Multifidelity Uncertainty Quantification

Benjamin Peherstorfer Courant Institute of Mathematical Sciences, New York University

June 2022

Intro: Uncertainties due to data

[Figure: NOAA]

Intro: Uncertainties due to unknown parameters

[Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.]

Intro: No hope to exhaustively model physics

[Figure: University of Michigan]

Intro: Manufacturing variations

[Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the Common Research Model configuration. Group (ADODG), 6(7), 8-9.]

Intro: Model

Model of system of interest

- Model describes response of system to inputs, parameters, configurations
- Response typically is a quantity of interest
- Evaluating a model means numerically simulating the model
- Many models given in form of partial differential equations

Mathematical formulation

$$f: \mathcal{D} \to \mathcal{Y}$$

- ullet Input domain ${\mathcal D}$ and output domain ${\mathcal Y}$
- Maps $z \in \mathcal{D}$ input onto $y \in \mathcal{Y}$ output (quantity of interest)

Intro: Model - Navier-Stokes equations

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla p + \mu \Delta u + g$$

Examples of inputs

- Density ρ
- ullet Dynamic viscosity μ

Examples of outputs (quantities of interest)

- Velocity at monitoring point
- Average pressure

Intro: Model - Diffusion-convection-reaction flow

$$\frac{\partial u}{\partial t} = \Delta u - v \nabla u + g(u, \boldsymbol{\mu})$$

Examples of inputs

- Activation energy and pre-exponential factor (Arrhenius-type reaction)
- Temperature at boundary
- Ratio of fuel and oxidizer

Examples of outputs

• Average temperature in chamber

Intro: Uncertain inputs

Inputs are uncertain

- Measurement errors in boundary conditions
- Manufacturing variations
- Model parameters determined by engineering judgment
- .

Intro: Uncertain inputs

Inputs are uncertain

- Measurement errors in boundary conditions
- Manufacturing variations
- Model parameters determined by engineering judgment
- ..

Mathematically formulate uncertain inputs as random variables

$$Z:\Omega \to \mathcal{D}$$

Intro: Uncertain inputs

Inputs are uncertain

- Measurement errors in boundary conditions
- Manufacturing variations
- Model parameters determined by engineering judgment
- ..

Mathematically formulate uncertain inputs as random variables

$$Z:\Omega\to\mathcal{D}$$

Quantify effect of uncertainties in inputs on model outputs

Intro: General sampling-based approach to UQ

 \bullet Take many realizations of input random variable Z

$$z_1,\ldots,z_n\in\mathcal{D}$$

• Evaluate model f at all z_1, \ldots, z_n realizations

$$\mathbf{y}_1 = f(\mathbf{z}_1), \dots, \mathbf{y}_n = f(\mathbf{z}_n)$$

• Estimate statistics (mean, std. deviation, etc) from outputs y_1, \ldots, y_n

Intro: General sampling-based approach to UQ

• Take many realizations of input random variable Z

$$z_1,\ldots,z_n\in\mathcal{D}$$

• Evaluate model f at all z_1, \ldots, z_n realizations

$$\mathbf{y}_1 = f(\mathbf{z}_1), \dots, \mathbf{y}_n = f(\mathbf{z}_n)$$

ullet Estimate statistics (mean, std. deviation, etc) from outputs $oldsymbol{y}_1,\ldots,oldsymbol{y}_n$

Intro: General sampling-based approach to UQ

• Take many realizations of input random variable Z

$$z_1,\ldots,z_n\in\mathcal{D}$$

• Evaluate model f at all z_1, \ldots, z_n realizations

$$\mathbf{y}_1 = f(\mathbf{z}_1), \dots, \mathbf{y}_n = f(\mathbf{z}_n)$$

ullet Estimate statistics (mean, std. deviation, etc) from outputs $oldsymbol{y}_1,\ldots,oldsymbol{y}_n$

- Formulation and modeling of uncertainties
- Models based on PDEs: nonlinear, multi-scale, multi-physics
- ullet Single model solve expensive; repeated solves prohibitive \Rightarrow multifidelity
- Uncertain parameters are of high dimension

- Formulation and modeling of uncertainties
- Models based on PDEs: nonlinear, multi-scale, multi-physics
- ullet Single model solve expensive; repeated solves prohibitive \Rightarrow multifidelity
- Uncertain parameters are of high dimension

- Formulation and modeling of uncertainties
- Models based on PDEs: nonlinear, multi-scale, multi-physics
- Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
- Uncertain parameters are of high dimension

- Formulation and modeling of uncertainties
- Models based on PDEs: nonlinear, multi-scale, multi-physics
- Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
- Uncertain parameters are of high dimension

Intro: Opportunity of low-fidelity models

Given is typically a high-fidelity model

- Large-scale numerical simulation
- Achieves required accuracy
- Computationally expensive

Additionally, often have available or can train low-fidelity models

- Approximate same quantity of interest as high-fidelity model
- Often orders of magnitudes cheaper than high-fidelity model
- Less accurate and typically no accuracy guarantees

Intro: Three types of low-fidelity models

simplified models

- Simplifying physics
- Coarser discretizations
- Linearized models
- Early stopping of iterative solvers

data-fit models

- Fitting model to data of input-output map given by high-fidelity model
- Response surfaces
- Gaussian processes
- Neural networks

reduced models

- Extract important dynamics of full states from *data*
- Approximate high-dimensional states in subspaces
- Restrict solving governing equations to subspaces

Intro: Low-fidelity models

Replace high- with low-fidelity model

- Costs of outer loop application reduced
- Often orders of magnitude speedups

Low-fidelity model introduces error

- Control with error bounds/estimators*
- Rebuild if accuracy too low
- No guarantees without bounds/estimators

Issues

- Propagation of output error on estimate
- Applications without error control
- Costs of rebuilding a low-fidelity model

