
Dynamic Data-Driven Reduced-Order Models

Benjamin Peherstorfera,∗, Karen Willcoxa

aDepartment of Aeronautics & Astronautics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

Data-driven model reduction constructs reduced-order models of large-scale systems by learning the system
response characteristics from data. Existing methods build the reduced-order models in a computationally
expensive offline phase and then use them in an online phase to provide fast predictions of the system. In cases
where the underlying system properties are not static but undergo dynamic changes, repeating the offline
phase after each system change to rebuild the reduced-order model from scratch forfeits the savings gained
in the online phase. This paper proposes dynamic reduced-order models that break with this classical but
rigid approach. Dynamic reduced-order models exploit the opportunity presented by dynamic sensor data
and adaptively incorporate sensor data during the online phase. This permits online adaptation to system
changes while circumventing the expensive rebuilding of the model. A computationally cheap adaptation is
achieved by constructing low-rank updates to the reduced operators. With these updates and with sufficient
and accurate data, our approach recovers the same model that would be obtained by rebuilding from scratch.
We demonstrate dynamic reduced-order models on a structural assessment example in the context of real-
time decision making. We consider a plate in bending where the dynamic reduced-order model quickly
adapts to changes in structural properties and achieves speedups of four orders of magnitude compared to
rebuilding a model from scratch.

Keywords: model reduction, online adaptivity, dynamic data-driven application systems, proper
orthogonal decomposition

1. Introduction

We consider computational methods for dynamic data-driven decision making with a focus on problems
for which the dynamics of the underlying system are modeled by parametrized partial differential equations
(PDEs) and dynamic sensor data provides additional information regarding the current state of the system.
In such a setting, the involved models and their corresponding computational solution methods must meet
two particular requirements. First, the decision has to be made quickly (in real or near real time) and
thus estimates and predictions that support this decision must be provided rapidly. Second, the underlying
system may undergo changes in its properties, to which the model and solution methods must adapt. Again,
this adaptation must be achieved rapidly. We address the real-time constraint by employing projection-
based and data-driven model reduction to derive a computationally cheap reduced-order model (ROM) of
the more expensive PDE discretization, referred to as the full-order model (FOM), of the system; however,
in the case of system changes, classical model reduction techniques do not permit direct adaptation of the
ROM but instead require a computationally costly rebuilding from scratch. To address this limitation, we
develop dynamic data-driven ROMs that do not need to be rebuilt, but instead directly adapt to changes
in the underlying system, using only the information provided by the sensors to drive the adaptation. Since
the adaptation is achieved without recourse to the computationally expensive FOM, it can be achieved
sufficiently rapidly to support online decision-making.

∗Corresponding author
Email addresses: pehersto@mit.edu (Benjamin Peherstorfer), +1-617-253-7831 (Benjamin Peherstorfer)

Preprint submitted to CMAME January 31, 2015

system

⇓

⇓

latent
parameters

external influence

sensor data stream

observable
parameters

sensor data stream

infer

latent
parameters

assemble

FOM

project

ROM

infer

new latent
parameters

assemble

new FOM

project

new ROM

. . .

(a) system with latent parameters (b) classical model reduction rebuilds ROMs from scratch

Figure 1: The sketch in (a) shows a system depending on observable and latent parameters. The observable parameters are
given as inputs. The latent parameters describe changes in the system itself and cannot be controlled. Adapting ROMs to such
system changes with classical model reduction techniques requires that we first infer the latent parameters from sensor data,
then assemble the FOM, and finally rebuild the ROM from scratch, see (b).

One class of applications in the context of dynamic data-driven decision making is structural assessment.
In these settings, the structure of a system is monitored by sensors. ROMs may be derived to predict the
behavior of the system in response to different loading and operating conditions. During operation of the
system, changes in the properties of the structure (e.g., due to sudden events, degradation or fatigue) can lead
to different response characteristics. For the ROMs to be of continued use, it is therefore necessary to adapt
them using the sensor data. One specific example is onboard structural health monitoring and structural
assessment of aerospace vehicles, a field in which new sensor technologies offer significant opportunities. For
example, future sensing technologies may include a “sensor skin”, providing strain and deflection data over
the entire wing. The advent of low-cost high-resolution sensors will make feasible the concept of a self-
aware aerospace vehicle—a vehicle that can dynamically adapt the way it performs missions by gathering
information about itself and its surroundings and responding intelligently[1, 2]. In this paper we develop the
algorithms that would make use of such data to enable online adaptation of structural response ROMs.

We model system changes with latent parameters and inputs to the system with observable parameters,
see Figure 1a. The latent parameters describe, e.g., damage, erosion, and fatigue of the system and cannot
be controlled. Except for an initial state that represents nominal system parameters, these latent parameters
cannot be observed directly but only inferred from the sensor data with a model of the changed underlying
system. Therefore, in classical projection-based and data-driven model reduction, adapting the ROM would
require us to first infer the latent parameter from the data, then to assemble the FOM, and, finally, to
rebuild the ROM from scratch, see Figure 1b. This is usually too expensive in the context of real-time
decision making. In contrast, our dynamic ROM approach avoids expensive computations in the online
phase by building on the following two key novel ideas. First, we completely avoid the FOM corresponding
to the changed latent parameter by directly learning the reduced operators from the data. This is visualized
in Figure 2. Second, we successively adapt the reduced operators with additive low-rank updates. The rank
of the update depends on how much data are available. This guarantees valid updates if only a few data
points are available, and, in the absence of sensor noise, it guarantees eventual recovery of the true ROM that
we would obtain if we rebuilt the ROM from scratch. The computational cost of adapting the ROM to one
newly received set of sensor measurements scales only linearly with the dimension of the FOM, provided the
full-order operators for specific initial parameter configurations are sparse. Recall that we consider FOMs
based on PDEs where this is often the case.

Recently, adaptation of ROMs has attracted much attention. A common technique in parametric model
reduction is to interpolate between ROMs to adapt the model to the current parameter without assembling

2

the full-order matrices [3, 4, 5]. In localization approaches, multiple ROMs are built offline and one of
them is selected online depending on the current state of the system. The localization can be performed
with respect to the parameter domain [6, 7, 8] or the state space [9, 10]. Also the spatial domain can be
decomposed as shown in [11]. There are also dictionary approaches [12, 13], which pre-compute offline many
basis vectors and then adaptively select several of them online. However, all of these approaches have in
common that no new information in the form of data is incorporated and that all changes to the ROM
are already anticipated in the offline phase through pre-computed quantities. In [14], the accuracy of local
ROMs is improved by updating them after they have been selected in the online phase. A reference state
is subtracted from the snapshots corresponding to each newly selected local ROM with the reference state
depending on the previously selected local ROM. Thus, this update uses information that becomes available
in the online phase; however, subtracting the reference state is also only a limited form of adaptation because,
for example, each snapshot receives the same change. The approach in [14] has been recently extended in [15]
to allow updates from partial data. Another online adaptive model reduction approach is presented in [16].
An unsupervised learning method is used to split the basis vectors depending on residual information. In [17],
ROMs are adapted online during an iterative optimization procedure. Updates to the basis vectors of the
ROMs are computed from combinations of snapshots, reduced solutions, and adjoint information. Besides
these adaptive methods, there has been an interest in using a data assimilation framework to calibrate ROMs
to experimental data [18, 19]. In contrast to our problem setting, however, the goal of data assimilation
is to account for the model bias rather than to adapt the ROM to a changed system. Another related
approach is Kalman filtering [20], which combines measurement data and a state transition model to derive
a better estimate of the state vector than obtained by using either the data or the model. It was made
computationally feasible for the often high-dimensional state vectors stemming from the discretization of
PDEs by the ensemble Kalman filter [21, 22, 23]. Whereas Kalman filtering primarily focuses on correcting
and estimating the state vector, and possibly the corresponding quantity of interest, dynamic ROMs adapt
to changes in the latent parameters by identifying and applying low-rank updates to the reduced system
operators. Thus, even though there are several adaptive model reduction techniques available, our approach
is different because we do not anticipate offline how the FOM or the ROM change during the online phase,
and we incorporate new information in the form of sensor data for the update.

The following Section 2 introduces discrete systems of equations stemming from PDEs with latent param-
eters and derives the corresponding ROMs based on proper orthogonal decomposition (POD). We then give a
detailed problem formulation and problem setting of adapting ROMs online from sensor data. Section 3 dis-
cusses adapting the reduced basis and the reduced operators of our dynamic ROMs and then combines them
into an adaptivity procedure. We demonstrate our dynamic ROMs with numerical examples of a structural
assessment example based on the Mindlin plate theory in Section 4. Section 5 concludes the paper.

2. Reduced-order models of systems with latent parameters

We consider FOMs based on PDEs with observable parameters, which are given as inputs during the
online phase, and latent parameters, which describe changes in the modeled system and cannot be controlled
or directly observed. Section 2.1 formalizes these FOMs in the context of real-time decision making and
Section 2.2 derives ROMs based on POD. Section 2.3 then discusses the need to adapt the ROM online due
to the changing latent parameters and presents our specific problem formulation.

2.1. Parametrized systems with latent parameters

We consider a model based on a parametrized PDE. Our starting point is the system of equations

Aη(µ)yη(µ) = f(µ) (1)

with N ∈ N degrees of freedom stemming from the discretization of the PDE. System (1) depends on
the observable parameter µ = [µ1, . . . , µd]

T ∈ D with d ∈ N components and the latent parameter η =
[η1, . . . , ηd′]

T ∈ E with d′ ∈ N components. The parameter domains D and E are subsets of Rd and Rd′ ,
respectively. We have the operator Aη(µ) ∈ RN×N , the solution (state vector) yη(µ) ∈ RN , and the

3

sensor data stream

initial latent
parameters

assemble

FOM

project

ROM

read

adapt

dynamic
ROM

read

adapt

dynamic
ROM

. . .

