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GEOMETRIC SUBSPACE UPDATES WITH APPLICATIONS TO
ONLINE ADAPTIVE NONLINEAR MODEL REDUCTION*

RALF ZIMMERMANNT, BENJAMIN PEHERSTORFER!, AND KAREN WILLCOXS

Abstract. In many scientific applications, including model reduction and image processing,
subspaces are used as ansatz spaces for the low-dimensional approximation and reconstruction of
the state vectors of interest. We introduce a procedure for adapting an existing subspace based on
information from the least-squares problem that underlies the approximation problem of interest
such that the associated least-squares residual vanishes exactly. The method builds on a Riemman-
nian optimization procedure on the Grassmann manifold of low-dimensional subspaces, namely the
Grassmannian Rank-One Subspace Estimation (GROUSE). We establish for GROUSE a closed-form
expression for the residual function along the geodesic descent direction. Specific applications of sub-
space adaptation are discussed in the context of image processing and model reduction of nonlinear
partial differential equation systems.
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1. Introduction. Dimension reduction techniques play an important role in the
application of computational methods—identifying inherent low-dimensional struc-
ture in the problem at hand can often lead to significant reductions in computational
complexity. Consider a set of state vectors embedded in the n-dimensional Euclidean
space R™ n € N. The goal of dimension reduction is to restrict the space of state
vector candidates to a subspace of R™ of low dimension p < n. In doing so, the
n-degree-of-freedom problem of computing full-scale state vectors is replaced by the
task of determining the p coefficients of a basis expansion in the reduced subspace.
If, for example, the state vectors are solutions of a computational model, then this
dimension reduction underlies the derivation of a projection-based reduced model. As
another example, the state vectors might represent experimental data or other system
samples such as representations of an image. In those cases, the dimension reduction
seeks an efficient compression of the data and a low-dimensional subspace in which
to reconstruct unknown states. When n is large, dimension reduction often leads to a
tremendous reduction in computational complexity; however, acceptable accuracy is
only retained if the full state vectors can be approximated well in the p-dimensional
subspace. Thus, the identification and numerical representation of subspaces plays a
critical role.

In classical projection-based model reduction, the reduced subspace is determined
once in a so-called offline phase. Subsequently, it stays fixed while the reduced model
is evaluated during the so-called online phase. Online adaptive model reduction breaks
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2 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

this division, and modifies the subspace during the evaluation process to better meet
the current conditions for the reduced state vector prediction.

Online subspace adaptation can be approached from a geometric perspective:
The set of all subspaces U C R™ of a certain fixed dimension p forms the Grassmann
manifold [2]. Subspaces are spatial locations on this manifold and are represented in
numerical schemes by column-orthogonal matrices in R”*P. One-parameter subspace
modifications correspond to curves on the Grassmannian.

In the special case, where the subspace adaptation is based on a linear least-
squares residual function, the Grassmannian Rank-One Update Subspace Estimation
(GROUSE, [7]) applies: When approximating an unsampled state vector in the sub-
space U based on partial information, then the associated least-squares residual is
related to a velocity vector of a geodesic curve on the Grassmannian. GROUSE shows
that this geodesic curve corresponds to a matrix curve of rank-one modifications on
the underlying column-orthogonal matrices that act as subspace representatives.

Main contributions. We show that the GROUSE geodesic of rank-one updates
crosses a subspace U* that allows for an eract representation of the given partial
information. Mathematically, this is a nonlinear root-finding problem on the Grass-
mann manifold. We derive a closed-form expression for the residual with respect to
the partial information along the GROUSE geodesic. In particular, this allows us to
read off the root, but it may be of potential use in general when analyzing GROUSE
with other step size schemes. As an auxiliary, we establish a general formula for the
rank-one update of orthogonal projectors. Moreover, we generalize the method to
subspace adaptation based on general least-squares systems and to the adaptation of
a subspace of the subspace in question.

In the results section, we demonstrate that the proposed method applies in com-
bination with the following well-established dimension reduction techniques: gappy
proper orthogonal decomposition (gappy POD, [27, 17]) and discrete empirical inter-
polation method (DEIM, [21]). More precisely, we consider an application to gappy
POD image processing, and we combine the subspace adaptation with the DEIM
to construct an adaptive reduced model for the time-dependent nonlinear FitzHugh-
Nagumo partial differential equation system, which models the electrical activity in a
neuron. In contrast to the standard use case in the GROUSE literature [7, 49], our
focus is not on estimating a subspace from scratch based on potentially noisy data but
to adapt a given subspace of valid approximations based on incomplete but noise-free
observations. In the DEIM setting, it is not the final subspace that is of main interest
but rather the enhanced approximation capabilities after each adaptation.

Context and related work. The Grassmann manifold can be represented as a ma-
trix manifold. For comprehensive background information on optimization on matrix
manifolds, we refer to [2] and its extensive bibliography. Matrix manifolds appear
frequently in image processing and computer vision [35], where they often take the
form of subspace identification problems. A related field of application is low-rank
matrix factorizations, which arise in data analysis problems of various kinds, among
them matrix completion [7], [14]. The GROUSE method was introduced in [7] as
a tool for both subspace identification from incomplete and/or noisy data and the
matrix completion problem and was further developed and analyzed in [9, 31, 48, 49].

A recent survey of model reduction methods for parametric systems is [13]. Most
online adaptive model reduction techniques rely on pre-computed quantities that re-
strict the way the reduced space can be changed online. One example is parametric
model reduction based on the interpolation of reduced models, where reduced op-
erators are interpolated on matrix manifolds [3, 23, 38, 4, 36, 50]. There are also
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SUBSPACE UPDATES FOR ADAPTIVE MOR 3

dictionary approaches [30, 34] that construct a reduced space online from a subset of
a large number of pre-computed basis vectors, and localized reduced modeling tech-
niques [5, 40, 26, 24] that select online one of several pre-computed reduced models.

In contrast, we are here interested in online adaptive model reduction methods
that derive updates to the reduced model with information that is obtained from
the full model in the online phase; thus, the adaptation uses information that is
unavailable in the offline phase. There are several approaches that generate new data
from the full model in the online phase, or derive new reduced basis vectors with
an h-refinement [20] based on an adjoint model of the full model, and then rebuild
the reduced model [37, 39, 44, 45]; however, this is often computationally expensive.
An efficient online adaptation that uses new data online was presented in [46, 22]
for localized reduced models. A reference state is subtracted from the snapshots of
localized reduced models. It is shown that this corresponds to a rank-one update of
the reduced space corresponding to the localized reduced models; however, this is only
a limited form of adapting a reduced model because each snapshot receives the same
change. In [42, 41], dynamic reduced models are introduced that adapt to changes
in the full model without requiring access to the high-fidelity operators; however, the
approach is limited to linear problems and to problems where high-resolution sensor
information is available that provides approximations of the full state vectors. For
nonlinear problems, an adaptive DEIM was presented in [43], which derives low-rank
updates to the DEIM basis from sparse data of nonlinear terms. In this paper we
draw on the theory of Grassman manifolds and subspace updates to introduce a more
flexible method for adaptive model reduction that applies to nonlinear problems and
reproduces the inputed sparse data exactly.

Notation and preliminaries. The (p x p)-identity matriz is denoted by I, € RP*P.
If the dimension is clear, we will simply write I. The (p x p)—orthogonal group, i.e.,
the set of all square orthogonal matrices, is denoted by

0O, = {ReRP*?|RTR = RR” =I,,}.

For a matrix U € R™*P, the subspace spanned by the columns of U is denoted by
U = colspan(U) := {Uax € R"| « € RP} C R™. The set of all p-dimensional
subspaces U C R™ forms the Grassmann manifold

Gr(n,p) :={U C R"| U subspace, dim(f) = p}.

The Stiefel manifold is the compact matrix manifold of all column-orthogonal
rectangular matrices

St(n,p) :={U e R™*?| UTU = I,}.
The Grassmann manifold can be realized as a quotient manifold of the Stiefel manifold
(1) Gr(n,p) = St(n,p)/Op ={[U]| U € St(n,p)},

where [U] = {UR| R € O,} is the orbit, or equivalence class of U under actions of
the orthogonal group. Hence, by definition, two matrices U, U € St(n,p) are in the
same O,-orbit if they differ by a (p x p)-orthogonal matrix:

U] =[U] < 3R€0,:U=UR.

A matrix U € St(n,p) is called a matriz representative of a subspace U € Gr(n,p), if
U = colspan(U). We will also consider the orbit [U] and the subspace U = colspan(U)
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4 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

as the same object. As in [25], we will make use throughout of the quotient representa-
tion (1) of the Grassmann manifold with matrices in St(n, p) acting as representatives
in numerical computations. From the manifold perspective, each p-dimensional sub-
space of R™ is a single point on Gr(n,p).

For a rectangular, full column rank matrix X € R"*P the orthogonal projection
onto the column span of X is

(2) Iy : R™ — colspan X, y+— X(XTX)"1XxTy,

We will consider special orthogonal projectors associated with the Cartesian coordi-
nate directions. Let e; € R™ denote the jth canonical unit vector, j = 1,...,n. Given
a subset of m € N indices J = {j1,...,4m} C {1,...,n}, the (column-orthogonal)
matrix P = (ej,,...,ej,,) € {0,1}"*™ is called the mask matriz corresponding to
the index set J. Left-multiplication of a vector with the transpose of P realizes
the projection onto the selected components in the same order as listed in J, i.e.,
PTy = (yj,,--,y;,)T € R™ for all y € R". The matrix PP is the canonical
orthogonal projection onto the coordinate axes ji,..., jm.

Throughout, whenever a mask matrix P € R™*" is applied to a subspace repre-
sentative U € St(n,p), we assume that m > p and that the matrix of selected rows
PTU € R™*? has full column rank p.

Organization. Section 2 recaps the GROUSE approach and transfers the idea of
the geometric subspace adaptation to the context of model reduction. It also reviews
the essentials on the numerical treatment of Grassmann manifolds. Section 3 presents
the core methodological contributions of this paper, where we derive a closed-form
of the Grassmann rank-one update that solves the underlying least-squares residual
equation exactly. Example applications in the context of adaptive model reduction
and image processing are presented in Section 4, and Section 5 concludes the paper.

2. Problem statement. In this section, we first summarize GROUSE following
Ref. [7]. We then develop the connection between the theory of GROUSE and the
task of adapting a low-dimensional subspace for model reduction. Lastly, we discuss
relevant concepts in the numerical treatment of Grassmann manifolds.

2.1. GROUSE. Let P = (¢j,,...,¢;,,) € {0,1}"*™ be a mask matrix, let Uy C
R™ be a p-dimensional subspace with matrix representation Uy = [Up], Uy € St(n, p)
and let b € R™ be a given data vector, p < m < n. GROUSE considers the masked
least-squares problem

(3) y(Uo) == arg min | PT5 —b|3,
YyEUo

which features the (subspace dependent) unique solution
(4) y(Uo) = Usa(Up) €R™,  a(Uy) = (UF PPTU,) UL Pb € RP.