Multifidelity: Combine multiple models

Combine high-fidelity and low-fidelity models

• Leverage low-fidelity models for speedup

• Recourse to high-fidelity for accuracy

Multifidelity speeds up computations

- Balance #solves among models
- Adapt, fuse, filter with low-fidelity models

Multifidelity guarantees high-fidelity accuracy

- Occasional recourse to high-fidelity model
- High-fidelity model is kept in the loop
- Independent of error control of low fidelity

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 60(3):550-591, 2018]

Intro: Survey with many references

SIAM REVIEW Vol. 60, No. 3, pp. 550-591 © 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization*

Benjamin Peherstorfer[†] Karen Willcox[‡] Max Gunzburger[§]

Abstract. In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have varying evaluation costs and varying fidelities. Typically, a computationally expensive highfidelity model describes the system with the accuracy required by the current application at hand, while lower-fidelity models are less accurate but computationally cheaper than the high-fidelity model. Outer-loop applications, such as optimization, inference, and uncertainty quantification, require multiple model evaluations at many different inputs, which often leads to computational demands that exceed available resources if only the high-fidelity model is used. This work surveys multifidelity methods that accelerate the solution of outer-loop applications by combining high-fidelity and low-fidelity model evaluations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g., a simplified physics approximation, a reduced model, a data-fit surrogate) that approximates the same output quantity as the high-fidelity model. The overall premise of these multifidelity methods is that low-fidelity models are leveraged for speedup while the highfidelity model is kept in the loop to establish accuracy and/or convergence guarantees. We categorize multifidelity methods according to three classes of strategies: adaptation, fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts of uncertainty propagation, inference, and optimization.

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification, multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity optimization

AMS subject classifications. 65-02, 62-02, 49-02

DOI: 10.1137/16M1082469

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

MFMC: Monte Carlo estimation

High-fidelity ("truth") model, costs $w_1 > 0$

$$f^{(1)}:\mathcal{D} o\mathcal{Y}$$

Random variable Z, estimate

$$s=\mathbb{E}[f^{(1)}(Z)]$$

Monte Carlo estimate of s with real. z_1, \ldots, z_n

$$\bar{y}_n^{(1)} = \frac{1}{n} \sum_{i=1}^n f^{(1)}(z_i)$$

Computational costs

- Many evaluations of high-fidelity model
- Typically $10^3 10^6$ evaluations
- Intractable if $f^{(1)}$ expensive

Given is a random variable A and we want to estimate its mean

$$s_A = \mathbb{E}[A]$$

Given is a random variable A and we want to estimate its mean

$$s_A = \mathbb{E}[A]$$

Independent and identically distributed (i.i.d.) samples

$$a_1, \ldots, a_n$$

Given is a random variable A and we want to estimate its mean

$$s_A = \mathbb{E}[A]$$

Independent and identically distributed (i.i.d.) samples

$$a_1, \ldots, a_n$$

Regular Monte Carlo estimator of s_A

$$\bar{a}_n = \frac{1}{n} \sum_{i=1}^n a_i$$

Given is a random variable A and we want to estimate its mean

$$s_A = \mathbb{E}[A]$$

Independent and identically distributed (i.i.d.) samples

$$a_1, \ldots, a_n$$

Regular Monte Carlo estimator of s_A

$$\bar{a}_n = \frac{1}{n} \sum_{i=1}^n a_i$$

Unbiased estimator $\mathbb{E}[\bar{a}_n] = s_A$ with mean-squared error (MSE)

$$Var[\bar{a}_n] = \frac{1}{n^2} Var \left[\sum_{i=1}^n a_i \right] = \frac{Var[A]}{n}$$

MFMC: Control variates (cont'd)

Additional random variable B with known mean $s_B = \mathbb{E}[B]$ and samples

 b_1,\ldots,b_n

MFMC: Control variates (cont'd)

Additional random variable B with known mean $s_B = \mathbb{E}[B]$ and samples

$$b_1,\ldots,b_n$$

Regular Monte Carlo estimator of s_B

$$\bar{b}_n = \frac{1}{n} \sum_{i=1}^n b_i$$

Additional random variable B with known mean $s_B = \mathbb{E}[B]$ and samples

$$b_1,\ldots,b_n$$

Regular Monte Carlo estimator of s_B

$$\bar{b}_n = \frac{1}{n} \sum_{i=1}^n b_i$$

Control variate estimator of s_A that uses samples from A and B

$$\hat{s}_A = \bar{a}_n + \left(s_B - \bar{b}_n\right)$$

Additional random variable B with known mean $s_B = \mathbb{E}[B]$ and samples

$$b_1,\ldots,b_n$$

Regular Monte Carlo estimator of s_B

$$\bar{b}_n = \frac{1}{n} \sum_{i=1}^n b_i$$

Control variate estimator of s_A that uses samples from A and B

$$\hat{s}_A = \bar{a}_n + (s_B - \bar{b}_n)$$

Introduce coefficient $\alpha \in \mathbb{R}$ to balance A and B

$$\hat{s}_{A} = \bar{a}_{n} + \alpha \left(s_{B} - \bar{b}_{n} \right)$$

Combines n samples of A and n samples of B

[Nelson, 87]

Control variate estimator

$$\hat{s}_{A} = \bar{a}_{n} + \alpha \left(s_{B} - \bar{b}_{n} \right)$$

Control variate estimator

$$\hat{s}_{A} = \bar{a}_{n} + \alpha \left(s_{B} - \bar{b}_{n} \right)$$

Unbiased estimator of s_A because

$$\mathbb{E}[\hat{s}_A] = \underbrace{\mathbb{E}[\bar{a}_n]}_{=s_A} + \alpha \underbrace{\mathbb{E}[s_B - \bar{b}_n]}_{=0} = s_A$$

Control variate estimator

$$\hat{s}_{A} = \bar{a}_{n} + \alpha \left(s_{B} - \bar{b}_{n} \right)$$

Unbiased estimator of s_A because

$$\mathbb{E}[\hat{s}_A] = \underbrace{\mathbb{E}[\bar{a}_n]}_{=s_A} + \alpha \underbrace{\mathbb{E}[s_B - \bar{b}_n]}_{=0} = s_A$$