Figure 2: Our dynamic ROMs are informed about changes in the underlying system by sensor data. They then adapt to these
changes without recourse to the FOM and without inference of the latent parameter.

right-hand side f(µ) ∈ RN . The operator and the solution vector depend on the observable and the latent
parameter. The following dynamic ROM approach is limited to the case where the right-hand side depends
on the observable parameter but is independent of the latent parameter, see Section 3.2.3. A dependence
on the latent parameter η is denoted as subscript to indicate that it cannot be controlled and that its value
is in general unknown, except for an initial parameter η0 ∈ E describing the initial state of the underlying
system. This clearly distinguishes the latent parameter from the observable parameter µ which is given as
input, see Figure 1a. This is highlighted by denoting the observable parameter in parentheses.

We assume the operator Aη(µ) can be represented with an affine parameter dependence with respect to
the observable parameter µ. Thus, it can be represented as a linear combination

Aη(µ) =

lA∑
i=1

θ
(i)
A (µ)A(i)

η (2)

of µ-independent operators
A(1)
η , . . . ,A(lA)

η ∈ RN×N (3)

with lA ∈ N functions θ
(1)
A , . . . , θ

(lA)
A : D → R. The operators (3) might depend nonlinearly on η. No affine

parameter dependence of Aη(µ) with respect to the latent parameter η is required. Similarly to (2), we
assume an affine parameter dependence of the right-hand side f(µ) with respect to the observable parameter
µ, i.e.,

f(µ) =

lf∑
i=1

θ
(i)
f (µ)f (i) , (4)

with lf ∈ N functions θ
(1)
f , . . . θ

(lf)
f : D → R and µ-independent vectors f (1), . . . ,f (lf) ∈ RN . The right-hand

side f(µ) does not depend on η. We note that if an affine decomposition of Aη(µ) or f(µ) is not admitted
directly by the problem formulation, it can be constructed approximately by, e.g., gappy POD [24, 25] or
empirical interpolation [26, 27].

2.2. Reduced-order models of systems with latent parameters

Let
Yη0

= [yη0
(µ1), . . . ,yη0

(µm)] ∈ RN×m (5)

4

be the snapshot matrix that contains m ∈ N linearly independent solution vectors of (1) with observable
parameters µ1, . . . ,µm ∈ D and the initial latent parameter η0. These solutions are called snapshots. We
do not consider here how to best sample the FOM but refer to, e.g., [28, 29, 30, 31]. POD is a method to
construct an n-dimensional basis v1, . . . ,vn ∈ RN such that the snapshots (5) are optimally represented by
their orthogonal projections onto the subspace span{v1, . . . ,vn} ⊂ span{yη0

(µ1), . . . ,yη0
(µm)} ⊂ RN .

The POD basis vectors v1, . . . ,vn ∈ RN are the left-singular vectors corresponding to the n largest
singular values of the snapshot matrix (5). Hence, to compute the POD basis for the snapshots in (5),
we first compute the singular value decomposition (SVD) of the snapshot matrix Yη0

. We then order the
singular values non-ascending. The first largest n singular values form the diagonal of the diagonal matrix
Ση0

∈ Rn×n, and the n left- and right-singular vectors, corresponding to the n largest singular values, are
the columns in the matrices Vη0

= [v1, . . . ,vn] ∈ RN×n and Wη0
= [w1, . . . ,wn] ∈ RN×n, respectively. We

derive a ROM of the FOM (1) for the initial latent parameter η0 by constructing the µ-independent reduced
operators

Ã(i)
η0

= V T
η0
A(i)
η0
Vη0

, i = 1, . . . , lA , (6)

and the µ-independent reduced right-hand sides

f̃ (i)
η0

= V T
η0
f (i) , i = 1, . . . , lf , (7)

with the POD basis Vη0
with Galerkin projection. In contrast to the FOM, the reduced right-hand side

(7) depends through the POD basis Vη0
on the latent parameter η0. The reduced system for observable

parameter µ ∈ D and initial latent parameter η0 is then given as

Ãη0(µ)ỹη0(µ) =

lA∑
i=1

θ
(i)
A (µ)Ã(i)

η0
ỹη0(µ) =

lf∑
i=1

θ
(i)
f (µ)f̃ (i)

η0
= f̃η0(µ) (8)

with the reduced operator Ãη0
(µ) ∈ Rn×n, the reduced right-hand side f̃η0

(µ) ∈ Rn, and the reduced
state vector ỹη0

(µ) ∈ Rn. Note that we invoked in (8) the affine parameter dependence with respect to the
observable parameter µ as defined in (2) and (4). Evaluating (8) instead of (1) can lead to computational
savings because often the number of degrees of freedom n of the ROM can be chosen much smaller than
the number of degrees of freedom N of the FOM while maintaining acceptable accuracy of the solution
estimates.

2.3. Problem formulation and problem setting

Let us consider the ROM based on the POD basis Vη0
, and the reduced operator Ãη0

(µ) and right-hand

side f̃η0(µ) as defined in (8). The ROM was built for the initial latent parameter η0 and thus captures
the behavior of the FOM only for η0; however, we consider the case where in the online phase, the latent
parameter changes from η0 to an unknown value η′ ∈ E due to a system change. Hence, the ROM becomes
obsolete and has to be adapted to parameter η′. Adapting the ROM requires that we adapt the basis Vη0

as well as the reduced operator Ãη0(µ) and the reduced right-hand side f̃η0(µ).
In the following, we successively adapt the ROM in h = 1, . . . ,m′ adaptivity steps during the online phase

where m′ ∈ N. At each step h, we receive data in the form of a so-called sensor sample ŷη′(µm+h) ∈ RN ,
which is a sensed measurement of the full-order state vector for an observable parameter µm+h ∈ D and
latent parameter η′ ∈ E . Note that our setup considers a sensed measurement of the full-order state vector.
As discussed in Section 1, new sensor technologies are already making this possible, especially on a component
level. We further note that, even though we consider full-order state information to be available through
sensor measurements, the ROM is still necessary in order to give us a predictive capability. In particular,
since we cannot control the observable parameter µm+h, a ROM is needed to provide approximations of
the full-order state vector for different observable parameters than µm+h. This predictive capability is
particularly relevant for online planning and decision making scenarios, where one is interested in predicting
the system behavior for different operating conditions (e.g., different load, velocity). This requires a model
that can be evaluated at parameters corresponding to the operating conditions of interest.

5

The difference ŷη′(µm+h)−yη′(µm+h) ∈ RN between the sensor sample, ŷη′(µm+h), and the solution of
the FOM corresponding to these parameters, yη′(µm+h), is measurement noise (and potentially also FOM
error relative to reality, although here we assume that the FOM is our “truth” model). The sensor sample
matrix at step h,

Sh = [ŷη′(µm+1), . . . , ŷη′(µm+h)] ∈ RN×h , (9)

is assembled from h linearly independent sensor samples with observable parameters µm+1, . . . ,µm+m′ ∈ D.
Note that the linear independence of the sensor samples can be achieved by reading, at step h, sensor data
until a sensor sample is received that is linearly independent with respect to all previous h−1 sensor samples,
and then using this sensor sample to extend the sensor sample matrix (9). We consider the case where we
do not have access to the FOM of the changed system—in particular, we cannot assemble the full-order
matrices for latent parameter η′ because it is too costly for the online phase. Our goal then is to adapt the
ROM using only the information provided by the sensor data.

3. Dynamic reduced-order models

A dynamic ROM update consists of adapting the POD basis and adapting the reduced operators. Sec-
tion 3.1 presents an SVD procedure that adapts the POD basis from a snapshot matrix updated with the
sensor samples. Section 3.2 derives low-rank additive updates for the reduced operators using new informa-
tion from the sensor samples. The POD basis and the reduced operator update procedures are combined
into the dynamic ROM approach in Section 3.3. Section 3.4 discusses computational costs. For the sake of
exposition we only present the theory for the case where the latent parameter changes once, i.e., from η0 to
η′. It is straightforward to extend the following approach to multiple changes of the latent parameter, as
demonstrated in the results.

3.1. Adapting the POD basis

To initialize the adaptivity, let Y0 = Yη0
be the snapshot matrix containing as columns the snapshots

yη0
(µ1), . . . ,yη0

(µm) ∈ RN with observable parameters µ1, . . . ,µm ∈ D and initial latent parameter η0,
and let V0 = Vη0 ∈ RN×n be the POD basis computed from these snapshots in the offline phase. At the
first adaptivity step h = 1, we receive the sensor sample ŷη′(µm+1). We replace the snapshot yη0(µ1) in the
snapshot matrix Y0 with this new sensor sample and denote the new snapshot matrix by Y1. We continue
this process and so receive at step h the sensor sample ŷη′(µm+h), using it to replace yη0

(µh) to obtain the
updated snapshot matrix

Yh = [ŷη′(µm+1), . . . , ŷη′(µm+h)︸ ︷︷ ︸
sensor samples with η′

,yη0
(µh+1), . . . ,yη0

(µm)︸ ︷︷ ︸
snapshots with η0

] ∈ RN×m . (10)

The snapshot matrix (10) contains the sensor samples up to the h-th column and the snapshots from the
offline phase with η = η0 in columns h+ 1 to m. Note that snapshots in the snapshot matrix are replaced
and not added, i.e., the number of columns m does not change. Note further that the columns are replaced
following the first-in-first-out principle if h becomes larger than m.