The corresponding residual vector r(Uy) := b — PTy(Up) is, in general, non-zero. For
a fixed mask matrix P and a fixed right-hand side b, the residual vector is associated
with a differentiable function on Gr(n,p), the residual norm function

(5)  Fpp:Gr(n,p) =R, U |r@)]2=0"0-b" PTUWUTPPTU)'UT Pb.

see [7, eq. (2), (3)]. (The matrix U in the definition of Fip; can be any representative
U € St(n,p) of the subspace U, see (1). The subscripts P,b will be dropped, when
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SUBSPACE UPDATES FOR ADAPTIVE MOR 5

clear from the context.) Given a sequence of incomplete observations in form of data
vectors by € R™, s = 1,2,... with corresponding mask matrices P;, GROUSE adapts
the initial subspace such that the objective

(6) U Fpp, ) =Y |PIyW) — b,
s=1 s=1

is minimized, see [7, eq. (5)].!

The GROUSE algorithm works sequentially by addressing one data vector by at
a time. It performs a step along the geodesic line on Gr(n,p) [25], [2, §4] in the
direction of steepest descent, which is given by the negative of the gradient of (5)
with respect to the subspace Uy = [Up]. The gradient is represented by the rank-one
matrix G = —2P (b, — PTUya,) ol with oy = (U PPTUy) ~*U{ Pbs, see [7, eq. (9)],
[25, eq. (2.70)]. The direction of steepest descent is H = —G. Because H is rank-one,
its thin SVD H = ®XV7 reduces to H = ﬁ(m)vT, where 7 is the residual vector,
v = o7 and 0y = 2||I7|lller]] is the single non-zero singular value of H. Evaluating
the Grassmann geodesic [25, §2.5.1] along this descent direction leads to
) Pr\ - . T
(1) t—=Uo(t)=Uo+ <(cos(t01) —1)Upv + Sm(tal)r”) vt = Uy + Z(t)v",
see [7, eq. (11), (12)]. At each iteration s =1,2,..., the GROUSE algorithm [7, Alg.
1] chooses a step size t = 1, and replaces the previous subspace representative Us_4

by Us = Us_1(ns) according to (7). Local and global convergence results are given in
[8, 48, 49].

2.2. Subspace adaptation and model reduction. We consider here projec-
tion-based model reduction methods. These methods make use of a subspace Uy C R™
of comparatively low dimension dim(Uy) = p < n that is assumed to contain the
essential information about a set & C R™ of state vectors over a range of operating
conditions. More precisely, the fundamental assumption underlying the dimension
reduction is that the n-dimensional state vectors y € X may be approximated up to
sufficient accuracy with only p degrees of freedom via

(8) y~ja) = Upa, acPR?,

where Uy € St(n,p) is a matrix representative of Uy. The standard case in model
reduction is that the set of state vectors X is the solution manifold of a parametric
partial differential equation (PDE).

In the following, we consider the special case that only incomplete information
on a state vector y € X is available. This case is encountered in the model reduction
techniques gappy POD [27] and DEIM [21]. The incomplete data imposes equality

constraints on the m < m components y;,,...,y;, of a state vector y € X via the
equation

Yja
(9) Ply=| : | =b, P=(ej,...,e;,) €{0,1}"™.

Yim

IFor complete data vectors bs € R™, (6) is the same as [49, eq. (2)].
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6 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Under the requirement that y be contained in Uy, the underdetermined equation (9)
translates into the overdetermined masked least-squares problem (3) with correspond-
ing solution (4). This establishes a direct link to the GROUSE approach.

The objective of our work is to find a subspace U* € Gr(n,p) close to Uy such
that the best subspace-restricted least-squares solution y(U*) features an exact zero
residual, ||r(U*)]]2 = 0. In solving this equation for the unknown U*, we adapt
the original reduced subspace Uy according to the least-squares problem arising from
the new (partial) information about y. The requirement of U* being close to U is
important in the context of model reduction because we want the approximation (8)
to remain valid for U/*.

We formalize the objective. Define the feasibility set

(10) Z:={UeGr(np)| min|P"g—bls =0}
Y

The set Z is non-empty.? From GROUSE, it is known that the geodesic curve t — U(t)
that starts in U(0) = Uy with velocity given by the direction of steepest descent of the
residual norm function (5) is a matrix curve of rank-one updates on the initial subspace
U, see (7). We will show that this curve crosses the feasibility set Z and determine the
first intersection point. By writing the residual vector as r(Uy) = b — Il pr;, b, where
Hpry, is the orthogonal projection (2) onto colspan(P?Uy), this objective becomes
a nonlinear equation on the Grassmann manifold:

(11) solve b — lpry(4+)b = 0 for t* € R.

The condition b — I pry(4=b = 0 is equivalent to [U(t*)] € Z.

A contribution of this paper is an explicit formula for the time-dependent residual
r(U(t)) = b — Tlpry )b derived in Section 3, from which the solution to (11) can be
read off in closed form. In contrast to GROUSE, whose overall aim is the iterative
global minimization of (6), we focus on the single adaptation steps and the nonlinear
residual equation on Gr(n,p). We arrive in this way at the same formula for ¢* that
was obtained in [49, Alg. 1, §3.1, App. C] as the optimal greedy step size in an
iterative subspace updating scheme based on complete right-hand side vectors.

In summary, our approach is a method for determining a subspace U* contained
in the set Z from (10) that can be reached via a geodesic path along the descent
direction starting in Uy. Figure 1 below and Section S1 from the supplement illustrate
this principle. In Subsection 3.3, we show that this is not restricted to the special
case of masked least-squares problems || P74 —bl|2 but can be generalized to arbitrary
underdetermined systems ||Ag — b2, A € R™*™.

2.3. Numerical aspects of the Grassmann manifold. Our approach to solve
(11) is presented in Section 3 and builds on geometric concepts on the Grassmann
manifold Gr(n,p). This subsection reviews a few essential aspects of the numerical
treatment of Grassmann manifolds. We refer to [1, 2, 25] for details.

Tangent spaces and normal coordinates. The tangent space Ty Gr(n,p) at a point
U € Gr(n,p) can be thought of as the space of velocity vectors of differentiable
curves on Gr(n,p) passing through U. For any matrix representative U € St(n,p) of
U € Gr(n,p) the tangent space of Gr(n,p) at U is represented by

TyGr(n,p) = {A e R™*?| UTA =0} c R™?,

2 Any subspace U that contains a vector y = Pb+ v, where v € R™ is in the (n — m)-dimensional
kernel of PT is in Z.
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—Z
---geodesic
< U,

. U*

Fic. 1. Graphical illustration of the geometric subspace adaptation: The sphere visualizes the
Grassmann manifold Gr(n,p). The solid line marks the set Z of all subspaces in Gr(n,p) that
contain zero-residual solutions to the least-squares problem (3). The black triangle shows the initial
subspace Uy. The dashed line is the geodesic starting in Uy with velocity given by minus the gradient
of the least-squares residual function. Our goal is to compute the subspace U*, where the geodesic
meets the set 2.

its canonical metric being (A, A)g, = tr(ATA), [25, §2.5]. Endowing each tan-
gent space with this metric turns Gr(n,p) into a Riemannian manifold. A geodesic
t — U(t) on Gr(n,p) is a locally length-minimizing curve. A geodesic is uniquely de-
termined by its starting point U(0) and its starting velocity U(O) = A € Ty,Gr(n,p),
2, p. 102)].

The corresponding Riemannian exponential mapping is

Expy, : Ty, Gr(n,p) = Gr(n,p), A~ Expy,(A):=U(1).

The Riemannian exponential maps a tangent vector A € Ty, Gr(n, p) to the endpoint
U(1) of a geodesic path U : [0,1] — Gr(n,p) starting at U(0) = Uy € Gr(n,p) with
velocity A € Ty, Gr(n, p).

An efficient algorithm for evaluating the Grassmann exponential is derived in [25,
§2.5.1]. The explicit form of the associated geodesic is

(12)  U(t) = Bapy, (tA) = [UoV cos(tD)VT + @sin(tD) V7], A Y axy T,

The exponential mapping gives a local parametrization from the (flat, Euclidean)
tangent space to the manifold. This is also referred to as to representing the manifold
in normal coordinates [32, §IIL.8], [33, Lem. 5.10].

Distance between subspaces. Given two subspaces [U],[U] € Gr(n,p), the ith
canonical or principal angle between [U] and [U] is 6; := arccos(o;) € [0, 7], where o;
is the ith-largest singular value of UTU € RP*P [29, §12.4.3].

The Riemannian distance between [U], [U] € Gr(n, p) is

(13) dist([U], [U]) := [|©ll2, © = (b1,...,6,) € RP.

Normal coordinates are radially isometric with respect to the Riemannian dis-
tance on Gr(n,p) and the canonical metric on Ty, Gr(n, p) in the following sense: the
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length of a tangent vector A as measured by the metric in Ty, Gr(n,p) is the same
as the Riemannian distance dist(Uy, Expy, (A)) on Gr(n,p), provided that A is in a
neighborhood of 0 € Ty, Gr(n, p), where the exponential is invertible, [33, Lem. 5.10
& Cor. 6.11].

The Grassmann manifold is a compact homogeneous space [32]. In particular, by
[47, Thm 8(b)], any two points on Gr(n,p) can be connected by a geodesic of length
< gw. This is related to the so-called injectivity radius of the Grassmann manifold
[47], which is the maximal radius p such that the exponential map at any point
[U] € Gr(n,p) is a diffeomorphism onto the open ball B(0, p) C Tj;Gr(n,p) around
the origin in the corresponding tangent space. The injectivity radius of the Grassmann
manifold is p = 7, [47]. This concept is relevant to the step of conducting the line
search within Grassmann optimization schemes. We make the following observation:
Using the explicit formulas for the exponential mapping and its (local) inverse, called
the logarithmic mapping Logjy, see [11, §3], one can show that LogiyjoExp)(A) = A
for all tangent vectors A of spectral norm ||Allz = 01(A) < 7/2, where 01(A) is the
largest singular value of A. As a consequence, we have

Observation 1. For all [U] € Gr(n,p), let

™
B pec0,7/2) = { A € Ty Gr(n.p)| - () < T}

Then the exponential mapping Expjy) is a radial isometry on By spec(0,7/2).

This observation is important for numerical computations because

s
Bt apecl0,7/2) > {& € Ty Grin,p) - V(B B)ar = l(o1,-,00) 2 < 5 |

i.e., the spectral 7/2-ball in the tangent space encloses the canonical 7/2-ball in
the tangent space. The above observation leads to the next proposition which has
implications on the uniqueness of solutions to (11).