Variance of control variate estimator for optimal* $\alpha \in \mathbb{R}$

$$\operatorname{\mathsf{Var}}[\hat{s}_{A}] = (1 - \rho^{2}) \frac{\operatorname{\mathsf{Var}}[A]}{n} = (1 - \rho^{2}) \operatorname{\mathsf{Var}}[\bar{a}_{n}]$$

- ullet Correlation coefficient $-1 \le \rho \le 1$ of A and B
- ullet If ho=0, same variance as regular Monte Carlo
- If $|\rho| > 0$, lower variance
- ullet The higher correlated, the lower variance of \hat{s}_A

MFMC: Multifidelity Monte Carlo Estimation

Estimate expected value

$$s=\mathbb{E}[f^{(1)}(Z)]$$

Low-fidelity models

$$f^{(2)}, f^{(3)}, \ldots, f^{(k)}: \mathcal{D} \to \mathcal{Y}$$

Correlation coefficients

$$\rho_2 = \mathsf{Corr}[f^{(1)}, f^{(2)}], \rho_3 = \mathsf{Corr}[f^{(1)}, f^{(3)}], \dots, \rho_k = \mathsf{Corr}[f^{(1)}, f^{(k)}]$$

Costs

$$w_1, w_2, \ldots, w_k > 0$$

No need to know expected values of low-fidelity models!

MFMC: Multifidelity Monte Carlo

Reminder: Monte Carlo estimator

$$\bar{y}_n^{(1)} = \frac{1}{n} \sum_{i=1}^n f^{(1)}(z_i)$$

Multifidelity Monte Carlo (MFMC) estimator

$$\hat{\mathbf{s}} = \underbrace{\bar{\mathbf{y}}_{m_{\mathbf{1}}}^{(1)}}_{\text{from HFM}} + \sum_{i=2}^{k} \alpha_{i} \underbrace{\left(\bar{\mathbf{y}}_{m_{i}}^{(i)} - \bar{\mathbf{y}}_{m_{i-1}}^{(i)}\right)}_{\text{from low-fid. models}}$$

Monte Carlo estimator

$$\bar{y}_{m_i}^{(i)} = \frac{1}{m_i} \sum_{i=1}^{m_i} f^{(i)}(z_i)$$

- Number of model evaluations $\mathbf{m} = [m_1, \dots, m_k]^T$
- Control variate coefficients $\alpha = [\alpha_2, \dots, \alpha_k]^T$
- ullet Optimal selection of $oldsymbol{m}$ and lpha
 ightarrow our code

MFMC: Multifidelity Monte Carlo

Reminder: Monte Carlo estimator

$$\bar{y}_n^{(1)} = \frac{1}{n} \sum_{i=1}^n f^{(1)}(z_i)$$

Multifidelity Monte Carlo (MFMC) estimator

$$\hat{\mathbf{s}} = \underbrace{\bar{\mathbf{y}}_{m_{\mathbf{1}}}^{(1)}}_{\text{from HFM}} + \sum_{i=2}^{k} \alpha_{i} \underbrace{\left(\bar{\mathbf{y}}_{m_{i}}^{(i)} - \bar{\mathbf{y}}_{m_{i-1}}^{(i)}\right)}_{\text{from low-fid. models}}$$

Monte Carlo estimator

$$\bar{y}_{m_i}^{(i)} = \frac{1}{m_i} \sum_{i=1}^{m_i} f^{(i)}(z_i)$$

- Number of model evaluations $\mathbf{m} = [m_1, \dots, m_k]^T$
- Control variate coefficients $\alpha = [\alpha_2, \dots, \alpha_k]^T$
- ullet Optimal selection of $oldsymbol{m}$ and $lpha
 ightarrow {\sf our}$ code

MFMC: Recipe 1

Download

https://github.com/pehersto/mfmc

Given

- Models $f^{(1)}, f^{(2)}, \dots, f^{(k)}$
- Computational budget b

Pilot run

- Draw m_0 (\approx 50) realizations of Z
- Evaluate each model $f^{(1)}, f^{(2)}, \dots, f^{(k)}$ at the m_0 realizations

$$\mathbf{Y} = egin{bmatrix} f^{(1)}(\mathbf{z}_1) & f^{(2)}(\mathbf{z}_1) & \dots & f^{(k)}(\mathbf{z}_1) \\ \vdots & \vdots & & \vdots \\ f^{(1)}(\mathbf{z}_{m_0}) & f^{(2)}(\mathbf{z}_{m_0}) & \dots & f^{(k)}(\mathbf{z}_{m_0}) \end{bmatrix}$$

ullet Estimate computational costs of model evaluations $oldsymbol{w} = [w_1, \dots, w_k]^T$

MFMC: Recipe 1 (cont'd)

Determine number of model evaluations

- Number of model evaluations $\mathbf{m} = [m_1, m_2, \dots, m_k]^T$
- Coefficients $\boldsymbol{a} = [\alpha_2, \alpha_3, \dots, \alpha_k]^T$

