︷ ︸

Q∈R(p+1)×p

(
Ip−1 αp−11

0, . . . , 0 ν

)
︸ ︷︷ ︸

R∈Rp×p

,71

where x =
αp

ν , y = ‖q̃‖2
ν , ν =

√
α2
p + ‖q̃‖2. As a consequence72

(U, q)Q =

(
u10, . . . , u

p−1
0 |xup0 + yq

)
=

(
u10, . . . , u

p−1
0 |1

ν
(αpu

p
0 + Pr)

)
,73

since q̃ = (I − U0U
T
0 )a = (I − U0U

T
0 )(U0α + Pr − up0) = Pr. This is precisely the74

same matrix representative as in (S4) and its last column equals (S3). Formally, [S2]75

requires to compute the SVD of M but this is equivalent to computing Q times the76

SVD of R. Up to a rotation, we obtain always the same ‘subspace factor’, as the77

theory predicts.78

In [S1, Alg. 3], a similar decompositon (U, q)M̃ as in (S5) appears. The difference79

is that there, the matrix factor M̃ is a square (p+ 1)× (p+ 1)-matrix,80

M̃ =

(
Ip α

0, . . . , 0 ‖q̃‖2

)
∈ R(p+1)×(p+1).81

The matrix M ∈ R(p+1)×p in (S6) features the same last column but shifted to the left.82

While this corresponds to replacing data in the original subspace representative, the83

M̃ from [S1, Alg. 3] corresponds to appending data, which is followed by a truncation84

procedure.85

S3. Additional results for the example of Subsection 4.2. In this section,86

we conduct two complementary experiments to the gappy POD image processing87
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example of Subsection 4.2. We consider two brute-force approaches of adding the88

picture excerpt displayed in Figure 6, lower left corner, to the POD subspace formed89

from the face database displayed Figure 4.90

The first approach is as follows: we start with the unprocessed snapshot matrix91

Y = (y1, . . . , y10) ∈ R4096×10. Then, we compute the snapshot mean vector ymean =92
1
10

∑10
k=1 yk and replace the entries PT ymean with those of the picture excerpt, i.e., we93

construct yadd ∈ R4096 such that PT yadd = PT yg where yg is the gappy data vector.94

The remaining entries of yadd coincide with those of the mean vector. We add yadd95

to the snapshot matrix, recompute the SVD and truncate to the original dimension96

of 10 basis vectors:97

UaddΣaddV
T
add

SVD
= (Y, yadd) ∈ R4096×11, Uadd := (u1add, . . . , u

10
add) ∈ St(4096, 10).98

The best gappy POD reconstruction that is based on the subspace [Uadd] is shown99

in Figure S2 in the upper right corner.100

The subspace distance between the initial POD space [U0] and [Uadd] is101

dist([U0], [Uadd]) = 0.13525.102

The second approach works by replacing the last column of the POD subspace103

representative U0 with the artificially constructed vector yadd followed by recomputing104

the SVD:105

UrepΣrepV
T
rep

SVD
= (u10, . . . , u

9
0, yadd) ∈ R4096×10, Urep ∈ St(4096, 10).106

Since the subspace Urep now contains the vector yadd, the associated gappy POD107

reconstruction coincides with yadd and thus looks the same as Figure S2 in the lower108

left corner. The subspace distance between the initial POD space [U0] and [Urep] is109

dist([U0], [Urep]) = 1.5685.110

The subspace distance between the initial POD space [U0] and the geometric rank-one111

update [U∗] from Section 3 is112

dist([U0], [U∗]) = 0.12734.113

This confirms that the adapted subspace [U∗] is closer to the initial POD subspace114

than its competitors. Moreover, it is even cheaper to obtain, since it avoids an extra115

SVD. Theoretically, it corresponds to inputing the vector U0α + Pr after a suitable116

rotation of the subspace representative U0. The brute-force approach of adding an117

artificial snapshot to the database and doing the POD from scratch does not lead to a118

satisfactory result. The brute-force approach of replacing a column of the initial POD119

basis matrix with the artificial snapshot leads to a much larger gap in the subspace120

distance.121

This supplement includes MATLAB code for the above example.122

S4. MATLAB code for the geometric rank-one update. The following123

MATLAB code corresponds to Corollary 4 and Corollary 10.124

%125

% file Grassmann_res_update_masked.m126

%127

function [U, PTU] =...128
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Grassmann_res_update_masked(U0, P, b, lastcols)129