PROPOSITION 1. Let [U] € Gr(n,p), A € Tiy1Gr(n, p) and U= Exp(A).

If [[Allz < 5, then dist([U], [U]) = ||Allgr. In particular, the length of the geodesic
path starting in [U] and ending in [U) is less than gw.

Proof. Let A SYD dYXVT with ¥ = diag(oy,...,0p) and 01 = ||All2 < §. The
exponential projection of A onto Gr(n,p) is [U] = Exppy(A) = [UV cos(Z)VT +
®sin(D)VT]. }

The SVD of UTU is V cos(Z)V7, so that 0 < ), := arccos(cos(os)) = o < 5.
Hence, (01,...,0,)T = (61,...,0,)T := © € RP is precisely the vector of canonical
angles between [U] and [U] (when listing the canonical angles in descending order),
see (13). As a consequence,

dist (U], [0]) = 1©]]2 = VEr(S2) = /tr(ATA) = Al

Since o1 < 7§, we have [|Allgr = ( - 012))1/2 < gﬂ'. O

A subtlety of Proposition 1 is that the length condition on A is with respect to the
spectral norm rather than the canonical norm.
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3. Solving the Grassmann residual equation. We now return to our goal
formulated in Subsection 2.2: the solution of eq. (11) . In Subsection 3.1, we derive a
general update formula for orthogonal projectors under rank-one modifications. Sub-
section 3.2 derives an explicit time-dependent expression for the Grassmann residual
along the GROUSE geodesic. In particular, this allows us to read off the closed-form
solution to (11). A generalization to least-squares systems featuring arbitrary matri-
ces rather than mask matrices as operators is given in Subsection 3.3. Subsequently,
Subsection 3.4 introduces an extension for performing the Grassmann subspace adap-
tation over selected directions of the subspace only.

3.1. A closed-form rank-one update for orthogonal projectors. In this
subsection, we derive a formula for orthogonal projectors under rank-one updates that
turns out to be an essential building block in solving (11). As this result is also of
independent interest, we state it in a more general setting.

Let X € R™*P. Recall from (2) that the orthogonal projection onto colspan X is
IMx = X(X7X)"'X7T. Let X Y QURT be the thin SVD of X with Q € St(m,p),
¥ € RP*P diagonal, R € O, orthogonal. Then IIx is expressed alternatively as
IIx = QQT.

Let x € R™, v € RP and consider the rank-one update
Xpew = X + 0T € R™*P,

We are interested in an expression lx, . = Qnew@L,, , where Qe € St(m,p). One
standard way to approach this is via rank-one SVD updates, [18, 16]. However, this
requires an auxiliary SVD of a (p x p)-matrix. Here, we can avoid this, since we are

not interested in the fully updated X, e SYb QnewXnewRL,, or even in Q. alone
but only in Qpew@ZL,,
LEMMA 2. As in the above setting, let X 5YD QXRT, Xpew = X + 207 and
define
s q m
(14a) j=2-QQ"z, q:meR )
—1pT
_ [ 9 _ X" R ) +1
14b = = _ € RPTH,
( ) g <9p+1> (||zjl|2(1+xTQE 1RT,U)

Then the orthogonal projection onto colspan(X ey ) s

(@ 9)g9" <QT) :

qT

(15) Woew = (@-0) ( T) - ||gl||§

qT

Proof. We start with a decomposition inspired by [16, eq. (3)]. Note that (Q, ¢) €
St(m,p+ 1) by construction. It holds that

T T T
Xt ot = @) (P ) = @,

where M € RUFD<2, Tet M 5P QRRT be the thin SVD of M, ie., Q € St(p+
1,p), %, RT € RP*P, Formally, the updated SVD is

X+ a0’ = ((Q7 Q)Q) SRT = Qnewznengew'

This manuscript is for review purposes only.
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Let g € RPt! be such that (Q, ”-T‘ZH) € O,y 1 is an orthogonal completion of Q. Because
of Iy = (Q, ||%m)(@, H%H)T’ we have

1
QQT = Ip+1 - WQQT

and, as a consequence,

~ o~ T T
(16)  QuewQhew = (Q.0)QQ" <qT) =@.4) (IP“ ) ||gl||299T> <§T> |

Hence, it is sufficient to determine g, which is characterized up to a scalar factor by
QTg = 0. Since colspan(M) = colspan(@)7 this condition is equivalent to M*g = 0.
Let g, € RP denote the first p components of g and let g,+1 € R be the last entry
such that g* = (g/", gp41). When writing the equation g" M = 0 as

T T
(ggagp—i-l) <§ ﬁq”j) <§T> = Oa

L . -S> 1Ry
it is straightforward to show that g = L (1 4 2TQx 1R y)
Tall= r v

scalar multiple of this vector is a valid solution. Using this vector in (16) proves the
lemma. a

) € RPt! and any

3.2. An explicit expression for the Grassmann residual function along
the GROUSE geodesic. We now state our main theorem on the solution of the
nonlinear equation (11) .

THEOREM 3. Let Uy = [Up] € Gr(n,p) be represented by Uy € St(n,p). Let
P =(ej,-..,ej,) € {0,1}"*™) be a mask matriz. Moreover, letb € R™ and suppose
that UL Pb # 0.

Let a = (UI'PPTUy)~*UT Pb be the optimal coefficient vector corresponding to
the masked least-squares problem

min ||PTUpa — b|?
a€cRpP

and let 1 = b — PTUya the associated residual vector. Set v = 9%

2||r|l2||c]|2- Moreover, write PTU, SYD QXRT € R™*? and g, = —X ' RTw.
The t-dependent residual vector along the geodesic descent direction is

r(U®)) =b—prynb =

I7ll2 — llell2 tan(tsy) ( r tan(tsy)

_ Q2—2QTb>.
1+tan®(ts)llgpl> \lI7ll2 Nl

Proof. Reconsider (7) and let

z(t) = PT2(t) = (cos(tsy) — 1)PTUv + Sin(tsl)ﬁ,
T2
v = ﬁ a = (U PPTU,)~'UT P,
2

so that
PTU(t) = PTUy + z(t)o”.

This manuscript is for review purposes only.
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Since PTU(t) is a rank-one update of PT Uy, Lemma 2 applies. Introducing P7 U, SYb

QXRT € R™ P, we obtain 7 = b — QQTb and a« = RE~'QTb. The t-dependent
orthogonal projection onto colspan(PTU(t)) is

_ Q" 1 T QT
1) oo = @) (F)) - mm@amnnso ()

where

q(t) m

—— € R™,
()]l

g(t) = (gpff(t)) = (lq(t)l (1 :fy I(PS;UElRTU)) € RPHL

We have QTr = 0 and thus QTz(t) = %QTI). This leads to G(t) = Sy

[ lIrll2
T

and H(j( )|2 = |sin(t)| as well as ¢(t) = sign(sin(t)) T, = T4, were we standardize
q= H?H Moreover,

(t) = z(t) — QQTx(t), q(t) =

1
2T ()Y RTy = ||W(cos(tsl) —1)"QX2Q"b = (cos(tsy) — 1),
ajl3 N—
llell
so that g(t) is
—2QT
g(t) = < ”a(‘llgb(tsl) ) € Rp-i-l.
| sin(ts1)]

It holds é‘:ﬁgii)ﬂ q(t) = Z?If((fji))q Hence, according to (18), we may consistently work
with 4+¢ and Z?j(:jl)) = cot(ts1). In order to evaluate the updated projection (18), we

compute

— 2T
@a(, %)= ”a” QRO b+ col(ts1)a
95 Q"b = —WbTQE 2QTb = —||a||2 and

1 1
qTb= b= ——(b7b — bTQQTD) = |r]]>.
L T
iz

Substituting these identities in (18), we arrive at
(20)  r([U®]) =b- HPTU 0b=0-QQ"b—qq"b

T AT -
||g( B (Qgp+cot(ts1)Q) (gpQ b + cot(ts1)q b)

cot(ts1)||rllz — [[all2 o )
= E b |
lg®)1I3 o

as was claimed. 0

(cot(tsl) _ !

Il Nl

Note that the only special property of P that is exploited in the proof is that PT Pr =
r. Hence, the result holds when P is replaced with an arbitrary column-orthogonal
matrix.

There is a number of conclusions that can be drawn from Theorem 3:
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COROLLARY 4. 1. The t-dependent residual norm along the steepest descent
direction is
[lIrll2 — llevl[2 tan(tsy)|

V1 llgpl13 tan®(Es1)

2. The residual norm function is continuous and ——pemodzc along the steepest
descent direction with

(21) lr (U @Dz = b = Tpry bl =

IOl = Il and (0 (5 Dl =0 = oo

3. The first root along the geodesic descent direction is at

* I ||2> ( w)
22 t —arct el0,— ).
22) - (nanz 25

The associated matriz U* := Uy + ((cos(t*sl) — 1)Uy + sin(t*sﬂl%“l) vl is

such that the subspace U* := [U*] is contained in the set Z from (10), i.e.,

(23) PU) = min | PTG | =

Stated differently, it holds that b is contained in colspan (PTU*), that is,
b - HPTU* b

4. The coefficient vector associated with U* = [U*] = (23) is a* = /1 + ]

lall3
The associated y* € R™ is y* = U*a* = Upa + Pr = Upa + P(b — PTUya).
Hence, y* can be readily obtained without computing any of t*,a*,U*.
5. The first mazimum along the geodesic descent direction is at

= (= (i) < (5 7)
maz = — | ™ —arctan | -————15 el —,—
51 Irll2llgp I3 251 51

al3

Hg (B

.

with corresponding value ||r([U (tmaz)])ll2 = /7|3 +

Proof. By taking into account that r is orthogonal to colspan(Q), Pythagoras’

Theorem gives | (Cot(tsl)”ﬁ\z IR 2QTb) = /eot?(ts1) + [lgpl15 = lg(t)]]2-
The formula (21) is now an immediate consequence of (20). From (21), the statements
2., 3., and 5. of the corollary are straightforward.