Draw realizations

$$\boldsymbol{z}_1, \boldsymbol{z}_2, \dots, \boldsymbol{z}_{m_k}$$

Evaluate models

$$f^{(i)}(z_1), \ldots, f^{(i)}(z_{m_i}), \qquad i = 1, \ldots, k$$

Estimate

$$\hat{s} = \underbrace{\bar{y}_{m_1}^{(1)}}_{\text{from HFM}} + \sum_{i=2}^{k} \alpha_i \underbrace{\left(\bar{y}_{m_i}^{(i)} - \bar{y}_{m_{i-1}}^{(i)}\right)}_{\text{from low.-fid. model}}$$

```
modelList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs
budget = 1000*w(1); % total budget
```

```
modelList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs
budget = 1000*w(1); % total budget

mu = drawSamples(50); % pilot samples
for i=1:length(modelList)
   Y(:, i) = modelList{i}(mu);
end
```

```
modelList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs
budget = 1000*w(1); % total budget

mu = drawSamples(50); % pilot samples
for i=1:length(modelList)
    Y(:, i) = modelList{i}(mu);
end

[m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
```

```
modelList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; \% costs
budget = 1000*w(1); % total budget
 mu = drawSamples(50); % pilot samples
 for i=1:length(modelList)
 Y(:, i) = modelList\{i\}(mu);
 end
[m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
 z = drawSamples(m(end)); % draw realizations
```

```
modelList = {HFM,LFM1,LFM2,LFM3}; % models
 w = [100, 50, 20, 10]'; \% costs
 budget = 1000*w(1); % total budget
 mu = drawSamples(50); % pilot samples
 for i=1:length(modelList)
 Y(:, i) = modelList\{i\}(mu);
 end
[m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
 z = drawSamples(m(end)); % draw realizations
 y = modelList\{1\}(z(1:m(1), :)); \% evaluate HFM
 sHat = alpha(1)*mean(y);
```

modelList = {HFM,LFM1,LFM2,LFM3}; % models w = [100, 50, 20, 10]'; % costsbudget = 1000*w(1); % total budget mu = drawSamples(50); % pilot samples for i=1:length(modelList) $Y(:, i) = modelList\{i\}(mu);$ end [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC z = drawSamples(m(end)); % draw realizations $y = modelList\{1\}(z(1:m(1), :)); \% evaluate HFM$ sHat = alpha(1)*mean(y); % evaluate low-fidelity models for i=2:length(modelList) $y = modelList\{i\}(z(1:m(i), :));$ sHat = sHat + alpha(i) * (mean(y) - mean(y(1:m(i-1))));end

MFMC: Recipe 2 (MFMC as post-processing)

Given

Model evaluations

$$f^{(i)}(z_1), \ldots, f^{(i)}(z_{m_i}), \qquad i = 1, \ldots, k$$

• Model evaluation costs w_1, \ldots, w_k

Pilot samples

• Use the first $m_0 \ll m_1$ samples to form

$$\mathbf{Y} = egin{bmatrix} f^{(1)}(\mathbf{z}_1) & f^{(2)}(\mathbf{z}_1) & \dots & f^{(k)}(\mathbf{z}_1) \ dots & dots & dots \ f^{(1)}(\mathbf{z}_{m_0}) & f^{(2)}(\mathbf{z}_{m_0}) & \dots & f^{(k)}(\mathbf{z}_{m_0}) \end{bmatrix}$$

Derive coefficients

[
$$\sim$$
, a] = optiMlevelCorr(Y, w, b)

Estimate

$$s = \underbrace{\bar{y}_{m_1}^{(1)}}_{\text{from HFM}} + \sum_{i=2}^{k} \alpha_i \underbrace{\left(\bar{y}_{m_i}^{(i)} - \bar{y}_{m_{i-1}}^{(i)}\right)}_{\text{from low.-fid. models}}$$

MFMC: Recipe 2 (MFMC as post-processing)

Given

Model evaluations

$$f^{(i)}(z_1), \ldots, f^{(i)}(z_{m_i}), \qquad i = 1, \ldots, k$$

• Model evaluation costs w_1, \ldots, w_k

Pilot samples

• Use the first $m_0 \ll m_1$ samples to form

$$\mathbf{Y} = egin{bmatrix} f^{(1)}(\mathbf{z}_1) & f^{(2)}(\mathbf{z}_1) & \dots & f^{(k)}(\mathbf{z}_1) \ dots & dots & dots \ f^{(1)}(\mathbf{z}_{m_0}) & f^{(2)}(\mathbf{z}_{m_0}) & \dots & f^{(k)}(\mathbf{z}_{m_0}) \end{bmatrix}$$

Derive coefficients

[
$$\sim$$
, a] = optiMlevelCorr(Y, w, b)

Estimate

$$s = \underbrace{\bar{y}_{m_1}^{(1)}}_{\text{from HFM}} + \sum_{i=2}^{k} \alpha_i \underbrace{\left(\bar{y}_{m_i}^{(i)} - \bar{y}_{m_{i-1}}^{(i)}\right)}_{\text{from low.-fid. models}}$$

MFMC: AeroStruct: Problem setup

Coupled aero-structural wing analysis

- Uncertain are angle of attack, air density, Mach number
- Estimate expected fuel burn

High-fidelity model $f^{(1)}$

- OpenAeroStruct code
- Vortex-lattice method
- 6 DoF 3-dim spatial beam model
- Used with default configuration

Low-fidelity models

- Spline interpolants on equidistant grid
- Low-fidelity model $f^{(2)}$ from 343 points
- Low-fidelity model $f^{(3)}$ from 125 points

[Jasa, J. P., Hwang, J. T., and Martins, J. R. R. A., "Open-source coupled aerostructural optimization using Python," Structural and Multidisciplinary Optimization, 2018.]

https://github.com/johnjasa/OpenAeroStruct/

MFMC: AeroStruct: Distribution of work

Model properties

model	evaluation costs [s]	offline costs [s]	correlation coefficient
high-fid. $f^{(1)}$	1.61×10^{-1}	-	-
low-fid. $f^{(2)}$	1.23×10^{-7}	55.382	9.9552×10^{-1}
low-fid. $f^{(3)}$	1.21×10^{-7}	20.183	9.9192×10^{-1}