At each adaptivity step the POD basis has to be adapted to the updated snapshot matrix. We now derive
an algorithm to compute the adapted POD basis Vh for the updated snapshot matrix Yh. We consider Yh
to be the result of a rank-one update to the snapshot matrix from the previous adaptivity step Yh−1, i.e.,

Yh = Yh−1 + aeTh , (11)

where a = ŷη′(µm+h) − yη0(µh) ∈ RN and eh ∈ Rm is the h-th canonical unit vector with 1 at the
h-th component and 0 elsewhere. The unit vector eh indicates that we replace the h-th column of Yh−1.
Because we can represent Yh as a rank-one update to Yh−1, the SVD updating algorithm introduced in
[32] is applicable. Note that this is the same algorithm as used in [14]; however, we successively exchange
snapshots, whereas the purpose of the update in [14] is to identify a new reference state that is subtracted

6

Algorithm 1 Adapts the POD basis after rank-one update to snapshot matrix

1: procedure adaptBasis(Vh−1,Σh−1,Wh−1,a, eh)
2: Extract component of a that is orthogonal to Vh−1 with α = a− Vh−1V

T
h−1a

3: Extract component of eh that is orthogonal to Wh−1 with β = eh −Wh−1W
T
h−1eh

4: Assemble the (n+ 1)× (n+ 1) matrix

K =

[
Σh−1 1

0 0

]
+

[
V T
h−1a
‖α‖2

] [
eTWh−1 ‖β‖2

]
5: Compute SVD [V h,Σh,W h] =SVD(K)
6: Normalize α = α/‖α‖2
7: Normalize β = β/‖β‖2
8: Extract rotation of V h with V ′h = V h(1 : n, 1 : n)
9: Extract additive update of V h with q = V h(n+ 1, 1 : n)T

10: Store p = α for additive update
11: Extract first n singular values of Σh with Σh = Σh(1 : n, 1 : n)
12: Update right-singular vectors to Wh =

[
Wh−1 β

]
W h

13: Extract first n right-singular vectors with Wh = Wh(:, 1 : n)
14: return [V ′h,Σh,Wh,p, q]
15: end procedure

from all snapshots. The algorithm reuses the adapted SVD of Yh−1 to approximately derive the POD basis
corresponding to Yh. For that, it is only necessary to compute the SVD of a matrix with size (n+1)×(n+1)
(where n � N is the dimension of the reduced state) instead of the original snapshot matrix Yh with size
N ×m.

The SVD updating method of [32] is summarized in Algorithm 1. The input arguments Vh−1,Wh−1,
and Σh−1 are the adapted SVD matrices computed on the previous adaptivity step of the snapshot matrix
Yh−1 and the vectors a = ŷη′(µm+h) − yη0

(µh) ∈ RN and eh ∈ Rm describe the rank-one update (11).
The algorithm first extracts the component of a that is orthogonal to the POD basis Vh−1 and stores it in
α ∈ RN . The vector α contains the new information that is introduced by the sensor sample ŷη′(µm+h)
into the POD basis. Similarly, the component of eh that is orthogonal to Wh−1 is stored in β ∈ Rm. Then,
the SVD of the matrix K ∈ Rn+1×n+1 is computed. From this SVD, the rotation matrix V ′h ∈ Rn×n as well
as the vectors p ∈ RN and q ∈ Rn are extracted as in Algorithm 1, which leads to the adapted POD basis

Vh = Vh−1V
′
h + pqT . (12)

In Algorithm 1 we make use of MATLAB’s slicing notation by selecting the first n columns and the first n
rows of V h ∈ Rn+1×n+1 with V h(1 : n, 1 : n) ∈ Rn×n. The adapted POD basis (12) is an approximation of
the POD basis that we would obtain by recomputing the SVD of Yh from scratch. The approximation error
decreases with the dimension n of the ROM [32]. Note that Algorithm 1 and the update in (12) could easily
be modified to permit a change in the dimension n of the ROM after each rank-one update to the snapshot
matrix. We therefore would set the rotation matrix V ′h in line 8 of Algorithm 1 to V h(1 : n, 1 : n + 1) ∈
Rn×n+1 and the additive update q to V h(n + 1, 1 : n + 1)T ∈ Rn+1×1. This then would lead in (12) to a
POD basis Vh with n+ 1 basis vectors, see [32] for details; however, we do not further pursue this option in
the following.

3.2. Adapting the reduced operators with low-rank updates

We now adapt the reduced operators. We cannot directly construct the true reduced operators

Ã
(i)
η′ = V T

h A
(i)
η′ Vh , i = 1, . . . , lA , (13)

7

because the matrix-matrix products in (13) rely on the full-order matrices A
(1)
η′ , . . . ,A

(lA)
η′ ∈ RN×N for the

changed parameter η′. These full-order matrices are not available and inferring the latent parameter to
assemble them is often too expensive in the online phase, see Section 2.3 and Figures 1-2. We therefore
approximate (13) at step h by the adapted reduced operators

Ã
(i)
h = V T

h A
(i)
0 Vh + δÃ

(i)
h , i = 1, . . . , lA ,

where Vh is the adapted POD basis given by (12), the operators

A
(i)
0 = A(i)

η0
, i = 1, . . . , lA ,

are the full-order matrices with initial parameter η0, and

δÃ
(1)
h , . . . , δÃ

(lA)
h ∈ Rn×n (14)

are additive updates. Adapting the reduced operators requires that we first construct

V T
h A

(i)
0 Vh , i = 1, . . . , lA , (15)

and then derive the additive updates (14). Since we adapt the ROM online, both steps must be conducted
efficiently. We discuss these two steps in the Sections 3.2.1 and 3.2.2, and then summarize them in the
computational procedure in Section 3.2.3.

3.2.1. Basis transformation

We exploit the structure Vh = Vh−1V
′
h + pqT of the adapted POD basis Vh, cf. Section 3.1 and (12),

to avoid the costly matrix-matrix product with the full-order matrices for the construction of (15). We
represent (15) as

V T
h A

(i)
0 Vh =

(
Vh−1V

′
h + pqT

)T
A

(i)
0

(
Vh−1V

′
h + pqT

)
= V ′h

TV T
h−1A

(i)
0 Vh−1V

′
h + qpT A

(i)
0 Vh−1︸ ︷︷ ︸
B

(i)
h−1

V ′h + V ′h
TV T

h−1A
(i)
0 pq

T + qpTA
(i)
0 pq

T︸ ︷︷ ︸
C

(i)
h pqT

= V ′h
T︸︷︷︸

n×n

V T
h−1A

(i)
0 Vh−1︸ ︷︷ ︸

n×n

V ′h︸︷︷︸
n×n

+ qpT︸︷︷︸
n×N

B
(i)
h−1︸ ︷︷ ︸
N×n

V ′h︸︷︷︸
n×n

+C
(i)
h︸︷︷︸

n×N

pqT︸︷︷︸
N×n

(16)

where we reuse the operator V T
h−1A

(i)
0 Vh−1 of the previous adaptivity step h − 1 and where B

(i)
h−1 =

A
(i)
0 Vh−1 ∈ RN×n and C

(i)
h = V T

h A
(i)
0 ∈ Rn×N are auxiliary quantities for i = 1, . . . , lA. Note that

the computational complexity of all matrix-matrix products in (16) is linear in N . The auxiliary quantities
are constructed recursively following

B
(i)
h = B

(i)
h−1V

′
h +A

(i)
0 pq

T , i = 1, . . . , lA , (17)

C
(i)
h = V ′h

TC
(i)
h−1 + qpTA

(i)
0 , i = 1, . . . , lA , (18)

where B
(i)
0 = A

(i)
0 V0 ∈ RN×n and C

(i)
0 = V T

0 A
(i)
0 ∈ Rn×N are pre-computed in the offline phase. Algo-

rithm 2 summarizes the steps to compute (17) and (18).

3.2.2. Additive updates to the reduced operators

Recall that ŷη′(µm+1), . . . , ŷη′(µm+h) ∈ RN are the sensor samples that have been received at adaptivity
step h. We compute the additive updates (14) by solving the minimization problem

min
δÃ

(1)
h ,...,δÃ

(lA)

h ∈Rn×n

h∑
j=1

∥∥∥∥∥
lA∑
i=1

θ
(i)
A (µm+j)

(
V T
h A

(i)
0 Vh + δÃ

(i)
h

)
V T
h ŷη′(µm+j)− f̃h(µm+j)

∥∥∥∥∥
2

2

. (19)

8

Algorithm 2 Update auxiliary quantities

1: procedure auxQu(B
(1)
h−1,C

(1)
h−1, . . . ,C

(lA)
h−1,V

′
h,p, q)

2: for i = 1, . . . , lA do

3: Compute quantity B
(i)
h = B

(i)
h−1V

′
h +A

(i)
0 pq

T

4: Compute quantity C
(i)
h = V ′h

TC
(i)
h−1 + qpTA

(i)
0

5: end for
6: return [B

(1)
h ,C

(1)
h , . . . ,C

(lA)
h]

7: end procedure

We show in Theorem 1 that we recover the true reduced operators (13) if the solution of (19) is used to
adapt the reduced operators from noise-free sensor samples. We therefore first show in Lemma 1 that (19)
can be represented as n independent least-squares problems. This result is then used to prove Theorem 1.