On statement 4.: From 3., we know that there exists a* € R? such that PTU*a* —b =
0. After plugging in the explicit expression for U*, we obtain the equation

T, * T, *
PTUo<a*—aa2a>+< il 2—1>b:0.
[eel[3 el /[l + lI7]5

If the unmodified least-squares problem (3) features a nonzero residual, then b is not
contained in colspan PTUy. Hence, both quantities in the round brackets must be zero,

oo o _ A/lall3+ri3

lalld = a2
Appendix A features a short cut to statements 3. and 4. of Corollary 4. An example
of a plot of the residual norm function (21) from a practical application is displayed
in Figure 5

which leads to o* = a. The calculation of y* is straightforward.O
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Remark 5. The GROUSE convergence analysis in [9] is based on local consider-

51 lleell2

terms of third order, when the residual and therefore the ratio ||r||2/|la||2 is small.
In the fully sampled case, that is, when complete right-hand side data is available,
Ref. [49] shows that the same t* of (22) is also the greedy-optimal step with respect
to the determinant-similarity and the Frobenius norm discrepancy of two subspaces
in an iterative subspace updating scheme, see [49, §3.1 & App. C]. In contrast, we
arrived at t* from the independent approach of solving the nonlinear equation (11)
and with a different proof that relies on Lemma 2. Combining these facts shows that
the subspace discrepancy is maximal if and only if the subspace update is such that
the residual vanishes exactly.

ations and a step length of £ = L arcsin ( ”THQ), which matches the t* in (22) up to

The proof of Proposition 1 shows that the distance between the subspaces [Uy] and

lleell2
update on [Up] according to Corollary 4, we stay within the injectivity radius. As
a consequence from general differential geometry, the geodesic ¢ — [U(t)] is length-
minimizing, that is, there is no shorter curve on Gr(n,p) that connects [Up] and
).

We emphasize that the update formula of Lemma 2 for orthogonal projectors
under rank-one modifications was used as an intermediate theoretical fact in proving
Theorem 3 but that it is not required to actually compute the rank-one update and the
associated quantities @, ¢, g in order to obtain the optimal ¢* and the subspace [U*] =
[U(t*)]. MATLAB code that considers this fact is in the supplement in Section S4.

We draw a corollary that corresponds to the special case where the mask matrix
P is the identity I,,, i.e., the case where complete data is available. Recall that the
best least-squares approximation to a given vector b that is contained in a subspace
Uy is the orthogonal projection UOU(}F b of b onto Uy, with an associated residual of
r =b—UpUI'b. The SVD of PTUj is now trivially PTUy = QX RT = UOIpIpT so that
the expressions involving @, 3, R simplify.

[U*] is t*sy = arctan ( HT”2) < 5. Hence, when performing the ¢*-optimal rank-one

COROLLARY 6. Let Uy = [Up] € Gr(n,p) be represented by Uy € St(n,p). Let
b € R"™ and suppose that o := Ul'b # 0. Set v = and s1 = 2||r||2]|a|l2. Then the

t-dependent residual norm is

lefl2

[l [l2 — [levl[2 tan(ts1)|
r([U(t = ||b — My b2 =
(Dl = 10~ Tgybls = 15— C L

1
t* = — arctan ( ”T”2> .
s1 [eell2

Then U* = U(t*) := Uy + ((Cos(t*sl) —1)Uyv +sin(t*sl)ﬁ) vT is such that b is

Define

contained in the subspace U* := [U*], i.e., b =IIy~b.

Remark 7. Corollary 6 has a connection with rank-one SVD updates as consid-
ered in [18, 15, 16]. One application in [16, Table 1] is to revise an existing SVD
UoXoVgl = (X, ¢) such that the column c is replaced with a column b in the modified
SVD U'S'V'T = (X,b). In terms of the associated orthogonal projectors, we have
U'U'Th = b. With Corollary 6, we obtain a subspace [U*] that also contains b. Yet,

3This does not necessarily mean that there is no other point [U*} € Z that is closer to [Up].

This manuscript is for review purposes only.
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this is not achieved by explicitly exchanging a column c of the original data matrix for
the new column b. Rather, via the update Uy+ ((cos(t*sl) — 1)Upv + sin(t*sﬁﬁ) vl

=: Uy + 2*v”, the missing residual part is distributed over all columns of the original
representative Up. In order to emulate this with the ‘revise’-approach of [16, Table
1], one first has to rotate the subspace representative with ® = (v,v) € O,, so that
(Up + 2*vT)® = Up® + (0,...,0,2%), i.e., the rank-one update acts on a single direc-
tion of the new representative Uy®. Allowing for rotations of the representative Uy
in the update scheme enables more general updates than when working with a fixed
representative Up. Hence, we expect that dist([Up], [U*]) < dist([Up], [U’]). This is
confirmed in the example featured in Subsection 4.2.

Another relation between GROUSE and the incremental SVD of [15] was exposed
in [8]. The approach considered in [8] corresponds to first attaching new column
data to a given subspace representative. Then, the SVD update is performed on
the augmented matrix representative and consequently retruncated to its original
dimensions. It is shown that this procedure can be emulated via GROUSE when
a specific step size is chosen for the rank-one increment. However, the modified U’
obtained in this way does not feature the property U'U'Tb = b, i.e., it does not
correspond to a subspace that reproduces b exactly. More details can be found in
Section S2.

3.3. The general case. When the operator in the underlying least-squares
problem (3) is not a mask matrix but an arbitrary real matrix, then the Grassmann
gradient associated with the residual function is still rank-one so that GROUSE con-
tinues to apply. Convergence results for GROUSE with arbitrary sampling matrices
are given in [48].

Mind that Corollary 4 remains valid with the same proof, when the mask matrix
P is replaced with an arbitrary column-orthogonal matrix. For general subspace-
restricted least-squares problems

min [|AUpa — b||?,
&ERP
where the operator A € R™*" m < n is arbitrary but such that AUy has full column

rank, we can proceed as follows. Let QR = AT be the thin qr-decomposition of AT
with @ € St(n,m), R € RP*P, Then

IAToG — b* = [|IRT (QTUoa — (RT)~"0) |I°

Since @ is column-orthogonal, we may apply Theorem 3, Corollary 4 to the least-
squares problem
min [|Q" Upa — (R")~'0||?
(e}

to produce a modified U* such that & := argmingeg, |QTU*a& — (RT)~10||? fulfills
0=[QTU*a& — (RT)~1b||%. As a consequence, ||[AU*& — b[|2 = 0. In summary:

THEOREM 8. Let p < m < n. Consider the general subspace restricted least-
squares problem

*Han |AUpa —b||?, A€ R™ ™  becR™ [Ug] € Gr(n,p), rank(AUp) = p.
&ERP

Let QR = AT and suppose that R is reqular. Then there exists a subspace [U*] €

This manuscript is for review purposes only.
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Gr(n,p) such that

min [|AU*& — b||> = 0 and dist([Up], [U*]) = arctan < |T”2) =7
GERP le|2

where o = arg ming gy, |QTUpa — (RT) 71|12, r = (RT)~1b — QT Uy

The subspace U* is given by

llerll2”

T
U"=Uy+ ((COS(T*) - 1)UOL + sin(T*)QT> a
el 17]]2

3.4. Adapting a subspace of a subspace. There are many applications where
it might be desirable to keep some directions of a given subspace fixed while adapting
the remaining ones. In the context of adaptive model reduction, such situations are
likely to occur if the columns spanning the subspace in question stem from a principal
component analysis or proper orthogonal decomposition (POD), and are thus ordered
by information content. In these cases, the user might want to keep the most dominant
subspace directions fixed, while adapting the portion of the subspace spanned by
the less important basis vectors. This subsection describes the modifications to the
methodology for doing so, a sample application is presented in Subsection 4.2.

Let f : Gr(n,p) — R,[U] — f([U]) be a differentiable function. Let us divide
the column set of a subspace representative U € St(n,p) into a constant portion
U. € St(n,p — 1) and a portion U; € St(n,l) that is subject to change, so that
U = (U, U,) € St(n,p—1)x St(n,l). By fixing U., we obtain a function f; : Gr(n,l) —
R, fi([U1]) = f([Ue, U;]) with gradient G; := V£,([U;]) € R**!. The gradient induces

the search direction H; = —@G);. The geodesic associated with the search direction

m, S¥P ®,5, VT € R™*! is represented by

(24) Ui(t) = Bxpy, (tH,) = UV cos(tS)V;" + @ sin(tS)) V.

Note that S; and V; are (I x I)-matrices. For each ¢, the matrix U;(t) € St(n,l) is a
feasible orthogonal subspace representative. Yet, we have to consider the possibility
that the compound matrix (U, U)(t)) ceases to be a valid subspace representative in
St(n,p).* Tt is even conceivable that [U;(t)] moves towards the subspace [U,] spanned
by the fixed basis vectors so that the compound matrix (U, U;(t)) not only loses the
orthogonal-columns property but even becomes rank deficient. One way to avoid this,
is to re-orthogonalize U;(t) against U,, say, by conducting an extra Gram-Schmidt
procedure. However, Proposition 9 below implies that the orthogonality between the
columns of the matrices U;(t) and the constant columns of the matrix block U, is
preserved along the geodesic path in direction of the least-squares gradient, so that in
this case, the corresponding compound matrix (U, U;(t)) is also an orthogonal matrix
representative in St(n,p) and a Gram-Schmidt re-orthogonalization is unnecessary.

PROPOSITION 9. Let f : Gr(n(,p) — R be differentiable. Suppose that
(25) T Gr(n,p) 3 V[U]f = (V[UC]fCa V[Ul]fl) € (T[UC]Gr(n,pfl))X(T[Ul]Gr(n,l)),

where it is understood that Vy,) fo and V(y,) fi denote the gradients of the restrictions
fc : [Uc] = f([Um Ul]) and fl : [Ul] = f([Uchl])7 TespeCtively'

Let [Uo] = [(Ue, Ui o)] € Gr(n,p) . Let t — [U(t)] C Gr(n,l) be the geodesic path
along the descent direction —Vy, .1 fi- Then ULU,(t) =0 for all t.

4Appendix B shows that this actually may happen even along search directions of rank one.
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16 R. ZIMMERMANN, B. PEHERSTORFER, AND K. WILLCOX

Therefore, the corresponding curve of concatenated matrices (U, U(t)) C R**P is a
curve of orthogonal matrices in St(n,p). Hence, for each ¢, [(U., U;(t))] € Gr(n,p), in
consistency with the quotient space view point (1).

Proof. Let Uy = (U, Uy o) € St(n,p), where U, € St(n,p—1) and U, € St(n,1).
The gradient with respect to f is a tangent vector in Tjy,)Gr(n, p), hence UOTV[UD]f =
0. By (25),

UT
(26) 0=Uy Vg, f = ( Ul > (Viwafe: Vi fi) -

In particular, UTVy, 1 fi = 0. Writing Vi, fi J20 &5,V € R"™!, we have
UT®; = 0, since the columns of ®; span the same space as the columns of Vi fi-
Hence, the geodesic at ¢, U;(t) = Uy oV; cos(tS;) VT + ®;sin(tS;)V;T is also orthogonal
to U, i.e., UTU,(t) = 0. ad
As can be seen from the proof, the proposition is not specific to the GROUSE context
nor does it depend on the rank of the gradient. It holds in general, whenever the
gradient splitting of (25) holds. This, however, is not always the case, see Appendix B.
The objective function F' of (5) features this property: When allowing only the last
[ directions of (U., U;) to vary, we obtain a differentiable F; : Gr(n,l) — R with

T T pT Ul T (U
F([U]) =b"b—b" P (U, Up)( UT PP (U.,Uy)) Ur Pb.
! l
The associated gradient, now a rank-one (n x [)-matrix, reads

Gl = V[UL]E = 2P (b _ PTUO[) CKT (0(p}l)><l> ; a= (UTPPTU)_lUTPb,
l

where U = (U, U;). The next corollary transfers the result of Corollary 4 to the
setting of adapting only the last [ columns of a given subspace representative.