Number of model evaluations

	Monte Carlo	MFMC with $f^{(1)}, f^{(2)}$		MFMC with $f^{(1)}, f^{(3)}$	
online costs [s]	#evals $f^{(1)}$	#evals $f^{(1)}$	#evals f ⁽²⁾	#evals $f^{(1)}$	#evals $f^{(3)}$
7.99 × 10 ⁰	50	4.90×10^{1}	4.48 × 10 ⁵	4.90×10^{1}	5.97×10^{5}
$1.61 imes 10^{1}$	100	9.90×10^{1}	8.95×10^{5}	9.90×10^{1}	1.19×10^{6}
$8.07 imes 10^{1}$	500	4.96×10^{2}	4.48×10^{6}	4.95×10^{2}	$5.97 imes 10^{6}$
1.61×10^{2}	1000	9.93×10^{2}	8.95×10^{6}	9.90×10^{2}	1.19×10^{7}
8.07×10^2	5000	$4.97 imes 10^3$	4.48×10^{7}	4.95×10^{3}	5.97×10^7

MFMC trades high-fidelity evaluations for low-fidelity evaluations

- The high-fidelity model evaluations guarantee unbiased
- The low-fidelity model evaluations help to reduce the variance
- The balance is optimal with respect to the mean-squared error

MFMC: AeroStruct: Distribution of work

Model properties

model	evaluation costs [s]	offline costs [s]	correlation coefficient
high-fid. $f^{(1)}$	1.61×10^{-1}	-	-
low-fid. $f^{(2)}$	1.23×10^{-7}	55.382	9.9552×10^{-1}
low-fid. $f^{(3)}$	1.21×10^{-7}	20.183	9.9192×10^{-1}

Number of model evaluations

	Monte Carlo	MFMC with $f^{(1)}, f^{(2)}$		MFMC with $f^{(1)}, f^{(3)}$	
online costs [s]	#evals $f^{(1)}$	#evals $f^{(1)}$	#evals f ⁽²⁾	#evals f ⁽¹⁾	#evals $f^{(3)}$
7.99 × 10 ⁰	50	4.90×10^{1}	4.48 × 10 ⁵	4.90×10^{1}	5.97 × 10 ⁵
$1.61 imes 10^{1}$	100	9.90×10^{1}	8.95×10^{5}	9.90×10^{1}	1.19×10^{6}
$8.07 imes 10^{1}$	500	4.96×10^{2}	4.48×10^{6}	4.95×10^{2}	$5.97 imes 10^{6}$
1.61×10^{2}	1000	9.93×10^{2}	8.95×10^{6}	9.90×10^{2}	1.19×10^{7}
8.07×10^{2}	5000	$4.97 imes 10^3$	4.48×10^7	4.95×10^{3}	5.97×10^{7}

MFMC trades high-fidelity evaluations for low-fidelity evaluations

- The high-fidelity model evaluations guarantee unbiased
- The low-fidelity model evaluations help to reduce the variance
- The balance is optimal with respect to the mean-squared error

MFMC: AeroStruct: Speedup results

- Low-fidelity model alone leads to biased estimators
- MFMC achieves speedup of about two order of magnitude

MFMC: AeroStruct: Speedup with offline costs

- Constructing low-fidelity models incurs offline costs
- In this example, offline costs low compared to savings

MFMC: AeroStruct: Combining all three models

- Model $f^{(2)}$ and $f^{(3)}$ are similar with respect to costs/correlations
- Adding model $f^{(2)}$ has little effect

MFMC: Plate

Locally damaged plate in bending

- Inputs: nominal thickness, load, damage
- Output: maximum deflection of plate
- Only distribution of inputs known
- Estimate expected deflection

Six models

- High-fidelity model: FEM, 300 DoFs
- Reduced model: POD, 10 DoFs
- Reduced model: POD, 5 DoFs
- Reduced model: POD, 2 DoFs
- Data-fit model: linear interp., 256 pts
- Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples

MFMC: Plate: Combining many models

- ullet Largest improvement from "single o two" and "two o three"
- Adding yet another reduced/SVM model reduces variance only slightly

MFMC: Plate: #evals of models

- MFMC distributes #evals among models depending on corr/costs
- Number of evaluation changes exponentially between models
- Highest #evals in data-fit models (cost ratio $w_1/w_6 \approx 10^6$)

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

MFGSA: Sensitivity analysis

Sensitivity analysis

- Determine which inputs influence output most
- Can sample Y as a black box for inputs Z and need to determine what components of $Z = [Z_1, \ldots, Z_d]^T$ influence Y most

MFGSA: Sensitivity analysis in engineering

Risk communication for decision-making

- Determine if one can rely on model output or if "noise"
- Communicate to upstream decision-making which inputs are critical

Feedback to improve model

- Determine which inputs need to be sampled carefully
- Prioritize effort on reducing uncertainty
- Modify model with respect to sensitive inputs

Model reduction and dimensionality reduction

- Focus on important inputs and ignore ineffective inputs
- Derive surrogate models that depend on important inputs only

MFGSA: Variance-based global sensitivity analysis

- Input $Z = [Z_1, \dots, Z_d]^T \in \mathcal{D}$ is a random vector
- Output of model $Y = f^{(1)}(Z_1, \dots, Z_d)$ is sensitive to inputs
- Measure sensitivity with variance
- Main effect sensitivity

$$S_i = \frac{\mathsf{Var}[\mathbb{E}[Y|Z_i]]}{\mathsf{Var}[Y]}$$

• Main sensitivity indices are normalized

$$\sum_{i=1}^d S_i = 1, \qquad S_i \in [0,1]$$

MFGSA: Multifidelity estimation

Estimation of sensitivity indices

• Estimate variance instead of expected value

$$S_i = \frac{\mathsf{Var}[\mathbb{E}[Y|Z_i]]}{\mathsf{Var}[Y]}$$

• Requires estimating variance for all d inputs $Z = [Z_1, \dots, Z_d]$

Multifidelity estimation

- Given are low-fidelity models $f^{(2)}, \ldots, f^{(k)}$
- Similarly to MFMC, exploit correlations

$$\rho_2 = \mathsf{Corr}[f^{(1)}, f^{(2)}], \rho_3 = \mathsf{Corr}[f^{(1)}, f^{(3)}], \dots, \rho_k = \mathsf{Corr}[f^{(1)}, f^{(k)}]$$