Lemma 1. Let ŷη′(µm+1), . . . , ŷη′(µm+h) be the columns of the sensor sample matrix Sh, and let Vh be
the adapted POD basis. The minimization problem (19) is a least-squares problem

min
δÃh∈RlAn×n

‖ŨhδÃh − R̃h‖2F (20)

with system matrix

Ũh =


θ

(1)
A (µm+1)ŷη′(µm+1)TVh . . . θ

(lA)
A (µm+1)ŷη′(µm+1)TVh

...
. . .

...

θ
(1)
A (µm+h)ŷη′(µm+h)TVh . . . θ

(lA)
A (µm+h)ŷη′(µm+h)TVh

 ∈ Rh×lAn , (21)

and right-hand side

R̃h =


f(µm+1)TVh − ŷη′(µm+1)TVh

∑lA
i=1 θ

(i)
A (µm+1)V T

h A
(i)
0
TVh

...

f(µm+h)TVh − ŷη′(µm+h)TVh
∑lA
i=1 θ

(i)
A (µm+1)V T

h A
(i)
0
TVh

 ∈ Rh×n , (22)

where the solution
δÃT

h =
[
δÃ

(1)
h . . . δÃ

(lA)
h

]
∈ Rn×lAn

contains the updates δÃ
(1)
h , . . . , δÃ

(lA)
h ∈ Rn×n as blocks. Furthermore, the columns of δÃh are the solution

of n independent least-squares problems

min
ai

‖Ũhai − ri‖22 , i = 1, . . . , n , (23)

where ai ∈ RlAn and ri ∈ Rh are the i-th column of δÃh and R̃h, respectively.

Proof. We transform the objective of (19) into ‖ŨhδÃh − R̃h‖2F by exploiting that for a matrix Z ∈ Rn×h,
the following holds:

h∑
j=1

‖zj‖22 =

h∑
j=1

n∑
i=1

Z2
ij = ‖Z‖2F ,

where zj ∈ Rn is the j-th column of Z and Zij is the element of Z in row i and column j. Let ai and ri be

the i-th column of δÃh and R̃h, respectively, then

‖ŨhδÃh − R̃h‖2F =

n∑
i=1

‖Ũhai − ri‖22

holds from which the splitting into n independent least-squares problems follows.

9

Theorem 1. If we have h = lAn noise-free sensor samples available, i.e., if the sensor sample ŷη′(µm+i)
equals the FOM solution yη′(µm+i) for all i = 1, . . . , h, the adapted operators match the true reduced opera-
tors (13) that we would obtain by directly computing the (computationally expensive) matrix-matrix products

with the POD basis Vh and full-order matrices A
(1)
η′ , . . . ,A

(lA)
η′ ∈ RN×N corresponding to the latent parameter

η′ ∈ E.

Proof. According to Lemma 1, the minimization problem (19) can be represented as n least-squares problems
each with lAn unknowns and h equations. After we have collected h = lAn linearly independent sensor
samples (cf. the problem description in Section 2.3), the least-squares problems become systems of linear
equations of full rank and thus have a unique solution. If the dimension of the ROM n is large enough,
then the noise-free projected sensor samples V T

h ŷη′(µm+j) are a solution of the ROM. This is indeed the
case because the snapshot matrix contains the sensor samples and thus the projection error ‖ŷη′(µm+j) −
VhV

T
h ŷη′(µm+j)‖22 can be made arbitrarily small (up to numerical tolerance) by retaining enough POD

vectors. Therefore, if the dimension of the ROM is large enough, the true reduced operators (13) minimize

h∑
j=1

∥∥∥∥∥
lA∑
i=1

θ
(i)
A (µm+j)Ã

(i)
η′ V

T
h ŷη′(µm+j)− f̃h(µm+j)

∥∥∥∥∥
2

2

.

Then, the true updates

δÃ
(i)
η′ = Ã

(i)
η′ − V

T
h A

(i)
0 Vh , i = 1, . . . , lA , (24)

are a solution of the minimization problem (19). Since the solution of (19) is unique, the updated and the
true updates (24) must be equal. It follows that the updated and the true reduced operators are equal.

3.2.3. Low-rank updates and computational procedure

If we have fewer than lAn linearly independent sensor samples available, Theorem 1 is not applicable. In
this case, the system (20) becomes underdetermined. We therefore introduce low-rank updates of the block
form

δÃ
(i)
h =

[
∗ 0
0 0

]
∈ Rn×n , i = 1, . . . , lA , (25)

where only the block ∗ ∈ Rr×r can contain non-zero elements. We call r ∈ N, with r ≤ n, the rank of the
update and call (25) low-rank if r < n. This reduces the number of unknowns in (20) from lAn

2 to lAr
2.

The following Corollary 1 to Theorem 1 shows how to choose r to ensure a full-rank or an overdetermined
least-squares problem.

Corollary 1. Let n ∈ N be the dimension of the ROM, and let lA ∈ N be the number of µ-independent
operators of the FOM. If the rank r ∈ N of the update (25) is chosen as the floor of the ratio of the number
of sensor samples h and the number of µ-independent operators lA, i.e.,

r =

⌊
h

lA

⌋
, (26)

then the least-squares problems (20) cannot be underdetermined.

Proof. With (26) we obtain h ≥ lAr. If r < n, the least-squares problem (20) corresponds to r independent
least-squares problems of the form (23) because n− r columns in all updates are set to zero. Each of these
independent problems has lAr unknowns in h equations, and thus they are not underdetermined.

Note that Corollary 1 also holds in the case h < lA, where fewer sensor samples than operators are
available. The rank of the update is then zero and the update (25) becomes the zero matrix. This means
that no update is performed until at least lA sensor samples are read. The dynamic ROM approach therefore
cannot capture changes in the latent parameter if fewer than lA sensor samples are read before another change
occurs; thus, our approach is appropriate for situations in which changes in the latent parameter do not occur

10

Algorithm 3 Adapt reduced operators with sensor data

1: procedure adaptOperator(Vh,Sh,Hh−1)
2: Determine rank of additive update r = bh/lAc
3: If h = 1 then set auxiliary matrix H1 = [ŷTη′(µm+1)V1] ∈ R1×n else update matrix

Hh =

[
Hh−1V

T
h−1Vh

ŷTη′(µm+h)Vh

]
∈ Rh×n

4: Assemble system matrix

Ũh =


θ

(1)
A (µm+1)Hh(1, 1 : r) . . . θ

(lA)
A (µm+1)Hh(1, 1 : r)

...
. . .

...

θ
(1)
A (µm+h)Hh(h, 1 : r) . . . θ

(lA)
A (µm+h)Hh(h, 1 : r)

 ∈ Rh×lAr

5: Assemble right-hand side

R̃h =


f(µm+1)TVh(:, 1 : r)− ŷη′(µm+1)TVh

∑lA
i=1 θ

(i)
A (µm+1)Vh(:, 1 : r)TA

(i)
0
TVh(:, 1 : r)

...

f(µm+h)TVh(:, 1 : r)− ŷη′(µm+h)TVh
∑lA
i=1 θ

(i)
A (µm+h)Vh(:, 1 : r)TA

(i)
0
TVh(:, 1 : r)

 ∈ Rh×r

6: Solve minimization problem to derive additive updates

arg min
δÃh∈RlAr×r

‖ŨhδÃh − R̃h‖2F

7: for i = 1, . . . , lA do

8: Construct adapted operator Ã
(i)
h by using the additive updates and (16)

9: end for
10: for i = 1, . . . , lf do

11: Adapt right-hand side f̃
(i)
h = V ′hf̃

(i)
h−1 + pqTf (i)

12: end for
13: return [Hh, Ã

(1)
h , . . . , Ã

(lA)
h , f̃

(1)
h , . . . , f̃

(lf)
h]

14: end procedure

too rapidly and where there is both time and benefit to online data-informed decision making (e.g., mission
replanning in the face of mild to moderate wing damage).

The computational procedure to construct the adapted reduced operators is summarized in Algorithm 3.
It closely follows Lemma 1; however, it reuses the system matrix of the previous step, instead of assembling
it from scratch at each step h. The auxiliary matrix H0 is initialized to an arbitrary scalar value (which is
not used) and then is extended to Hh ∈ Rh×n with new sensor samples at each adaptivity step. Note that
Algorithm 3 exploits that the right-hand sides are independent of the latent parameter and are therefore
known to assemble matrix R̃h.

3.3. Dynamic reduced-order models and complexity analysis

We now combine the POD basis update of Section 3.1 and the reduced operator update of Section 3.2
into the dynamic ROM method summarized in Algorithm 4. The procedure is called at each adaptivity step
h = 1, . . . ,m′ during the online phase. It first updates the snapshot and sensor sample matrices and then
adapts the POD basis with Algorithm 1. With the adapted basis Vh, the auxiliary quantities are constructed
with Algorithm 2. These are then used to construct the adapted reduced operators and right-hand sides
with Algorithm 3.