COROLLARY 10. Let Uy = [Uy] € Gr(n,p) be represented by Uy € St(n,p). Let
P =(ej,-.-,ej,) €{0,1}"™) be a mask matriz and let b € R™.

Let a = (UI'PPTUy)~*UT Pb be the optimal coefficient vector corresponding to
the masked least-squares problem

min |PTUya — b))?

&ERP
and let r = b — PTUya be the associated residual vector. Let | € N, I < p and write
column-wise Uy = (U, Uy ), Ue = (u,...,ub™"), Uro = (b ... ub). Moreover,

let oy = (O(p,l)xl,ll) o and v; = HS‘W e R
Set s1 = 2||r||2]|cull2 and define

1
t* = arctan( (e )
s1 lleull2

and Uy (t*) = U + ((cos(t*sl) — DU + sin(t*sl)ﬁ) vl
Then U* := U(t*) := (U,, U (t*)) is such that the subspace U* := [U*] is contained
in the set Z from (10), i.e.,

FU*) = min |PTU*a - b||? = 0,
acRp

which means that t* solves (11) .
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Proof. According to Proposition 9, the concatenated matrix (U, U(t)) is a valid
subspace representative in St(n,p) for all ¢. Applying the mask operator P to
(Ue, Ui(t)) leads to the matrix curve

PTU(t) = PT(U,,Uy(t)) = PT(U., U;V; cos(tS)V;T + ®; sin(tS;)V/T).

Because ®;,5;,V; stem from an SVD of the rank-one gradient —G;, we have that
S; = diag(s1,0,...,0), s1 = 2|r||2]|as||2- It follows that

PTU(t) = PT(U,,Upo) + (Onx(p,l), (cos(tsy) — 1) PTUw; + sin(tsy) z )

; lIrll2

= PT(UC, Uio) + z(t) (le(p,l),vlT) ,

where v = - is the first column of V;. This is again a rank-one update on PTU(t)

and the rest of the proof is analogous to the proof of Theorem 3. ]

Remark 11. When we are adapting only the last column ) of the initial matrix

Up = (ud,...,ub) € St(n,p), then the resulting U* is given by (ud,...,ul~ ", ub(t*)),

where the last column evaluates to ub(t*) = —2—— (uba, + Pr). This is pre-
o) = Jimarmye (oo T F7) P

cisely the same result that is obtained by replacing the last column of Uy with the
vector Uy + Pr and re-orthogonalization the new last column against the columns
of UP™! = (u, ..., ul™") via a single Gram-Schmidt step (I — U2~ (UE™)T)(Uper +
Pr) = (uhay, + Pr). In this case, the t*~-GROUSE update applied to the last column
of the subspace representative Uy and the ([U]-part of the) ‘revise’ SVD update of
[16, Table 1, p.23] coincide, cf. Remark 7. For more details, see Section S2.

4. Application to adaptive model reduction. This section applies the geo-
metric rank-one subspace update in the specific contexts of online adaptive model re-
duction and image reconstruction. For each application, we describe how the subspace
adaptation is employed and we demonstrate the method with numerical examples.

4.1. Adaptation for POD-DEIM reduced models. We present an online
adaptive DEIM that is based on our geometric rank-one subspace update. In contrast
to the standard use case in the GROUSE literature [7, 49], the focus here is not on
estimating a subspace from scratch based on a global objective function (6) but to
adapt a subspace that is already a good approximant for the underlying simulation
process during the online phase.

We first formulate our online adaptive DEIM for nonlinear dynamical systems and
then present numerical results for the FitzHugh-Nagumo system. To ease exposition
and to focus on benchmarking our online adaptive DEIM reduced models, we consider
dynamical systems without parameters and inputs. Thus, the aim of the following
reduced models is to reproduce well the solution of the full-order dynamical system,
instead of predicting solutions for new parameters and inputs. We note, however,
that the following POD-DEIM and our online adaptive POD-DEIM reduced models
are applicable to parametrized models and models with inputs, see [43, 13].

4.1.1. POD-DEIM-Galerkin reduced models. Consider a nonlinear dynam-
ical system in the time interval [0,T] C R, with end time T > 0. Let tg,¢1,...,tx €
[0,T] CR be K + 1 € N time steps with tg = 0 and ¢t = T. Discretizing with, e.g.,
the forward Euler method leads to the system of equations

(28) Ey; = Ayi—1 + f(yi-1), 1=1,...,.K,
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corresponding to the time steps t1,...,tx, respectively. Let n € N denote the di-
mension of the discrete state space. We have the system matrices A € R"*™ and
E € R™*". The nonlinear function f : R™ — R" corresponds to the nonlinear terms
of the dynamical system. The state vector at time step ¢; is denoted as y; € R™. The
initial condition is yg € R™. We consider here the case where the nonlinear function f
is evaluated componentwise at the state vector y;, see, e.g., [21]. We further assume
the well-posedness of (28).

To derive a reduced model of the full model (28), we select a set of ny € N
snapshots {y;,,...,%;,.} C {¥1,...,yx} at the time steps ¢;,,...,t;,  with indices
Jise-oyJn. € {1,...,K}. POD constructs orthonormal basis vectors vy, ...,v,, € R"
of the n,-dimensional POD space that is the solution to the minimization problem

2

Ns

min E
V1,..0yUn, ER™

i=1

Uz

v — (Wl i )u

=1

2

The POD basis V = (v1, ..., vy, ) is formed of the left-singular vectors of the snapshot
matrix Y = (y;,,...,¥;,.) € R"*™ corresponding to the n, largest singular values.
The POD-Galerkin reduced model of (28) is

(29) Eji=Aj 1 + VT f(Vii1),

where 7; € R is the reduced state vector at time step ¢; for ¢ = 1,..., K, and
E=VTEV,A=VTAV are the reduced operators.

Solving (29) requires evaluating the nonlinear function f(V¢;—1) at the n-dimen-
sional vector Vi;_1 € R™, which can be computationally expensive. DEIM derives
an approximation of f(Vg;_1) to avoid evaluating f at all n components of V§;_1.
To this end, DEIM constructs p € N DEIM basis vectors u',...,u? € R" using
POD on the nonlinear snapshots f(y;,),..., f(y;,.) € R". The DEIM basis vectors
are the columns of the DEIM basis matrix U = (uq,...,u,) € R"*P. Additionally,
DEIM selects p € N DEIM interpolation points ¢, ..., ¢, € {1,...,n} using a greedy
strategy, see [21]. The DEIM mask matrix is P = (eq,,...,¢eq,) € {0,1}"*P. The
DEIM interpolant is the pair (U, P). The DEIM approximation of the nonlinear
function f evaluated at the vector V; is given as

(30) fVg) = UPTU) " PT (V).
The POD-DEIM-Galerkin reduced model of (28) at a time step ¢;,i =1,..., K is
(31) Ej; = Aji o + VIUPTU) P PT f(Vii_q).

The reduced model (31) is often orders of magnitude faster to solve than the full model
(28) and the reduced state vectors gy, ...,Jx € R" lead to accurate approximations
Vir,...,Vyx € R™ of the full state vectors y1,...,yx € R™, respectively.

4.1.2. Online adaptive model reduction. We adapt the DEIM interpolant
of the nonlinear function f in the online phase, i.e., we adapt the DEIM basis U
and the DEIM mask matrix P during the time stepping. We proceed as follows.
Let Uy denote the DEIM basis matrix, which is derived using POD as discussed in
Section 4.1.1. Let further ¢f,...,q) € {1,...,n} be the DEIM interpolation points
and Py = (€4, ..., €4) the mask matrix that are derived with the DEIM procedure
in the offline phase, see Section 4.1.1. Consider now the online phase at time step %;.
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To compute the reduced state vector g, we first adapt the DEIM basis matrix Uy
and the mask matrix Py to U; and Py, respectively, and then use the adapted DEIM
interpolant (Uy, P1) in the reduced model (31) to compute the reduced state vector
y1. The DEIM basis matrix U is adapted to U; using the GROUSE rank-one update,
as we will discuss in detail in Section 4.1.3. This process is continued iteratively, i.e.,
at time step t;, we adapt U;,_1 and P;_; to obtain U; and P;, respectively, and then
use the adapted interpolant (U;, P;) for computing the reduced state vector g; at time
step t;. Note that the POD basis matrix V' and the reduced linear operators FE and
A are kept unchanged online (although in principle they too could be adapted).

4.1.3. Subspace adaptation in online adaptive model reduction. We use
the GROUSE rank-one update with the residual-annihilating step size (22) to adapt
the DEIM basis matrix. Consider time step ¢; for ¢ = 1,..., K. To adapt the DEIM
basis matrix U;_; to U; at time step t;, we follow [43] and oversample the DEIM
approximation. Let {q;;+1, ceey q;+s} c{l,....n}\{g,..., qéfl} be a set of s € N
additional indices that are drawn uniformly from the set {1,...,n}\ {¢\™*,..., ;’1},
where qi_l, ceey qul are the DEIM interpolation points of the previous time step t;_1.
The extended mask{ matrix S; € {O, 137%™ 'm = p+s, is assembled from the points in
the set {¢i 7', ... ,q;_l, Qpi1s-- s Qprs) a8 Sp = (eqiﬂ,.. L L TVERERE eq;+s). The
matrix S; corresponds to m = p+ s > p point indices, and therefore the interpolation
problem (30) of the classical DEIM approximation with the interpolant (U;_1, P;—1)

becomes an overdetermined least-squares problem using the extended mask matrix S;

(32) a =argmin ||} U;_1a — S f (V)3
&ERP
with
f(VGi—1) = Uimra.
The solution « of (32) is

a=(UL,8:ST Ui ) U SiST F(Viioa)

The regression problem (32) fits into the framework of the GROUSE subspace adap-
tation approach of Subsection 2.2, so that we can find the adapted DEIM basis matrix
U; with the low-rank update derived in Corollary 4. In addition to updating the DEIM
basis matrix, the DEIM interpolation points qifl, . ,q;_l are updated to ¢i, ..., qli,.
For this task we use the algorithm introduced in [43, Section 4]. The entire DEIM
online adaptivity procedure is summarized in Algorithm 1.