Estimator has similar structure as estimator for expected values

MFGSA: Premixed flame

Inputs to model are

- Parameters of Arrhenius reaction
- Temperatures at boundary
- Ratio of fuel and oxidizer
- Activation Energy

Output is maximum temperature in chamber

Models

- Model based on finite differences serves as high-fidelity model
- Model with lower fidelity derived with proper orthogonal decomposition

Code available on GitHub

https://github.com/elizqian/mfgsa

MFGSA: Premixed flame: Results

- Monte Carlo too inaccurate for ranking inputs
- Multi-fidelity Monte Carlo allows ranking of inputs

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

MFIS: Failure probabilities

System described by high-fidelity model $f^{(1)}: \mathcal{D} \to \mathcal{Y}$

- Input $z \in \mathcal{Z}$
- ullet Output $extbf{ extit{y}} \in \mathcal{Y}$
- Costs of one high-fidelity model evaluation $w_1 > 0$

Define indicator function

$$I^{(1)}(z) = egin{cases} 1\,, & f^{(1)}(z) < 0 \ 0\,, & ext{else}\,. \end{cases}$$

Indicator function $I^{(1)}(z) = 1$ signals *failure* for input z

Given random variable Z, estimate failure probability

$$P_f = \mathbb{E}_p[I^{(1)}(Z)]$$

MFIS: Rare event simulation

• Monte Carlo estimator of P_f using $m \in \mathbb{N}$ realizations

$$P_f^{\text{MC}} = \frac{1}{m} \sum_{i=1}^m I^{(1)}(z_i)$$

- If P_f small, then only few realizations with $f^{(1)}(z) < 0$
- Require (very) large m to obtain Monte Carlo estimator with acceptable accuracy → expensive

MFIS: Rare event simulation is challenging

Costs of rare event simulation grow inverse proportional to P_f

• Monte Carlo estimation of P_f with m realizations

$$P_f^{MC} = \frac{1}{m} \sum_{i=1}^m I^{(1)}(z_i)$$

ullet Relative mean-squared error (MSE) of P_f^{MC}

$$e(P_f^{\mathsf{MC}}) = \mathbb{E}_{p}\left[\left(\frac{P_f^{\mathsf{MC}} - P_f}{P_f}\right)^2\right] = \frac{\mathsf{Var}_{p}\left[I^{(1)}(Z)\right]}{P_f^2 m} = \frac{1 - P_f}{P_f m}$$

- For constant m, the rel. MSE increases inverse proportional to P_f
- A small failure probability P_f needs to be compensated with a large number of samples m
- ullet Example: For $P_f=10^{-5}$ need $mpprox 10^7$ to achieve $e(P_f^{
 m MC})\leq 10^{-2}$

Challenge

costs per sample + number of samples

MFIS: Rare events in aerospace engineering

Rare event simulation

- Failure probability estimation
- Reliability engineering

Risk assessment

- Communicate to upstream decision-making
- Mitigate catastrophic events

Risk-averse optimization

- Deliver baseline performance outside nominal operating conditions
- Take into account dynamics at limit states

MFIS: Importance sampling

- Importance sampling (IS)
 creates biasing density q to put
 more weight on failure events
- Let \hat{Z} be the corresponding random variable
- Introduce the weight function

$$r(\mathbf{z}') = \frac{p(\hat{\mathbf{z}})}{q(\hat{\mathbf{z}})}$$

• Reformulate failure probability

$$P_f = \mathbb{E}_p[I^{(1)}(Z)] = \mathbb{E}_q[I^{(1)}(\hat{Z})r(\hat{Z})]$$

 $\begin{array}{c} \text{step 1} \\ \text{construction of} \\ \text{biasing distribution} \end{array}$

step 2 estimation of failure probability

Step 1: Construct biasing distribution using low-fidelity model $f^{(2)}$

- Evaluate $f^{(2)}$ at (many) realizations z_1, \ldots, z_n of Z
- ullet Fit mixture model q (biasing) to realizations $o \mathtt{scikit} ext{-learn}$, Matlab

$$\{z_i \mid I^{(2)}(z_i) = 1, i = 1, \dots, n\}$$

• Derive random variable \hat{Z} with density q

Step 2: Estimate P_f with high-fidelity model $f^{(1)}$

$$P_f^{\mathsf{MFIS}} = rac{1}{m} \sum_{i=1}^m \ I^{(1)}(\hat{\mathbf{z}}_i) \quad rac{p(\hat{\mathbf{z}}_i)}{q(\hat{\mathbf{z}}_i)}$$

$$P_{f^{(1)}} = \mathbb{E}_q[P_f^{\mathsf{MFIS}}]$$

Step 1: Construct biasing distribution using low-fidelity model $f^{(2)}$

- Evaluate $f^{(2)}$ at (many) realizations z_1, \ldots, z_n of Z
- ullet Fit mixture model q (biasing) to realizations o scikit-learn, Matlab

$$\{z_i \mid I^{(2)}(z_i) = 1, i = 1, \dots, n\}$$

• Derive random variable \hat{Z} with density q

Step 2: Estimate P_f with high-fidelity model $f^{(1)}$

$$P_f^{\mathsf{MFIS}} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{I^{(1)}(\hat{\mathbf{z}}_i)}_{\substack{\mathsf{uses} \\ \mathsf{high-fidelity}}} \frac{p(\hat{\mathbf{z}}_i)}{q(\hat{\mathbf{z}}_i)}$$

$$P_{f^{(1)}} = \mathbb{E}_q[P_f^{\mathsf{MFIS}}]$$

Step 1: Construct biasing distribution using low-fidelity model $f^{(2)}$

- Evaluate $f^{(2)}$ at (many) realizations z_1, \ldots, z_n of Z
- ullet Fit mixture model q (biasing) to realizations o scikit-learn, Matlab