11

Algorithm 4 Adaptivity procedure for dynamic ROMs

1: procedure adaptROM(Vh−1, Ã
(1)
h−1, . . . , Ã

(lA)
h−1, f̃

(1)
h−1, . . . , f̃

(lf)
h−1, A

(1)
0 , . . . ,A

(lA)
0 , f (1), . . . ,f (lf))

2: Receive new sensor sample ŷη′(µm+h)
3: Update snapshot matrix Yh = [ŷη′(µm+1), . . . , ŷη′(µm+h),yη0(µh+1), . . . ,yη0(µm)]
4: Update sensor window Sh = [ŷη′(µm+1), . . . , ŷη′(µm+h)]
5: Adapt POD basis to Vh with snapshot matrix Yh . Algorithm 1
6: Update auxiliary quantities . Algorithm 2

7: Compute low-rank updates δÃ
(1)
h , . . . , δÃ

(lA)
h from sensor samples in Sh . Algorithm 3

8: Adapt reduced operators to Ã
(1)
h , . . . , Ã

(lA)
h with updates δÃ

(1)
h , . . . , δÃ

(lA)
h . Algorithm 3

9: Adapt right-hand sides to f̃
(1)
h , . . . , f̃

(lf)
h . Algorithm 3

10: end procedure

3.4. Complexity analysis

We analyze the runtime of adapting a dynamic ROM and show that it scales only linearly with the
dimension N of the FOM if the full-order matrices with the initial latent parameter η0 are sparse.

Let us first consider the POD basis adaptivity procedure in Algorithm 1. Its runtime scales only linearly
with the dimension N of the FOM. The computational costs of the POD adaptation are dominated by the
(full) SVD of the (n+ 1)× (n+ 1) matrix K which is in O(n3) [32].

Algorithm 2 updates the auxiliary quantities. This is the only computation in the dynamic ROM update
that includes a matrix-vector product with the full-order matrices for the initial latent parameter. In
general, this leads to runtime costs scaling quadratically with the dimension N of the FOM; however, most
PDE discretization schemes lead to sparse matrices and thus in these situations the matrix-vector products
in Algorithm 2 can be provided with linear runtime costs in N . We emphasize that only the operators
corresponding to the initial latent parameters have to be sparse.

Finally we consider adapting the reduced operators with Algorithm 3. Assembling the matrix Hh in
line 3 requires the matrix-matrix product V T

h−1Vh which is in O(Nn2) because V T
h−1 ∈ Rn×N and Vh ∈

RN×n. The product with Hh−1 ∈ Rh−1×n is in O(hn2). The reduction ŷTη′(µm+h)Vh scales linearly with
O(N), and thus extending the matrix Hh has costs in O(N). The costs of assembling the system matrix
Ũh ∈ Rh×lAr are independent of the dimension N . Forming the right-hand sides in line 5 requires reducing
f(µ1), . . . ,f(µh) ∈ RN with the adapted POD basis Vh and subtracting the sensor samples applied to the
full-order operators. For that, we reuse the operators (15) computed with the auxiliary quantities to achieve
a linear runtime with respect to N . Finally, in line 6, r least squares problems are solved. Each of these
problems has a system matrix of size h × rlA, and thus the costs of solving each problem is in O(hr2l2A)
because h ≥ rlA. Note that since the rank r is chosen depending on the number h of available sensor samples,
we usually have h ≈ rlA, as well as lA � r and r ≤ n� N . Thus, the runtime of Algorithm 3 scales linearly
with the dimension N .

Because Algorithms 1–3 have linear runtime with respect to the dimension N of the FOM, the overall
runtime of one adaptivity step is also linear in N ; however, this assumes the auxiliary quantities can be
computed with costs linear in N due to the structure of the full-order matrices for latent parameter η0.

The linear dependence of the update runtime on the number of degrees of freedom N of the FOM might
render the presented adaptivity scheme computationally infeasible in the online phase for certain applications;
however, compared to rebuilding the ROM from scratch, significant runtime savings are obtained with the
presented updating scheme, see the numerical results and runtime measurements in Section 4.3.

4. Numerical Results

We demonstrate the dynamic ROM approach on the deflection model of a plate where the latent parameter
η ∈ E controls local damage in the structure. Damage is modeled as a decrease in the thickness of the
material. The plate model is based on the Mindlin plate theory [33] that takes into account transverse shear

12

deformations and is therefore applicable to thick plates. The Mindlin plate theory is linear and neglects
nonlinear effects such as postbuckling behavior [34]. We first build a ROM for the plate model with isotropic
thickness in subregions defined by the initial latent parameter η0, i.e., no damage. We then consider a
notional scenario in which the plate undergoes a local change of thickness, i.e., due to some damage event.
We generate synthetic sensor data by changing the latent parameter of the FOM to η′, generating the
corresponding state solutions, and corrupting them with noise. We then use these synthetic sensor samples
in our dynamic data-driven approach and show how the dynamic ROM adapts to the thickness change with
no knowledge of the underlying latent parameter. The results confirm that the dynamic ROM quickly adapts
to the changed situation and that the runtime of one adaptivity step scales only linearly with the number
of degrees of freedom N of the FOM. In our example, one adaptivity step of the dynamic ROM is up to
3.8 × 104 times faster than rebuilding the ROM from scratch. The following subsections give more details
on the problem setup and the results.

4.1. Problem setup

We consider the static analysis of a plate in bending. Our discretization and implementation is an
extension of the implementation in [33]. Figure 3 shows the geometry of the plate. The plate is clamped
into a frame and a pressure load is applied. The spatial domain Ω = [0, 1]2 ⊂ R2 is split into four subregions
Ω = Ω1]Ω2]Ω3]Ω4. The model has eight observable µ = [µ1, . . . , µ8]T ∈ D = [0.05, 0.1]4× [1, 100]4 ⊂ R8

and two latent parameters η = [η1, η2]T ∈ E = [0, 0.2] × (0, 0.05] ⊂ R2. The thickness at position x ∈ Ω is
given by the function t : Ω×D × E → R with

t(x;µ,η) = t0(x;µ)− t0(x;µ)η1 exp

(
− 1

2η2
2

‖x− z‖22
)

(27)

and

t0(x;µ) =


µ1 if x1 < 0.5 and x2 < 0.5
µ2 if x1 < 0.5 and x2 ≥ 0.5
µ3 if x1 ≥ 0.5 and x2 < 0.5
µ4 if x1 ≥ 0.5 and x2 ≥ 0.5

(28)

with a pre-defined position z = [0.7, 0.4] in the spatial domain Ω. Thus, the parameters µ1, . . . , µ4 correspond
to the nominal thickness in the subregions Ω1, . . . ,Ω4 and the latent parameter η describes the decrease of the
thickness due to damage at position z in the domain. The function (27) is nonlinear with respect to x and η.
The initial latent parameter is given as η0 = [η1, η2]T = [0, ε]T ∈ E and leads to no decrease of the thickness
at position z. The constant ε can be set to any positive value, since it has no influence if η1 = 0, see (27). The
pressure load on each subregion can vary and is described by four observable parameters µ5, . . . , µ8 ∈ [1, 100]4.
We set the length of the plate to 1, Young’s modulus to E = 10920, and the Poisson ratio to ν = 0.3. This
leads to a flexural rigidity of one and is convenient for non-dimensional results [33]. Figures 4a and 4b visualize
the thickness of the plate for the observable parameters [µ1, µ2, µ3, µ4]T = [0.08, 0.060, 0.07, 0.065]T , and the
initial parameter η0 and the latent parameter η′ = [0.2, 0.05]T ∈ E , respectively.

We follow [33] and discretize with the finite element method with four-noded Q4 elements with homo-
geneous Dirichlet boundary conditions. Each finite element node has three degrees of freedom. These are
the deflection of the plate, the shear stress in x1 direction, and the shear stress in x2 direction. Taking the
Dirichlet boundary conditions into account, the discretization leads to N ≈ 3N2 degrees of freedom where
N ∈ N is the number of equidistant grid points in each dimension x1 and x2. We obtain the full-order
operator Aη(µ) ∈ RN×N depending on the observable µ ∈ D and the latent parameter η ∈ E . The pressure
load is described by the right-hand side which depends on µ ∈ D only. We refer to [33] for details. The
corresponding system of discrete equations is Aη(µ)yη(µ) = f(µ) with the solution vector yη(µ) ∈ RN
that contains the deflection and the shear stress in x1 and x2 directions at each grid point.

The operator Aη(µ) has an affine parameter dependence (2) with respect to the observable parameter

µ. It is given for lA = 8 with the eight functions θ
(1)
A , . . . , θ

(8)
A : D → R

θ
(1)
A (µ) = θ

(2)
A (µ) = θ

(3)
A (µ) = θ

(4)
A (µ) = (t0(µ))

3

13

Ω2 Ω4

Ω1 Ω3

x1

x2

10

1

Figure 3: The plot shows the geometry of the plate. The plate has a different thickness in each of its four subregions Ω1, . . . ,Ω4.

and
θ

(5)
A (µ) = θ

(6)
A (µ) = θ

(7)
A (µ) = θ

(8)
A (µ) = t0(µ) .

The four operators A
(1)
η , . . . ,A

(4)
η describe the bending of the plate in the subregions Ω1, . . . ,Ω4, and the

operators A
(5)
η , . . . ,A

(8)
η the shear stress. The right-hand side can be decomposed into lf = 4 µ-independent

components f (1), . . . ,f (4) ∈ RN with the functions θ
(1)
f , . . . , θ

(4)
f : D → R as θ

(i)
f (µ) = µ4+i for i = 1, . . . , 4.

In this problem setup, we emphasize that the operator Aη(µ) has no affine parameter dependence with
respect to the latent parameter η. Since the latent parameter is not represented explicitly in our dynamic
ROM, this poses no problem for our approach. The solution of the plate model with observable parameter

µ = [0.08, 0.060, 0.07, 0.065, 50, 50, 100, 50]T ∈ D

and η = η0 is shown in Figure 4c. The solution in case of damage η′ = [0.2, 0.05]T is visualized in Figure 4d.
Note that the difference between the solutions corresponding to the undamaged, Figure 4c, and the damaged,
Figure 4d, plate may seem small visually, but the numerical results in Section 4.3 will show that the ROM
without updates quickly fails to provide a valid approximation as the thickness of the plate decreases.