4.1.4. Example of DEIM subspace adaptation. We apply the online sub-
space adaptation to the DEIM interpolant of a reduced model of the FitzHugh-
Nagumo system. The FitzHugh-Nagumo system is used in the original DEIM paper
[21] as a benchmark example. The number of time steps is K = 10° and the dimension
of the discretized state space is n = 2048. The state vectors yg, Y1000, ¥20005 - - - » YK €
R™ at every 1000th time step are used as snapshots to construct n,, = 10 POD basis
vectors and the corresponding POD basis matrix V' € R™*". The nonlinear func-
tion is evaluated at the snapshot time instances to obtain the nonlinear snapshots
f(y(to)), f(y(t1000)), f (¥ (t2000)) - - - f(y(t))-

We compare the error of a static reduced model without online subspace adapta-
tion to the error of an adaptive reduced model as in Alg. 1. We report the average of
the relative Ly error of the approximation Vy; to the reference y; at the time steps
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Algorithm 1 Time stepping a reduced model with online adaptive DEIM

Input: System matrices F, A, nonlinear function f, initial condition gy, POD basis
matrix V, DEIM basis matrix Uy, DEIM interpolation points matrix Py, number
of sampling points s, adaptation interval [

1
2
3
4:
5:
6
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:
18:

19:

if

: Setgjo:VTyo
:fori=1,...,K do

mod (i,/) == 0 then
‘ {Adapt DEIM interpolant every I-th time step}
Set qfl, . ,q;_l to the interpolation points of P;_4
Draw q;;+1, ceey qZHS uniformly from {1,...,n}\ {¢:™*, ..., q;;_l}
Construct mask matrix S; from points ¢i ", ... G U P N
Evaluate nonlinear function at sampling points b = S7 f(Vg;_1)
{Employ Corollary 4 to adapt U;_1}
Set a = (Ui{lSiS?Ui_l)_lUgllSib, and r = b — SZ-TUi_lO(
Set v = af|lall2, s1 = 2|[r|l2]|all2, and t* = sy arctan(||rl2/|lall2)
Adapt basis matrix
Ui = U1 + ((cos(t*s1) — 1) U;_1v + sin(t*s1) (Si7) /||7]|2) vT
Adapt interpolation points matrix P;_; to P; with [43, Algorithm 2]

else

Set U; = U;_1 and P; = P;_; {No adaptation}

end if

fi

=VTU;(PIU;) ' PLf(V§i-1) {Approximate nonlinear function}

Solve reduced model Ef; = Aj;_1 + f; for §;

end for

Output: Reduced states g, ..., ¥k

averaged rel Ly error of state

107
—i— static J —i— static
—»— adapt, samples 200 ] —»—adapt, every 200
—A— adapt, samples 400 {; 5 —A— adapt, every 100
—&— adapt, samples 600 5 10° l’ —&— adapt, every 50
—
o
—
g
o 3
3 10
=
fa}
]
S -4
< 10°
g
% $
3
2 4 6 8 10 2 4 6 8 10
DEIM dimension DEIM dimension

(a) adapt every 50th time step with varying sam- (b) adapt with s = 200 samples with varying

ple size

adaptation interval

Fic. 2. The average relative Lo error of a static reduced model is compared to the error of
a reduced model with an online adaptive DEIM interpolant. The online adaptation based on the
low-rank updates achieves an up to an order of magnitude improvement in the Lo error compared
to the static DEIM interpolant.
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—+—static

—s—adapt, optimal

~{2- adapt, asym. optimal
—&o—adapt, constant
—y—adapt, decaying step size

averaged rel Ly error of state

DEIM dimension

FiG. 3. The plot reports the error of the online adaptive POD-DEIM reduced model for different
step sizes. The label “adapt, optimal” refers to the residual annihilator derived in Corollary 4,
“adapt, asym. optimal” refers to the step size t mentioned in Remark 5, “adapt, constant” to the
constant step size 0.05, and “adapt, decaying step size” to the step size 0.05/i, where i is the counter
variable in Algorithm 1. Note that the curves of “adapt, optimal” and “adapt, asym. optimal” are
on top of each other.

t500, t1500, - - - , Lt —500. Thus, the error is measured at time steps other than where the
snapshots were taken.

Figure 2(a) compares the Ly error of the states of the reduced model (31) with
a static DEIM interpolant to the error of the reduced model with an adaptive DEIM
interpolation. The dimension of the DEIM subspace is varied over the range p €
{2,4,6,8,10}. The DEIM subspace and the DEIM interpolation points are adapted
every 50th time step, which means that we set [ = 50 in Alg. 1. At each adaptation
step, the geometric rank-one update of Corollary 4 is performed to adapt the DEIM
basis matrix based on s € {200,400,600} sampling points. Note that the computa-
tional costs of the rank-one update are bounded by O(np). The error of the static
and the online adaptive reduced model decreases with the DEIM dimension, which
shows that the POD space, which is static and derived from snapshots taken over
the whole time interval, approximates well the full-order state vectors, see Subsec-
tion 4.1.1. The online adaptive DEIM interpolant can further reduce the error by
about an order of magnitude. Figure 2(b) reports results for the online adaptive re-
duced model, where the DEIM interpolant is adapted every 50th, 100th, and 200th
time step with a fixed number of s = 200 samples. This means that Algorithm 1 is run
with [ = 50, 100, 200, respectively. The results confirm that increasing the number of
adaptivity steps increases the accuracy of the results.

Figure 3 shows results for the online adaptive DEIM interpolant where different
step sizes are used. We compare four different step size selections in Figure 3. The
curve with the label “adapt, optimal” refers to the residual annihilator ¢*, which is
derived in Corollary 4 and implemented in Algorithm 1. The curve with label “adapt,

asym. optimal” corresponds to the step size t = i arcsin (I”Ell‘lgz) that is discussed in
the GROUSE convergence analysis of [9], see also Remark 5. We additionally compare
to the constant step size 0.05 in “adapt, constant” and a decaying step size 0.05/i
in “adapt, decaying step size”, as in, e.g., the GROUSE numerical experiments in

[7], where i is the counter variable in the for-loop in Algorithm 1. The number of
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samples is set to s = 400 and the DEIM subspace and the DEIM interpolation points
are adapted every 50th time step. The optimal and the asymptotically optimal step
size lead to similar results (the curves are on top of each other), which was to be
expected, since the functions arctan and arcsin match up to terms of third order.
The less sophisticated choices “adapt, constant” and “adapt, decaying step size” lead
to poor results which are even worse than those produced by the static subspace for
DEIM basis dimensions of 8 and 10. This shows that for the application at hand,
it is crucial to select a residual-related step size based on the ratio %, e.g., the
minimizer t* from Corollary 4.

4.2. Subspace adaptation for gappy POD image reconstruction. In this
section, the geometric subspace update is applied in combination with the method of
gappy POD [27, 17] on an image processing problem, where we use the method to
implant a new feature into a given subspace.

Fic. 4. Face database used for gappy POD example.

We briefly summarize gappy POD. Given a set of snapshots {yx| k=1,...,ns} C
R™, let U = colspan(U) be the associated POD subspace represented by U € St(n, p)
with p < ng. Let further y9 € R™ be an incomplete snapshot associated with an index
set J = {j1,...,dm} C {1,...,n} of cardinality m € N; y9 is incomplete in the sense
that only components with indices in J are considered as accurate information. Gappy
POD computes a vector contained in U that best fits the incomplete snapshot y? in
a least-squares sense. Employing the mask matrix P = (ej,,...,e;,,) € {0,1}"*™,
the gappy POD approximation y97°¢ € R™ is determined by the masked least-squares
minimization problem

(33) yIPod = Udgpod; CQgpod = arg m%l ||PTUa — PTyg||2.
acRP

(Notice the similarities to the DEIM approach from Section 4.1.4. Ref. [28] exposes
further details on the relation between gappy POD and the Empirical Interpolation
Method (EIM, [10]), which predates DEIM.) In our concrete example of image pro-
cessing, the snapshot set is taken from the so-called Yale Database [12], see also [19,
§5.2].° Representing each image as a snapshot vector y, € R", n = 4096, yields a
snapshot matrix of dimension Y € R4096X10 The snapshots are displayed in Fig. 4.
The single image with glasses has been deliberately omitted from the snapshot set,
so that no picture in the snapshot ensemble features the property ‘glasses-on’. The
‘glasses’-detail from this picture, displayed in the lower left corner of Fig. 6, acts as
a vector of gappy data y9 € R*%% with m = 1336 non-zero entries and corresponding
mask matrix P. The gappy POD objective is to find the linear combination of snap-
shots that comes closest to represent the ‘glasses’—feature in a least-squares sense.
The resulting image is displayed in the second column of Fig. 6 with the top picture
showing the gappy POD solution and the bottom picture showing the reference image

5More precisely, we have used row 11 of the set of 165 Yale images in (64 x 64)-MATLAB format
provided by Deng Cai at http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
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Fic. 5. Plot of two periods of residual norm function (21) corresponding with the gappy POD
subspace adaptation. The circle locates the first root and the star indicates the global mazimum.

Gappy POD recon. using Gappy POD recon.: Subspace
adapted subspace with last column adapted

Reference Gappy POD reconstruction

Reference projection Reference projection Reference projection onto
Training set onto init. subspace onto adapted subspace subsp. with last col. adapted

Fic. 6. Gappy POD approxzimation of a picture excerpt. To be read column-wise: Reference
picture and training excerpt. Gappy POD reconstruction based on the excerpt and projection of
complete reference onto the POD subspace. Gappy POD reconstruction using an adapted POD
subspace and projection of complete reference thereon. Gappy POD reconstruction after adapting
only the last column of POD subspace and projection of complete reference thereon.

projected onto the subspace spanned by the POD modes. The gappy POD recon-
struction is a poor approximation of the reference picture because the POD space
does not contain any information required to represent glasses.

Now, we use the GROUSE rank-one update combined with Corollary 4 to annihi-
late the gappy POD residual, which corresponds to solving the nonlinear equation (11)
on Gr(n,p) = Gr(4096,10). The input data are the mask matrix P € R™*™ associ-
ated with the picture excerpt, the corresponding right-hand side b = PTy9 € R™, and
the subspace representative Uy € St(n,p) stemming from a POD of the input snap-
shots. A plot of the residual norm function along the rank-one update is displayed in
Figure 5.

The update leads to a subspace representative U* that allows for a perfect re-
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Initial data set projected onto adapted subspace

- ey W o,

Fia. 7. Initial face data set (bottom row) and its projection onto the corresponding POD
subspace with only the last column adapted to the training excerpt (middle row) and its projection
onto the fully-adapted POD subspace (top row).

production of the picture excerpt but also makes use of the information that was
previously sampled. We repeat the exercise with modifying only the last column of
the initial POD subspace representative Uy according to Corollary 10.