$$\{z_i \mid I^{(2)}(z_i) = 1, i = 1, \dots, n\}$$

• Derive random variable \hat{Z} with density q

Step 2: Estimate P_f with high-fidelity model $f^{(1)}$

$$P_f^{\mathsf{MFIS}} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{I^{(1)}(\hat{\mathbf{z}}_i)}_{\substack{\mathsf{uses} \\ \mathsf{high-fidelity}}} \underbrace{\frac{p(\hat{\mathbf{z}}_i)}{q(\hat{\mathbf{z}}_i)}}_{\substack{\mathsf{uses} \\ \mathsf{low-fidelith}}}$$

$$P_{f^{(1)}} = \mathbb{E}_q[P_f^{\mathsf{MFIS}}]$$

Step 1: Construct biasing distribution using low-fidelity model $f^{(2)}$

- Evaluate $f^{(2)}$ at (many) realizations z_1, \ldots, z_n of Z
- ullet Fit mixture model q (biasing) to realizations o scikit-learn, Matlab

$$\{z_i \mid I^{(2)}(z_i) = 1, i = 1, ..., n\}$$
 many realizations but low-fidelity model

• Derive random variable \hat{Z} with density q

Step 2: Estimate P_f with high-fidelity model $f^{(1)}$

$$P_f^{\mathsf{MFIS}} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{I^{(1)}(\hat{z}_i)}_{\substack{\mathsf{uses} \\ \mathsf{high-fidelity}}} \underbrace{\frac{p(\hat{z}_i)}{q(\hat{z}_i)}}_{\substack{\mathsf{uses} \\ \mathsf{low-fidelit}}}$$

$$P_{f^{(\mathbf{1})}} = \mathbb{E}_q[P_f^{\mathsf{MFIS}}]$$

Step 1: Construct biasing distribution using low-fidelity model $f^{(2)}$

- Evaluate $f^{(2)}$ at (many) realizations z_1, \ldots, z_n of Z
- ullet Fit mixture model q (biasing) to realizations o scikit-learn, Matlab

$$\{z_i \mid I^{(2)}(z_i) = 1, i = 1, \dots, n\}$$
 many realizations but low-fidelity model

• Derive random variable \hat{Z} with density q

Step 2: Estimate P_f with high-fidelity model $f^{(1)}$

$$P_f^{\rm MFIS} = \frac{1}{m} \sum_{i=1}^m \underbrace{I^{(1)}(\hat{z}_i)}_{\substack{\rm uses \\ \rm high-fidelity}} \underbrace{\frac{p(\hat{z}_i)}{q(\hat{z}_i)}}_{\substack{\rm uses \\ \rm low-fidelity}} \underbrace{\frac{high-fidelity\ model}{high-fidelity\ model}}_{\substack{\rm but\ only\ few\ evals}}$$

$$P_{f^{(1)}} = \mathbb{E}_q[P_f^{\mathsf{MFIS}}]$$

MFIS: Optimization for risk-averse designs

MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct

- Design variables are thickness and position of control points
- Uncertain flight conditions (angle of attack, air density, Mach number)
- Output is fuel burn

Minimize fuel burn at limit states

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[f^{(1)}(\mathbf{x}, Z) | f^{(1)}(\mathbf{x}, Z) \leq \beta]$$

- Take a $3 \times 3 \times 3$ equidistant grid in stochastic domain
- Evaluate high-fidelity model at those 27 points at current design x
- Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method

MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct

- Design variables are thickness and position of control points
- Uncertain flight conditions (angle of attack, air density, Mach number)
- Output is fuel burn

Minimize fuel burn at limit states

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[f^{(1)}(\mathbf{x}, Z) \mid f^{(1)}(\mathbf{x}, Z) \leq \beta]$$

- \bullet Take a $3\times3\times3$ equidistant grid in stochastic domain
- Evaluate high-fidelity model at those 27 points at current design x
- Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method

MFIS: Risk-averse design of wing (cont'd)

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

2. Multifidelity sensitivity analysis

3. Multifidelity failure probability estimation

4. Other multifidelity uncertainty quantification tasks

Outlook: Inverse problems

Bayesian inference of parameters z from data y

- Parameters represented as random variable z with prior p(z)
- Define likelihood p(y|z) of data y using model f
- Update distribution of z ("infer") with Bayes' rule

Outlook: Inverse problems (cont'd)

$$\underbrace{p(\mathbf{z}|\mathbf{y})}_{\text{posterior}} \propto \underbrace{p(\mathbf{y}|\mathbf{z})}_{\text{likelihood}} \underbrace{p(\mathbf{z})}_{\text{prior}}$$

Posterior provides complete description of uncertainties in z

- Input to future simulations for predictions with quantified uncertainties
- Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z|y)

• Evaluate posterior expectation for function g

$$\mathbb{E}[g] = \int g(z) p(z|y) dz$$

- Samples required as inputs in upstream simulations
- Explore posterior to decide where to take new data points
- Estimate quantiles

Making sampling tractable ⇒ multifidelity

Outlook: Inverse problems (cont'd)

$$\underbrace{p(\mathbf{z}|\mathbf{y})}_{\text{posterior}} \propto \underbrace{p(\mathbf{y}|\mathbf{z})}_{\text{likelihood}} \underbrace{p(\mathbf{z})}_{\text{prior}}$$

Posterior provides complete description of uncertainties in z

- Input to future simulations for predictions with quantified uncertainties
- Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z|y)

• Evaluate posterior expectation for function g

$$\mathbb{E}[g] = \int g(z) p(z|y) dz$$

- Samples required as inputs in upstream simulations
- Explore posterior to decide where to take new data points
- Estimate quantiles

Making sampling tractable ⇒ multifidelity

- Measures error w.r.t. HFM output while outer-loop result is goal
- Ignores that surrogates are used together with other information sources
- While approximating HFM can be hard, supporting HFM might be easy
- ⇒ Need for model reduction that targets multifidelity

- Measures error w.r.t. HFM output while outer-loop result is goal
- Ignores that surrogates are used together with other information sources
- While approximating HFM can be hard, supporting HFM might be easy
- ⇒ Need for model reduction that targets multifidelity