In the offline phase, we sample the FOM at µ1, . . . ,µm ∈ D randomly selected observable parameters
and fixed latent parameter η0 and assemble the snapshot matrix Y0. We then derive the POD basis V0 =

[v1, . . . ,vn] ∈ RN×n and construct the µ-independent reduced operators Ã
(i)
0 = V T

0 A
(i)
0 V0 ∈ Rn×n for

i = 1, . . . , 8, and the reduced right-hand sides f̃
(1)
0 = V T

0 f
(1), . . . , f̃

(4)
0 = V T

0 f
(4) ∈ Rn. They lead to a

ROM with a reduced system as in (8) with n degrees of freedom.

4.2. Singular values and latent parameters

Let us first consider the decay of the singular values of the snapshot matrix Yη0 , of the corresponding Yη′

with latent parameter η′, and of a general snapshot matrix with varying η ∈ E . The number of snapshots
in each case is m = 1000. The number of grid points in each direction of the finite element discretization is
N = 81 and thus the number of degrees of freedom of the FOM is N = 19039.

The plot in Figure 5a shows that the singular values decay with about the same rate if η is fixed, i.e.,
if either η = η0 = [0, ε]T or η = η′ = [0.2, 0.05]T . Figure 5b shows the decay of the singular values
corresponding to snapshots with varying latent parameter η. The decay is slower than in case of Figure 5a.
Therefore, in this example, it is unnecessary to modify the number of POD basis vectors after changes in
the latent parameter if the POD basis is constructed (or updated) with respect to a single latent parameter
only, cf. the discussion of Algorithm 1 in Section 3.1.

14

x
1

x 2

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

 0

th
ic

kn
es

s

0.05

0.06

0.07

0.08

x
1

x 2

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

 0

th
ic

kn
es

s

0.05

0.06

0.07

0.08

(a) thickness, no damage (b) thickness, damage up to 20%

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

de
fle

ct
io

n

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

de
fle

ct
io

n
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(c) deflection, no damage (d) deflection, damage up to 20%

Figure 4: The plot shows the thickness without damage in (a) and with damage at z = [0.7, 0.4] ∈ Ω in (b). The corresponding
deflection of the plate is shown in (c) and (d), respectively.

15

200 400 600 800 1000

10
−15

10
−10

10
−5

10
0

number of singular values

no
rm

al
iz

ed
 s

in
gu

la
r

va
lu

e

no damage
damage

200 400 600 800 1000

10
−15

10
−10

10
−5

10
0

number of singular values

no
rm

al
iz

ed
 s

in
gu

la
r

va
lu

e

varying latent parameter

(a) singular values of Yη0
and Yη′ (b) singular values of snapshots with varying latent parameter

Figure 5: The plots show the decay of the singular values corresponding to snapshot matrices with η = η0 (no damage) and
η = η′ (damage) in (a) and for varying η in (b).

4.3. Numerical experiments with dynamic reduced-order models

We now present numerical results to demonstrate the performance of our dynamic ROM approach for
the deflection model of the clamped plate. The FOM has again N = 81 grid points in each direction which
leads to N = 19039 degrees of freedom. We create m = 1000 snapshots with the initial latent parameter η0

and build a ROM with n = 50 POD basis vectors. If not otherwise noted, we change the latent parameter
η ten times with a linear decrease of the thickness

η ∈ {η0, [2/90, 2/360], [4/90, 4/360], . . . , [18/90, 18/360]} ⊂ E (29)

at position z = [0.7, 0.4] ∈ Ω. This corresponds to a maximum decrease of the thickness of the plate by
20%. After each change of the latent parameter η, the sensor window (9) is flushed and reset to the empty
matrix. For each change, we read m′ = 450 sensor samples. Note that even though the window is flushed
after a parameter change occurs, it is unnecessary to know the value of the latent parameter; it is sufficient
to know just that it has changed. There are many methods available to detect such a change from sensor
data. For example, novelty detection methods are widely studied in signal processing and machine learning,
see the survey papers [35, 36, 37]. In the results, we will also investigate the effects of flushing the sensor
window too early.

We first demonstrate dynamic ROMs with synthetic sensor samples that are not corrupted with noise.
We therefore generate sensor samples that are the solutions of the FOM for randomly selected observable
parameters µm+1, . . . ,µm+m′ ∈ D and for the respective latent parameters in (29). We then generate a test
set with ten randomly chosen full-order solutions and compare the L2 error of the states of the static ROM,
the true ROM, and our dynamic ROM:

• The static ROM uses the POD basis V0 and the reduced system (8) computed in the offline phase. It
is not adapted online.

• The true ROM is rebuilt from scratch with the adapted POD basis Vh and the true reduced operators
(13) at each adaptivity step h = 1, . . . ,m′.

• The dynamic ROM is adapted with Algorithm 4 at each step h = 1, . . . ,m′.

16

0 1000 2000 3000 4000

10
−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L 2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM
true ROM

0 1000 2000 3000 4000

10
−2

10
0

10
2

number of sensor samples read (h)

m
ax

 a
bs

 L
2 e

rr
or

 o
ve

r
te

st
 s

et

static ROM
dynamic ROM
true ROM

(a) averaged absolute L2 error (b) maximum absolute L2 error

0 1000 2000 3000 4000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

number of sensor samples read (h)

av
g

re
l L

2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM
true ROM

0 1000 2000 3000 4000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

number of sensor samples read (h)

m
ax

 r
el

 L
2 e

rr
or

 o
ve

r
te

st
 s

et

static ROM
dynamic ROM
true ROM

(c) averaged relative L2 error (d) maximum relative L2 error

Figure 6: Whereas we obtain large errors with the static ROM, the dynamic ROM is able to adapt to the changed latent
parameter η quickly. The plots also show that if enough sensor information is available, the dynamic ROM recovers the true
ROM.

17

Figure 6a shows that the averaged absolute L2 error of the static ROM increases as the latent parameter is
changed. The dynamic ROM on the other hand quickly adapts to the new situation and finally recovers the
true ROM. The rank r of the update (25) is increased with h. To obtain a well-conditioned system (20), we
use the slightly more conservative ratio r = bh/(lA + 1)c rather than bh/lAc. This means that an update
with full rank r = bh/(lA + 1)c = b450/(9 + 1)c = 50 is performed after h = 450 sensor samples are read,
and therefore that the true ROM is recovered after 450 sensor samples instead of after lAn = 400 sensor
samples. The maximum absolute L2 error is reported in Figure 6b, which shows that the solutions for all
parameters in the test set are approximated well. The relative L2 errors in Figures 6c and 6d show a similar
behavior as the corresponding absolute errors but are about two orders of magnitude lower.

The operator update as introduced in Section 3.2 and Algorithm 3 constructs the additive updates with

respect to the reduced operators Ã
(1)
0 , . . . , Ã

(lA)
0 ∈ Rn×n which were computed in the offline phase. It is

straightforward to extend Algorithm 3 such that the additive updates take previously adapted operators into
account. For that, the right-hand sides in R̃h are not only computed with respect to the reduced operators
with η0 but with respect to the adapted operators. The accuracy results for the corresponding dynamic
ROM are shown in Figure 7a. This reusing of the previously adapted operators prevents the error peaks
after the sensor window was flushed. Additionally, we can impose a minimum rank of rmin ∈ N such that
the rank r has to be larger than rmin before an update is applied to the reduced operators. This avoids
the error that is introduced if the rank of the update is low, cf. the blue and gray error curves in Figure 7a
for rmin = 9. For the same setting as in Figure 7a, we report in Figure 7b the L2 error corresponding to a
plate where the thickness is decreased in ten equidistant steps from η0 to [0.5, 0.1] ∈ R2. This corresponds
to a maximum decrease of the thickness by 50%. The results confirm that the dynamic ROM approach
still recovers the true ROM and also provides valid intermediate ROMs. Thus, the results show that the
dynamic ROM recovers the true ROM independent of the difference between the solutions corresponding to
the changed latent parameters, see Theorem 1.

We discussed in Section 3.2.3 that it is necessary to increase the rank of the update depending on how
many sensor samples are available to obtain a smooth transition to the true ROM. The results in Figure 8a
demonstrate that if the rank is set too high the system (20) becomes underdetermined and thus the updates
can lead to large errors. We now present an experiment where the dynamic ROM fails to recover the true
ROM. Figure 8b reports the L2 error when the dynamic ROM receives only 225 sensor samples per damage
step, instead of m′ = 450. Therefore, the dynamic ROM cannot completely recover the true ROM; however,
it still provides more accurate results than the static ROM.

Besides the operators, we also adapt the POD basis at each step h = 1, . . . ,m′. For this we use Algo-
rithm 1. It reuses large parts of the adapted POD of the previous step h− 1 and only requires an SVD of a
small and sparse matrix of size (n+ 1)× (n+ 1), see Section 3.1. However, since we only have a truncated
SVD, the adapted POD basis provided by Algorithm 1 is not exact and thus differs from the basis computed
from scratch. The error introduced by the approximate SVD is shown in Figure 9a. Even though the true
ROM based on the approximate SVD achieves a slightly lower accuracy than the true ROM based on the
rebuilt SVD, the difference is small compared to the error due to the change in the latent parameter. This
also holds for the dynamic ROM because the dynamic ROM recovers the true ROM after sufficiently many
sensor samples are read. Figure 9a also shows that the accuracy difference between the dynamic ROMs
based on the rebuilt and on the approximate SVD increases only in the first few adaptivity steps but then
stays constant during the rest of the adaptation. This indicates that the error incurred by the approximate
SVD update does not accumulate when performing multiple updates.