The gappy POD approximations using the adapted subspaces are shown in the
last two columns of Fig. 6, again in comparison with the projection of the reference
image onto the respective subspace. As is clear from Corollary 4,

The important thing is how the adapted subspaces have changed. This can be
visualized by projecting the initial snapshot ensemble onto the adapted subspaces,
see Fig. 7. Apart from the fact that the bright white spots in the original data
set are reproduced in a graying way when projected onto the last-column adapted
subspace, these two data sets look almost the same (Fig. 7, bottom rows). In contrast,
the original data set projected onto the fully adapted subspace features the property
‘glasses-on’ throughout (Fig. 7, top row). Nevertheless, the subspace distance between
[Uo] and the fully adapted [U*] is 0.1273, while the distcance between [Up] and the
subspace [U*] with only the last column adjusted is 1.2828, more than ten times as
large. Recall from Remark 7 that the latter [U*] corresponds to an SVD update with
respect to a column-replacement in the original subspace representative Uy.

Additional experiments are featured in Section S3 from the supplement. The sup-
plement also includes MATLAB code for the adapted gappy POD examples discussed
here.

5. Summary and conclusion. Subspace update problems arise in model reduc-
tion, machine learning, pattern recognition and computer vision. This paper focuses
on the particular use case of subspace adaptation in combination with the model re-
duction methods of gappy POD and DEIM. These methods have in common that a
mask matrix is utilized to extract the features deemed most important to the under-
lying problem. In both cases, the objective of the downstream subspace adaptation is
to produce subspaces that contain elements that match the selected components. We

Swhich transfers in an analogous form to the sub-subspace setting of Subsection 3.4 both recon-
structed images coincide since they both correspond to copying the training set to the respective
entries of the unmodified gappy POD solution.
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have formalized this objective as a nonlinear equation on the Grassmann manifold and
have provided a closed-form solution that builds on the GROUSE approach [7, 49].

In the DEIM test case, discussed in Section 4.1.4, the mask matrix operates on
vectors contained in the subspace that represents the nonlinear terms of the underlying
discretized PDE. In the gappy POD test cases, discussed in Section 4.2, the mask
matrix selects the important components from vectors contained in the subspace of
state vector solution candidates. In the test case of DEIM-based model reduction,
the Grassmann subspace update is used as an online adaptation method to improve
the fit of the components sampled from the nonlinear term. The reduced model with
online subspace updating achieves an average error of about one order of magnitude
lower than a classical reduced model without the adaptation. In the gappy POD
image processing example, the Grassmann subspace update is applied to implement a
new feature in the subspace of solution candidates that is not contained in the sample
data set. We expect the method to show similar advantages when used in combination
with the missing point estimation [6], because of the similarities to DEIM and gappy
POD.
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Appendix A. A direct solution of the Grassmann residual equation
(11). This appendix features a short solution of (11). Obviously, (11) is solved,
if we can find t* € R and o* € RP such that PTU(t*)a* = b, where U(t*) := Uy +
((cos(t*sl) —1)Upv + Sin(t*sl)ﬁ> v, (All occurring quantities to be understood as
introduced in Theorem 3.) Mind that v = a/||||2. Using an additional real parameter
A and the ansatz o = Aa = Av||a||2 leads to the equation

(34) Acos(t*sy) ((1 — tan(t*sy) ||||f||||22> PTUa + tan(t*sy) ”f|||22 b) =b.

lIr]l2
levll2

By setting t* = i arctan (I ), the terms involving PTU, cancel which leaves an

equation for \:

A cos(arctan ( irll> ))b =b.

l[erll2
jon is \ = 1 _ ./ 113
The solution is A Cos(ammn( N;‘\B) 14 ol
In addition to its concision, this approach has the advantage that it simultaneously
gives both t* and the associated vector of coefficients a* = (% +1)a € RP. On

the other hand it does not allow to keep track of the residual depending on ¢, because
for t # t*, a defining equation is missing and «(t) and « are not collinear.

Nevertheless, we remark that the above short cut approach may be adapted to
apply also in the setting of Corollary 10 from Subsection 3.4. In this case, one can
work from the ansatz o* = (a1,...,p—;, A(@p—i+1,...,0p))
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One may also start by first applying the orthogonal coordinate transformation
® = (v,Z) € O, to the subspace representative Uy, where Z € RP*(P=1) contains
an arbitrary orthonormal basis of v1, and then work with Uy®, U(¢*)®. This course
of action essentially leads to (34) appearing in the first column of U(¢*)® and the
rest of the argument is analogous. See [49, App. C, Proof of Lemma 4] for related
considerations.

Appendix B. Addendum to Subsection 3.4. A simple example of a differ-
entiable Grassmann objective function for which Proposition 9 does not hold is

f:Gr(n,p) =R, [Ul~ zTUU Yy,

where z,y € R™ are not orthogonal to [U].
By using the basic fact that Dx (v Xw) = ( 9 vTXw) = yw™ and the product

81‘1‘]'

ij
rule, we see that the Grassmann gradient is

Vi f=I-UUT)Dyf=(I-UUT) (zy” +y2") U,

_ (_9f nxp 5 ;
, , eq. (2. . U W
where Dy f ( ) ~€R see [25, eq. (2.70)]. (Note that V(yf is of rank two
i

O, j
in general, but of rank one, if z = y.) Introducing U = (Uy, Us) with Uy € St(n,p—1),
Us € St(n,1), we may write UUT = U, U +UsUZ'. By fixing Uy, f becomes a function
f2: Gr(n,l) = R, [Us] = 27U ULy + 2TUULy. The gradient is

Vi fo = (I = UaUT) (zy" +ya™) Uy € R™L
Likewise, for f1 : Gr(n,p — 1) — R, [U1] = 27U U{'y + 27U, ULy, we obtain
Viogf = — ULul) (xyT + yxT) U, € R
Splitting up the original gradient into an (n x (p — 1)) and an (n x I) matrix gives
Vi f = (I - UUT)(zy" +yz") Uy, (I = UUT)(zy" + y2")Us)

# (I = U U (@y” +ya")Ur, (I — UaUy ) (zy" + ya™)Us)
= (Vg f1: Vi f2) -

In particular, U{ Vy, fo = Ul zy"Us + U{ yz" U, # 0 and the geodesic U (t) in
Gr(n,l) along the gradient direction Vg, f2 is not orthogonal to Uy,

ULty (t) # 0.

A sufficient condition for (25) and Proposition 9 to hold is (I — UUT)Dyf = Dy f
or, in short, UT Dy f = 0.
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SUPPLEMENTARY MATERIALS: GEOMETRIC SUBSPACE
UPDATES WITH APPLICATIONS TO ONLINE ADAPTIVE
NONLINEAR MODEL REDUCTION*

RALF ZIMMERMANNT, BENJAMIN PEHERSTORFER!, AND KAREN WILLCOX?!

S1. Supplementary example to Subsection 2.2. This section illustrates the
basic objective introduced in Subsection 2.2 via an example in Gr(3,1). Points on
Gr(3,1) are represented by orthogonal (3 x 1)-matrices, i.e., vectors on the unit sphere
S? = {(x,y,2)T € R3 22+ y?+ 22 =1}, and can thus be conveniently visualized.
Suppose that a starting subspace Uy = [ug] € Gr(3,1) = 52 is given, where uy € S2.
Suppose further that target data for the x and y coordinates are specified, say, x =

b1,y = by. We are looking for a subspace U* = [u*],u* € S? that contains vectors
that match the target data:
(S1)

* — . T _ 2 T 1 0 0 o bl
[U]GZ.—{[U}GGT(3,1)‘£H€1]%HP ua —b||* =0}, P —(0 1 0)’b_<b2)'

The set Z contains infinitely many global solutions to the least-squares optimization
problem. Any unit-2-norm vector v € S? whose first two components are in the span
of the target vector b, (u1,uz)” = A(b1,b2)T represents a global optimum. Hence, the
set of global optima is

Aby 1 1
zZ= Aby | Ae [—b,b] \ {0}
/1 — )\2”1)”% || ||2 H ”2

This corresponds to (10). For example, two ‘easy-to-construct’ trivial solutions are

_ (blab270)T (blaanu03)T

Utr] = Ty Utr2 T T
T b b, 0T T ([(br bey wog) Tl

i.e., we simply take the target data and fill up with zeros (‘trl’) or we copy the target
data to the 2 and y coordinates of the starting point uy and renormalize (‘tr2’).

In the academic case at hand, it is straightforward to compute the minimizer to
the following nonlinear constrained Grassmann optimization problem

(S2) [2*] ;== argmin dist([uo], [u]), s.t. [u] € Z,
[u]€Gr(3,1)

which is given by
|<ba PTU0>|
VB, 12 + (b, PTuo)? |

Zfi=Z(\), N=+£
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(The sign of A\* depends on the sign of (b, PTu).)

We may construct another solution via following a shortest path along the negative
of the gradient of the Grassmann function F' from (5) that is associated with (S1).
It turns out that this path crosses the feasibility set Z. We denote the resulting
solution by [u*] € Gr(3,1). In Section 3, we derive a closed formula for computing
such subspaces [U*] on Grassmann manifolds of arbitrary dimension.

Figure S1 displays the base point ug, the set of global least-squares optima Z,
the exact optimum z* = Z(\*) of the constrained Grassmann problem (S2) as well
as u*, Usr1, Ugro, Where

0.6548 07046
g = (03706 | ;b= ( eeor ) -
0.6587 '

F1G. S1. Reference point ug and the set of least-squares optimal solutions Z = {Z(\)} to the
problem (S1). The associated subspaces are spanned by the vectors pointing to the curve Z. On Z
lie the arbitrary ‘“trivial’ solutions utr1,utra as well as the optimal solution Z(\*) to (S2) and the
solution u* obtained by following a shortest path along the negative of the gradient associated with
(S1) starting in ug.

S2. Additional comments on the connection of GROUSE and rank-
one SVD updates. In Remark 7 and Remark 11, we have briefly commented on
the connection between the residual-annihilating GROUSE t*-update and the SVD
update procedures of [S3, S2] and [S1]. In particular, it was claimed in Remark 11
that the ‘revise’™method of [S2, Table 1] and the GROUSE ¢*-update restricted to the
last column of a given initial subspace representative Uy coincide. Here is the proof:

Written column-wise, Uy = (ud,...,u5~" |uf). When using the method of Sub-
section 3.4 applied to the last column uf), we arrive at

U* = (up, - uf " |uf(t?)).
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According to Corollary 10,

1 D P
(s3) W) = (e + Pr) = W L)
JIr[I2 + a2 | (ugap + Pr) |2
where P is the mask matrix and r = b — PTUpa, a = (a1 ..., a,)7.