- Measures error w.r.t. HFM output while outer-loop result is goal
- Ignores that surrogates are used together with other information sources
- While approximating HFM can be hard, supporting HFM might be easy
- ⇒ Need for model reduction that targets multifidelity

- Measures error w.r.t. HFM output while outer-loop result is goal
- Ignores that surrogates are used together with other information sources
- While approximating HFM can be hard, supporting HFM might be easy
- ⇒ Need for model reduction that targets multifidelity

- Measures error w.r.t. HFM output while outer-loop result is goal
- Ignores that surrogates are used together with other information sources
- While approximating HFM can be hard, supporting HFM might be easy
- ⇒ Need for learning surrogates that target multifidelity

Adapt surrogate models - but not too much

- Adapting surrogate models towards multifidelity is beneficial
- Crude, cheap surrogates can have better costs/benefit ratio
- Proved for MFMC that optimal amount to spend on learning surrogates is bounded

[P.: Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM/ASA Journal on Uncertainty Quantification, 2019.]

Wide applicability; integrates well with machine-learning surrogates

 Applicable to general low-fidelity models such as response surfaces, coarse-grid approximations, linearized models, neural-network models

Wide applicability; integrates well with machine-learning surrogates

 Applicable to general low-fidelity models such as response surfaces, coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown

- High-fidelity model stays in the loop; same accuracy guarantees as using high-fidelity model only
- Useful in real-world applications, where typically error control for low-fidelity models such as neural-network models is unavailable

Wide applicability; integrates well with machine-learning surrogates

 Applicable to general low-fidelity models such as response surfaces, coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown

- High-fidelity model stays in the loop; same accuracy guarantees as using high-fidelity model only
- Useful in real-world applications, where typically error control for low-fidelity models such as neural-network models is unavailable

Nonintrusive technique; no re-implementation of codes necessary

 Applicable in a black-box fashion; no in-depth insight in code/implementation/theory necessary

Wide applicability; integrates well with machine-learning surrogates

 Applicable to general low-fidelity models such as response surfaces, coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown

- High-fidelity model stays in the loop; same accuracy guarantees as using high-fidelity model only
- Useful in real-world applications, where typically error control for low-fidelity models such as neural-network models is unavailable

Nonintrusive technique; no re-implementation of codes necessary

 Applicable in a black-box fashion; no in-depth insight in code/implementation/theory necessary

Embarrassingly parallel; just as regular Monte Carlo

- Evaluations of low- and high-fidelity models can often be decoupled
- Applicable as post-processing step (re-use databases of past simulations)

Survey with many references

SIAM REVIEW Vol. 60, No. 3, pp. 550-591 © 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization*

Benjamin Peherstorfer[†] Karen Willcox[‡] Max Gunzburger[§]

Abstract. In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have varying evaluation costs and varying fidelities. Typically, a computationally expensive highfidelity model describes the system with the accuracy required by the current application at hand, while lower-fidelity models are less accurate but computationally cheaper than the high-fidelity model. Outer-loop applications, such as optimization, inference, and uncertainty quantification, require multiple model evaluations at many different inputs, which often leads to computational demands that exceed available resources if only the high-fidelity model is used. This work surveys multifidelity methods that accelerate the solution of outer-loop applications by combining high-fidelity and low-fidelity model evaluations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g., a simplified physics approximation, a reduced model, a data-fit surrogate) that approximates the same output quantity as the high-fidelity model. The overall premise of these multifidelity methods is that low-fidelity models are leveraged for speedup while the highfidelity model is kept in the loop to establish accuracy and/or convergence guarantees. We categorize multifidelity methods according to three classes of strategies: adaptation, fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts of uncertainty propagation, inference, and optimization.

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification, multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity optimization.

AMS subject classifications. 65-02, 62-02, 49-02

DOI. 10.1137/16M1082469

Further reading on methods covered in this talk

- L. W. T. Ng and K. Willcox.
 Multifidelity approaches for optimization under uncertainty.
 International Journal for Numerical Methods in Engineering, 100(10):746–772, 2014.
- [2] B. Peherstorfer, T. Cui, Y. Marzouk, and K. Willcox. Multifidelity importance sampling. Computer Methods in Applied Mechanics and Engineering, 300:490–509, 2016.
- [3] B. Peherstorfer, B. Kramer, and K. Willcox.

 Multifidelity preconditioning of the cross-entropy method for rare event simulation and failure probability estimation.

 SIAM/ASA Journal on Uncertainty Quantification, 6(2):737–761, 2018.
- [4] B. Peherstorfer, K. Willcox, and M. Gunzburger.
 Optimal model management for multifidelity monte carlo estimation.

 SIAM Journal on Scientific Computing, 38(5):A3163–A3194, 2016.
- [5] E. Qian, B. Peherstorfer, D. O'Malley, V. Vesselinov, and K. Willcox. Multifidelity monte carlo estimation of variance and sensitivity indices. SIAM/ASA Journal on Uncertainty Quantification, 6(2):683–706, 2018.

Books on uncertainty quantification

Software

Software for uncertainty quantification

[Figure: Pflüger et al., 2016]

Software with explicit multifidelity support

 \mathcal{MFMC} https://github.com/pehersto/mfmc

Wide applicability; integrates well with machine-learning surrogates

 Applicable to general low-fidelity models such as response surfaces, coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown

- High-fidelity model stays in the loop; same accuracy guarantees as using high-fidelity model only
- Useful in real-world applications, where typically error control for low-fidelity models such as neural-network models is unavailable

Nonintrusive technique; no re-implementation of codes necessary

• Applicable in a black-box fashion; no in-depth insight in code/implementation/theory necessary

Embarrassingly parallel; just as regular Monte Carlo

- Evaluations of low- and high-fidelity models can often be decoupled
- Applicable as post-processing step (re-use databases of past simulations)