Let us now consider sensor samples corrupted with noise. With low-rank updates, not only do we
avoid an underdetermined system (20), but also we force the update to focus on the system characteristics
corresponding to the first, and thus more important, POD basis vectors. Let us consider the system matrix
and the right-hand side of the least-squares problem in Algorithm 3. Both are assembled by taking only the
first r POD basis vectors into account. This means, in case of h < m′, they only capture the most important
modes and thus tend to ignore noise. We demonstrate this with sensor samples where we add noise. We
therefore generate noise vectors ynoise

1 , . . . ,ynoise
m′ ∈ RN where each component of these vectors contains

independent Gaussian noise with mean 0 and standard deviation 10−4. To better reflect the situation in,

18

0 1000 2000 3000 4000
10

−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L 2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM (reuse)
dynamic ROM (reuse, rank)
true ROM

0 1000 2000 3000 4000
10

−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM (reuse)
dynamic ROM (reuse, rank)
true ROM

(a) reusing previously made updates (b) recovering from damage with up to 50% decrease of thickness

Figure 7: In (a) the L2 error of the states is shown for a dynamic ROM which reuses previously adapted operators (gray curve)
and thus prevents the error peaks as observed in Figure 6. The error peaks can be further reduced by additionally imposing a
minimum rank on the update (blue curve). The plot in (b) shows for the same setting as in (a) that the dynamic ROM also
recovers from a damage with an up to 50% decrease of the thickness of the plate.

0 1000 2000 3000 4000

10
−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L 2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM (full−rank)
true ROM

0 1000 2000 3000 4000

10
−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM
true ROM

(a) full-rank updates (b) not enough sensor samples to fully recover the true ROM

Figure 8: The plot in (a) shows that low-rank updates are necessary because full-rank updates can lead to large errors if not
enough data is available. The results in (b) show that if insufficient sensor samples are available to obtain a full-rank update
following Corollary 1, then the dynamic ROM cannot recover the true ROM but still provides more accurate results than the
static ROM.

19

0 1000 2000 3000 4000

10
−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L 2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM (new SVD)
true ROM (new SVD)
true ROM (approx SVD)

0 1000 2000 3000 4000

10
−2

10
0

10
2

number of sensor samples read (h)

av
g

ab
s

L 2 e
rr

or
 o

ve
r

te
st

 s
et

static ROM
dynamic ROM (noise)
true ROM

(a) rebuilding SVD from scratch (b) dynamic ROM with sensor samples corrupted with noise

Figure 9: The left plot shows the error incurred by the approximate SVD update compared to rebuilding the SVD from scratch.
The right plot demonstrates that the dynamic ROM also adapts to the new latent parameters if the sensor samples are polluted
with noise.

e.g., sensor networks, we introduce a spatial correlation by applying a moving window of size 5. This leads
to noise in the range of 10−6. This is the same range as reported for current fiber optic sensor systems1, see,
e.g., [38]. The sensor samples ŷη(µm+i) = yη(µm+i) + ynoise

i for i = 1, . . . ,m′ are obtained by adding the
noise vectors to the FOM solutions yη(µm+1), . . . ,yη(µm+m′) ∈ RN . These sensor samples are then used
to adapt the dynamic ROM. The results in Figure 9b show that our dynamic ROM approach is still able to
adapted to the changed latent parameters from the sensor samples corrupted with noise. It even recovers
the true ROM because the range of the absolute values of the components of the noise vectors is below the
error of the ROM.

Finally, let us consider the runtime of the online phase of the dynamic ROMs. All of the following time
measurements where performed on compute nodes with Intel Xeon E5-1620 CPUs and 32GB RAM using a
MATLAB implementation.

Figure 10 shows the runtime of adapting the reduced operator in the online phase. It scales linearly with
the number N of degrees of freedom of the FOM because the full-order matrices corresponding to the initial
latent parameter η0 are sparse.

Let us now compare the runtime of our dynamic ROM approach to classical model order reduction which
rebuilds the ROM from scratch if the latent parameter of the underlying system changes. Rebuilding the
ROM requires first inferring the latent parameter from the sensor samples and then rerunning the offline
phase. To simplify the parameter inference, we consider here synthetic sensor samples without noise and
therefore can infer the latent parameter exactly with a nonlinear least-squares problem. Note that this is
indeed a nonlinear problem because the thickness function (27), and thus the operator, is nonlinear in the
latent parameter η. We use MATLAB’s lsqnonlin method. Figure 11a reports the runtime of rebuilding
the ROM and of adapting a dynamic ROM. For the dynamic ROM, we distinguish between the case where
the basis is derived from a rebuilt SVD and where it is updated with an approximate SVD as discussed in
Section 3.1.

1See the data sheet to the optical distributed sensor interrogator by Luna Inc available at http://lunainc.com/.

20

0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6
x 10

4

#degrees of freedom of FOM

nu
m

be
r

of
 n

on
−

ze
ro

 e
le

m
en

ts

actual number of non−zeros
linear increase of elements

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

#degrees of freedom of FOM

ru
nt

im
e

of
 o

pe
ra

to
r

up
da

te
 [s

]

actual runtime
linear runtime

(a) number of non-zeros in full operators (b) runtime of operator update

Figure 10: Because the full-order operators corresponding to the initial latent parameter η0 are sparse, the runtime of one
adaptivity step of a dynamic ROM scales only linearly with the number of degrees of freedom of the FOM.

The results in Figure 11a show that an adaptivity step of the dynamic ROM with the approximate SVD
(0.27 seconds) is about 28 times faster than recomputing the SVD (7.82 seconds), and about 3.8× 104 times
faster than rebuilding the ROM from scratch (10457 seconds). Even though the runtime of the dynamic
ROM update scales linearly with the dimension of the FOM, the dynamic ROM achieves a large speedup
here. As shown in Figure 11a, the speedup is in large part due to the avoidance of the inference of the latent
parameter. The speedup of one dynamic ROM update versus rebuilding the ROM from scratch is shown for
increasing N in Figure 11b. The speedup obtained with the dynamic ROM increases with the dimension
N in this example. Therefore, these results indicate that the runtime for rebuilding the ROM grows faster
with the dimension N of the FOM than the runtime of the dynamic ROM update. Overall, the results in
Figure 11 show that significant speedups are obtained with the dynamic ROM compared to rebuilding from
scratch, even though the adaptation of the dynamic ROM depends linearly on the dimension N of the FOM.
We finally note that if the latent parameter had been known and thus the runtime of inferring the latent
parameter had been excluded from the runtime of rebuilding the ROM, we would have obtained a speedup
of 6.7× 102 with our dynamic ROM.

5. Conclusions

The key novel idea of dynamic ROMs is to adapt to changes in the underlying system by updating the
reduced basis and the reduced operators directly from sensor data in the online phase. This avoids the
computationally expensive FOM of the changed system.

The POD basis is adapted to the sensor data with an approximate SVD updating scheme and the
reduced operators are adapted by inferring additive updates from the sensor data with a highly structured
optimization problem. We ensure valid ROMs in case of limited sensor information by adapting with low-
rank updates, where the rank is chosen such that the corresponding least-squares problem cannot become
underdetermined. If sufficient and accurate data are available, our update scheme guarantees that we
eventually recover the true ROM that we would obtain by rebuilding it from scratch. The runtime costs
scale only linearly with the number of degrees of freedom of the FOM if the full-order matrices for the initial
parameter configuration are sparse.

21

rebuild ROM new SVD dynamic

10
0

10
2

10
4

ru
nt

im
e

[s
]

adapt
infer
offline

10679 14559 19039
1

1.5

2

2.5

3

3.5

4
x 10

4

sp
ee

du
p

(a
da

pt
in

g
vs

 r
eb

ui
ld

in
g)

#degrees of freedom of FOM

(a) runtime (b) speedup of one adaptation compared to rebuilding

Figure 11: Adapting the dynamic ROM with the approximate SVD (“dynamic”) is about 28 times faster than if the SVD
is recomputed from scratch (“new SVD”), and about 3.8 × 104 times faster than rebuilding the ROM from scratch (“rebuild
ROM”). The speedup of one adaptivity step compared to rebuilding increases as the number N of the degrees of freedom of
the FOM is increased.

Because dynamic ROMs learn from sensor data instead of relying on the FOM, it is not necessary to
evaluate the FOM at any other latent parameter than the one describing the initial state of the system.
This is not only advantageous with respect to the runtime of updating the ROM but it also has at least two
implications for the FOM. First, the discretization and solver routines of the FOM have to be available only
for this initial parameter configuration. This often simplifies the FOM implementation or even allows reuse
of available codes. Second, the latent parameters do not have to be selected when modeling the FOM. This
means that the FOM does not have to anticipate all possible system changes. From a more general point of
view, our dynamic ROM approach shows once more that models and data act in a symbiotic way and should
not be considered as separate entities during modeling, implementation, and evaluation.