%-------------------------------------------------------------130

% Grassmann_res_update_masked131

% compute root of the residual function res: G(n,p) -> R132

% corrsponding to a masked least-squares system133

% min||P’Ux - P’b||134

% on the Grassmann-Manifold G(n,p)135

%136

% input arguments137

% U0 : orthogonal representative of point in G(n,p)138

% P : list of slected points139

% b : right hand side, filtered by140

% the mask operator, i.e. b(P,:)141

% lastcols : number of columns to be adapted,142

% counted from rear:143

% e.g. lastcols = 4 means that subspace144

% representative U in R^(n x p)145

% is decomposed into146

% U = (U(:,1:p-4), U(:, p-4+1:p))147

% and only the subspace spanned148

% by the last 4 columns is adapted149

% lastcols = 0 means: adapt FULL subspace150

% @Output:151

% U : adapted subspace representative152

% PTU : P’*U = U(P,:)153

%154

% author: R: Zimmermann, IMADA, SDU Odense155

% zimmermann@imada.sdu.dk156

%-------------------------------------------------------------157

158

% produce onscreen output?159

onscreen = 0;160

161

% get dimensions162

[n, p] = size(U0);163

if lastcols == p164

lastcols = 0;165

end166

167

%-------------------------------------------------------------168

% Closed form solution:169

% *********************170

%171

% The gradient is the rank-one matrix172

% G = -2P(b-P^TU alpha)*alpha^T173

% = -2P(b-QQ^Tb)*alpha^T.174

% For the geodesic path that features H=-G as a starting175

% velocity, we need the SVD of H. Since H is rank-one, it176

% holds177

% svd(H) = (P*q) * sigma * v^T, where178
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% q = r/|r|,179

% sigma = 2*|r|*|alpha|,180

% v = alpha/|alpha|181

%182

% The geodesic is183

% U(t) = U0 + {(cos(t*sigma)-1)*U0*v + sin(t*sigma)*(P*q)}*v^T184

% = U0 + x(t)*v^T185

%186

% The optimal t is: t_star = (1/sigma)*atan(|r|/|alpha|)187

%-------------------------------------------------------------188

189

% compute vector of optimal coefficients and residual190

% thin SVD191

[Q,S,R] = svd(U0(P,:), 0);192

% inverse of singular value matrices, stored as vector193

S_inv = 1.0./diag(S);194

QTb = Q’*b;195

% compute vector of optimal coefficients196

alpha = R*(S_inv.*(QTb));197

%compute residual vector198

r = b - Q*QTb;199

n_r = norm(r);200

201

if lastcols202

% keep only the components associated with the last cols203

alpha = alpha(p-lastcols+1:p);204

end205

n_alpha = norm(alpha);206

v = alpha/n_alpha;207

% optimal step208

t_star = atan(n_r/n_alpha);209

210

if lastcols == 0211

% Geodesic212

x = (cos(t_star)-1)*U0*v;213

x(P) = x(P) + (sin(t_star)/n_r)*r;214

U = U0 + x*v’;215

%---------------------------------------------------------216

% compute projection after rank-1-update217

% in closed form218

%219

% The result is the same as recomputing the SVD of PTU:220

% [Qopt, Sopt, Ropt] = svd(PTU, 0);221

% residual_t_star = norm(b - Qopt*(Qopt’*b))222

%223

% Actually, it is not necessary to compute the residual224

% since it is theoretically guaranteed to be zero.225

% This is merely a check for the numerical accuracy.226

%---------------------------------------------------------227

if onscreen228
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gp = -1.0/n_alpha*(S_inv.*S_inv).*QTb;229

gp1 = n_alpha/n_r;230

g = [gp,;gp1];231

n_g = norm(g);232

q = r/n_r;233

Qhat = [Q,q];234

Qhatg = (1./n_g)*Qhat*g;235

b_proj = Qhat*(Qhat’*b) - (Qhatg’*b)*Qhatg;236

check_residual = norm(b-b_proj)237

% For comparison: brute force via re-SVD238

[Qopt, Sopt, Ropt] = svd(U(P,:), 0);239

check_Lem2 = norm(b_proj - Qopt*(Qopt’*b))240

end241

else242

% Geodesic243

x = (cos(t_star)-1)*U0(:,p-lastcols+1:p)*v;244

x(P) = x(P)+ (sin(t_star)/n_r)*r;245

% subspace update246

U = [U0(:,1:p-lastcols), U0(:,p-lastcols+1:p) + x*v’];247

end248

249

PTU = U(P,:);250

return;251

end252

% end of file Grassmann_res_update_masked.m253
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