The ‘revise’method of [S2, Table 1] proceeds as follows: In our setting, Uy =
(ub, ..., ub™" |ub) € R™*P plays the role of [X,¢] from [S2, Table 1]. The objective
is to replace the column ¢ = uf with a new column d = Upa + Pr. Obviously
PTd = PTUya + PTPr = PTUpa +r = PTUsa + (b — PTUpa) = b. This means
that a subspace that contains this direction d is in the ‘feasibility set’ Z introduced
n (10).

In [S2], the column exchange is rewritten as a rank-one update of the following form:

USVT —USvT +ab" "Ly b, a=d—c, BT = el =(0,...,0,1).
The matrix Uy + ab” is precisely the matrix Uy with the last column replaced by d,
ie.,

Uy +ab” = (U™" |d) = (UF" |Upa + Pr).

In particular, for the U’-factor in the revised SVD:
(54)

colspan(U’) = colspan((UY ™" |Upa + Pr)) = colspan( <U§1 |

7 (Uper + Pr) >)

I~ (Uoa + Pr)|

where 177" = (I — Up_l(Up_l) ) is the orthogonal projection onto the orthogo-
nal complement of colspan(Up ) This is just the Gram-Schmidt step. Note that
1"~ (Uper + Pr) = uboy, 4+ Pr, so that the last column of (S4) indeed coincides with
the last column of (S3). All additional operations like subspace rotations that are
inherent in the procedure of [S2] do not affect the column-span.

In order to comment on the connection to [S1], we go into full detail. The method
of [S2] starts with a detour via p + 1 columns in the factorization

(S5) Up + ab” = (Uy, q %@ Gg= I -UU)a.
4l IIqII

The above matrix product reduces to

Iy (U()Ta)zf_l

I, + Ul aeT
U + ab™ = (Uy, q) 01?” 00||d||2 = (Uo,q) | 0,...,0 | (ufy,a) + 1| =: (Uo,q)M.
borer LRI 000l
(p+1)xp

Note that Ul'a = Uf' (d — ¢) = U¥ (Upax + Pr — uf) = a — e,. Thus,

aq
Ip—y

(S6) M = Qp—1
0,...,0 ay

Oa '70 HQHZ
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Reference Gappy reconstruction: "add"

snapshot mean face + excerpt Gappy reconstruction: "adapt”

F1Gc. S2. The geometric rank-one subspace adaptation in comparison with brute-force approaches
to implant the picture excerpt into the subpace.

The qr-decomposition of the matrix M € RPH1XP s

Ip—l 0 —1
M=QR=1[0,...,0]z (1 |of \,
0,0y \o,.. ,O‘ v )
—_———
QER(P+)xp Rekpxe
where z = %2, y = H_qulg, v = /a2 +|q||*. As a consequence

(U,q)Q = (u(l), b aub + yq) = <u(1), cub Tt \%(apug + Pr)),
since § = (I — UpU{)a = (I — UgUF)(Upax + Pr — ub) = Pr. This is precisely the
same matrix representative as in (S4) and its last column equals (S3). Formally, [S2]
requires to compute the SVD of M but this is equivalent to computing ) times the
SVD of R. Up to a rotation, we obtain always the same ‘subspace factor’, as the
theory predicts.

In [S1, Alg. 3], a similar decompositon (U, q)M as in (SH) appears. The difference
is that there, the matrix factor M is a square (p+ 1) X (p + 1)-matrix,

~ I o
M = P - e R+ x(p+1)
0,50 [ llgll2

The matrix M € RPTUXP in (S6) features the same last column but shifted to the left.
While this corresponds to replacing data in the original subspace representative, the
M from [S1, Alg. 3] corresponds to appending data, which is followed by a truncation
procedure.

S3. Additional results for the example of Subsection 4.2. In this section,
we conduct two complementary experiments to the gappy POD image processing
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example of Subsection 4.2. We consider two brute-force approaches of adding the
picture excerpt displayed in Figure 6, lower left corner, to the POD subspace formed
from the face database displayed Figure 4.

The first approach is as follows: we start with the unprocessed snapshot matrix
Y = (y1,...,y10) € R96>10 Then, we compute the snapshot mean vector ¥mean =
1—10 leco:l i and replace the entries P7y,,cqn with those of the picture excerpt, i.e., we
construct Ygqq € R0 such that PTy,qq = PTy9 where 39 is the gappy data vector.
The remaining entries of y,q4q coincide with those of the mean vector. We add y,4q4
to the snapshot matrix, recompute the SVD and truncate to the original dimension
of 10 basis vectors:

UaddEaddVaEd S\éD (Y, Yadd) € R4096X11, Ugdad :i= (utlzdd’ . 7“}12(1) S St(4096, 10).

The best gappy POD reconstruction that is based on the subspace [Ugqq] is shown
in Figure S2 in the upper right corner.
The subspace distance between the initial POD space [Up] and [Uggq] is

dist([Uo], [Uaga]) = 0.13525.

The second approach works by replacing the last column of the POD subspace
representative Uy with the artificially constructed vector y,44 followed by recomputing
the SVD:

SVD
UrepSrepViep = (U, .., ud, Yaaq) € R0 U, € St(4096,10).
Since the subspace U,., now contains the vector y,qq4, the associated gappy POD
reconstruction coincides with y,44 and thus looks the same as Figure S2 in the lower
left corner. The subspace distance between the initial POD space [Up] and [Uyep) is

dist([Up], [Uyep]) = 1.5685.

The subspace distance between the initial POD space [Up] and the geometric rank-one
update [U*] from Section 3 is

dist([Up], [U*]) = 0.12734.

This confirms that the adapted subspace [U*] is closer to the initial POD subspace
than its competitors. Moreover, it is even cheaper to obtain, since it avoids an extra
SVD. Theoretically, it corresponds to inputing the vector Uya + Pr after a suitable
rotation of the subspace representative Uy. The brute-force approach of adding an
artificial snapshot to the database and doing the POD from scratch does not lead to a
satisfactory result. The brute-force approach of replacing a column of the initial POD
basis matrix with the artificial snapshot leads to a much larger gap in the subspace
distance.
This supplement includes MATLAB code for the above example.

S4. MATLAB code for the geometric rank-one update. The following
MATLAB code corresponds to Corollary 4 and Corollary 10.
%
% file Grassmann_res_update_masked.m
%
function [U, PTU] =...
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129 Grassmann_res_update_masked (U0, P, b, lastcols)

130 =TT T e
131 % Grassmann_res_update_masked

132 %  compute root of the residual function res: G(n,p) -> R

133 %  corrsponding to a masked least-squares system

134 % min| |P’Ux - P’b]|

135 %  on the Grassmann-Manifold G(un,p)

136 %

137 % input arguments

138 % UO : orthogonal representative of point in G(n,p)
139 % P : list of slected points

140 % b : right hand side, filtered by

141 % the mask operator, i.e. b(P,:)

142 % lastcols : number of columns to be adapted,

143 % counted from rear:

44 % e.g. lastcols = 4 means that subspace
145 % representative U in R™(n x p)

146 % is decomposed into

147 % U= (U(:,1:p-4), U(:, p-4+1:p))

148 % and only the subspace spanned

149 % by the last 4 columns is adapted

150 % lastcols = O means: adapt FULL subspace
151 % @Output:

152 % U : adapted subspace representative

153 % PTU : P’xU = U(P,:)

154 %

155 % author: R: Zimmermann, IMADA, SDU Odense

156 % zimmermann@imada.sdu.dk

A At
158

159 % produce onscreen output?

160 onscreen = 0;

161

162 % get dimensions

163 [n, p] = size(UO);

164 1if lastcols == p

165 lastcols = 0;

166 end

167
e
169 % Closed form solution:

170 % skekskskskskokokokokokok sk osk ok ok ok koo ok

171 %

172 % The gradient is the rank-one matrix

173 % G = -2P(b-P"TU alpha)*alpha”T

174 % = -2P(b-QQ"Tb) *alpha”T.

175 % For the geodesic path that features H=-G as a starting
176 % velocity, we need the SVD of H. Since H is rank-one, it
177 % holds

178 %  svd(H) = (Pxq) * sigma * v"T, where
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% q=r/lrl,

% sigma = 2x|r|*|alphal,

% v = alpha/|alphal

YA

% The geodesic is

% U(t) = U0 + {(cos(t*sigma)-1)*UOxv + sin(t*sigma)*(Pxq)}*xv"T
% = U0 + x(£)*v"T

A

% The optimal t is:  t_star = (1/sigma)*atan(|r|/lalphal)

% _____________________________________________________________

% compute vector of optimal coefficients and residual
% thin SVD

[Q,S,R] = svd(UO(P,:), 0);

% inverse of singular value matrices, stored as vector
S_inv = 1.0./diag(S);

QTb = Q’*b;

% compute vector of optimal coefficients

alpha = R*(S_inv.*(QTb));

%compute residual vector

r = b - Q*QTb;

n_r = norm(r);

if lastcols
% keep only the components associated with the last cols
alpha = alpha(p-lastcols+1:p);

end

n_alpha = norm(alpha);

v = alpha/n_alpha;

% optimal step

t_star = atan(n_r/n_alpha);

if lastcols == 0
% Geodesic
x = (cos(t_star)-1)*U0x*v;
x(P) = x(P) + (sin(t_star)/n_r)*r;
U = U0 + xxv’;
e
% compute projection after rank-1-update
% in closed form
b
% The result is the same as recomputing the SVD of PTU:
% [Qopt, Sopt, Ropt] = svd(PTU, 0);
% residual_t_star = norm(b - Qopt*(Qopt’*Db))
b
% Actually, it is not necessary to compute the residual
% since it is theoretically guaranteed to be zero.
% This is merely a check for the numerical accuracy.
e

if onscreen
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229 gp = -1.0/n_alpha*(S_inv.*S_inv) .*QTb;

230 gpl = n_alpha/n_r;

231 g = [gp,;gpll;

232 n_g = norm(g);

233 q = r/n_r;

234 Qhat = [Q,q]l;

235 Qhatg = (1./n_g)*Qhat*g;

236 b_proj = Qhat*(Qhat’*b) - (Qhatg’#*Db)*Qhatg;
237 check_residual = norm(b-b_proj)

238 % For comparison: brute force via re-SVD
239 [Qopt, Sopt, Ropt] = svd(U(P,:), 0);

240 check_Lem2 = norm(b_proj - Qopt*(Qopt’*b))
241 end

242 else

243 % Geodesic

244 x = (cos(t_star)-1)*U0(:,p-lastcols+1:p)*v;
245 x(P) = x(P)+ (sin(t_star)/n_r)*r;

246 % subspace update

247 U = [UO0(:,1:p-lastcols), UO(:,p-lastcols+l:p) + x*v’];
248 end

249

250 PTU = U(P,:);

251 return;

252 end

253 % end of file Grassmann_res_update_masked.m
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