Dynamic ROMs are applicable if sensor data are available. We only considered real-time structural
assessment and decision making but modern sensor technology is also advancing for control systems and,
in general, for dynamic data-driven application systems (DDDAS). With the availability of accurate and
massive amounts of sensor data, these are all possible further applications of dynamic ROMs. Besides the
situation where sensor samples are available, dynamic ROMs are also applicable if sporadic FOM evaluations
are feasible during the online phase. Dynamic ROMs then successively adapt to changing latent parame-
ters, whereas rebuilding the ROM would require stopping the online phase until sufficient snapshot data
are generated. Dynamic ROMs also avoid inferring the latent parameters and avoid assembling full-order
matrices. In the setting where additional data might be provided by sporadic FOM evaluations, this would
be particularly advantageous if the FOM is quick to evaluate, e.g., due to a fast (matrix-free) forward solver,
compared to assembling the full-order operators to rebuild the ROM.

Future work includes an extension to derive updates from partial sensor samples. Such an extension could
rely on gappy POD [24, 39] or the adaptivity scheme introduced in [15]. Another topic of future research
is an approach to avoid the computationally expensive initialization phase that requires access to the FOM
operators. For example, one could start with an initial operator that is, e.g., zero, and infer updates to this
operator from data.

22

Acknowledgment

The authors would like to acknowledge the funding for this research, supported by AFOSR grant FA9550-
11-1-0339 under the Dynamic Data-Driven Application Systems (DDDAS) Program (Program Manager Dr.
Frederica Darema). Several examples were computed on the computer clusters of the Munich Centre of
Advanced Computing.

References

[1] D. Kordonowy, O. Toupet, Composite airframe condition-aware maneuverability and survivability for
unmanned aerial vehicles, in: Infotech@Aerospace 2011, AIAA Paper 2011-1496, 2011, pp. 1–10.

[2] D. Allaire, J. Chambers, R. Cowlagi, D. Kordonowy, M. Lecerf, L. Mainini, F. Ulker, K. Willcox, An
Offline/Online DDDAS capability for self-aware aerospace vehicles, Procedia Computer Science 18 (0)
(2013) 1959–1968.

[3] J. Degroote, J. Vierendeels, K. Willcox, Interpolation among reduced-order matrices to obtain parame-
terized models for design, optimization and probabilistic analysis, International Journal for Numerical
Methods in Fluids 63 (2) (2010) 207–230.

[4] H. Panzer, J. Mohring, R. Eid, B. Lohmann, Parametric model order reduction by matrix interpolation,
at – Automatisierungstechnik 58 (8) (2010) 475–484.

[5] D. Amsallem, C. Farhat, An online method for interpolating linear parametric reduced-order models,
SIAM Journal on Scientific Computing 33 (5) (2011) 2169–2198.

[6] J. Burkardt, M. Gunzburger, H.-C. Lee, POD and CVT-based reduced-order modeling of Navier–Stokes
flows, Computer Methods in Applied Mechanics and Engineering 196 (1–3) (2006) 337–355.

[7] J. Eftang, B. Stamm, Parameter multi-domain hp empirical interpolation, International Journal for
Numerical Methods in Engineering 90 (4) (2012) 412–428.

[8] M. Dihlmann, M. Drohmann, B. Haasdonk, Model reduction of parametrized evolution problems using
the reduced basis method with adaptive time-partitioning, in: D. Aubry, P. Dı́ez, B. Tie, N. Parés
(Eds.), Proceedings of the International Conference on Adaptive Modeling and Simulation, 2011, pp.
156–167.

[9] D. Amsallem, M. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases,
International Journal for Numerical Methods in Engineering 92 (10) (2012) 891–916.

[10] B. Peherstorfer, D. Butnaru, K. Willcox, H.-J. Bungartz, Localized discrete empirical interpolation
method, SIAM Journal on Scientific Computing 36 (1) (2014) A168–A192.

[11] J. Eftang, A. Patera, Port reduction in parametrized component static condensation: approximation
and a posteriori error estimation, International Journal for Numerical Methods in Engineering 96 (5)
(2013) 269–302.

[12] S. Kaulmann, B. Haasdonk, Online greedy reduced basis construction using dictionaries, in: I. Troch,
F. Breitenecker (Eds.), Proceedings of 7th Vienna International Conference on Mathematical Modelling,
2012, pp. 112–117.

[13] Y. Maday, B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis
spaces, SIAM Journal on Scientific Computing 35 (6) (2013) A2417–A2441.

[14] K. Washabaugh, D. Amsallem, M. Zahr, C. Farhat, Nonlinear model reduction for CFD problems using
local reduced-order bases, in: 42nd AIAA Fluid Dynamics Conference and Exhibit, Fluid Dynamics
and co-located Conferences, AIAA Paper 2012-2686, AIAA, 2012, pp. 1–16.

23

[15] D. Amsallem, M. Zahr, K. Washabaugh, Fast local reduced basis updates for the efficient reduction of
nonlinear systems with hyper-reduction, Special issue on Model Reduction of Parameterized Systems
(MoRePaS), Advances in Computational Mathematics (in review).

[16] K. Carlberg, Adaptive h-refinement for reduced-order models, International Journal for Numerical Meth-
ods in Engineering (accepted).

[17] C. Gogu, Improving the efficiency of large scale topology optimization through on-the-fly reduced order
model construction, International Journal for Numerical Methods in Engineering 101 (4) (2015) 281–304.

[18] Y. Maday, O. Mula, A generalized empirical interpolation method: Application of reduced basis tech-
niques to data assimilation, in: F. Brezzi, P. C. Franzone, U. Gianazza, G. Gilardi (Eds.), Analysis
and Numerics of Partial Differential Equations, no. 4 in Springer INdAM Series, Springer, 2013, pp.
221–235.

[19] M. Yano, J. Penn, A. Patera, A model-data weak formulation for simultaneous estimation of state and
model bias, Comptes Rendus Mathematique 351 (23-24) (2013) 937–941.

[20] R. Kalman, A new approach to linear filtering and prediction problems, Journal of Fluids Engineering
82 (1) (1960) 35–45.

[21] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics, Journal of Geophysical Research: Oceans 99 (C5) (1994) 10143–
10162.

[22] E. Constantinescu, A. Sandu, T. Chai, G. Carmichael, Assessment of ensemble-based chemical data
assimilation in an idealized setting, Atmospheric Environment 41 (1) (2007) 18 – 36.

[23] C. Johns, J. Mandel, A two-stage ensemble Kalman filter for smooth data assimilation, Environmental
and Ecological Statistics 15 (1) (2008) 101–110.

[24] R. Everson, L. Sirovich, Karhunen-Loève procedure for gappy data, Journal of the Optical Society of
America A: Optics, Image Science & Vision 12 (8) (1995) 1657–1664.

[25] P. Astrid, S. Weiland, K. Willcox, T. Backx, Missing point estimation in models described by proper
orthogonal decomposition, Automatic Control, IEEE Transactions on 53 (10) (2008) 2237–2251.

[26] M. Barrault, Y. Maday, N. Nguyen, A. Patera, An ‘empirical interpolation’ method: application to
efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique
339 (9) (2004) 667–672.

[27] S. Chaturantabut, D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM
Journal on Scientific Computing 32 (5) (2010) 2737–2764.

[28] K. Veroy, A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-
Stokes equations: rigorous reduced-basis a posteriori error bounds, International Journal for Numerical
Methods in Fluids 47 (8-9) (2005) 773–788.

[29] C. Lieberman, K. Willcox, O. Ghattas, Parameter and state model reduction for large-scale statistical
inverse problems, SIAM Journal on Scientific Computing 32 (5) (2010) 2523–2542.

[30] T. Bui-Thanh, K. Willcox, O. Ghattas, Model reduction for large-scale systems with high-dimensional
parametric input space, SIAM Journal on Scientific Computing 30 (6) (2008) 3270–3288.

[31] B. Peherstorfer, S. Zimmer, H.-J. Bungartz, Model reduction with the reduced basis method and sparse
grids, in: J. Garcke, M. Griebel (Eds.), Sparse Grids and Applications, Vol. 88 of Lecture Notes in
Computational Science and Engineering, Springer, 2013, pp. 223–242.

24

[32] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra and its
Applications 415 (1) (2006) 20–30.

[33] A. Ferreira, MATLAB Codes for Finite Element Analysis, Springer, 2008.

[34] E. Ventsel, T. Krauthammer, Thin Plates and Shells, CRC Press, 2001.

[35] M. Markou, S. Singh, Novelty detection: a review-part 1: statistical approaches, Signal Processing
83 (12) (2003) 2481–2497.

[36] M. Markou, S. Singh, Novelty detection: a review-part 2: neural network based approaches, Signal
Processing 83 (12) (2003) 2499–2521.

[37] M. Pimentel, D. Clifton, L. Clifton, L. Tarassenko, A review of novelty detection, Signal Processing 99
(2014) 215–249.

[38] M. Lecerf, A data-driven approach to online flight capability estimation, S.M. Thesis, Massachusetts
Institute of Technology, Cambridge, MA (2014).

[39] L. Mainini, K. Willcox, Sensitivity analysis of surrogate-based methodology for real time structural
assessment, in: AIAA Modeling and Simulation Technologies Conference, AIAA SciTech 2015, AIAA
Paper 2015-1362, AIAA, 2015.

25

	Introduction
	Reduced-order models of systems with latent parameters
	Parametrized systems with latent parameters
	Reduced-order models of systems with latent parameters
	Problem formulation and problem setting

	Dynamic reduced-order models
	Adapting the POD basis
	Adapting the reduced operators with low-rank updates
	Basis transformation
	Additive updates to the reduced operators
	Low-rank updates and computational procedure

	Dynamic reduced-order models and complexity analysis
	Complexity analysis

	Numerical Results
	Problem setup
	Singular values and latent parameters
	Numerical experiments with dynamic reduced-order models

	Conclusions

