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Intro:

Uncertainties due to data

Hurricane Sandy
Friday October 26, 2012
11 PM EDT Advisory 19
NWS National Hurricane Center
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Current information: ®
Center location 27.7 N 77.1 W
Maximum sustained wind 75 mph
Movement N at 7 mph

Forecast positions:
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[Figure: NOAA]
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Intro: Uncertainties due to unknown parameters

velocity (km/c) basal fricTi%BO(Pcl(Km/o))l\ﬂ 13

1

: 800

01 —éooo
: 400
oo Ezoo

0.0015 1

[Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.]
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Intro: No hope to exhaustively model physics
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[Figure: University of Michigan]
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Intro: Manufacturing variations

[Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the C R h Model
configuration. Group (ADODG), 6(7), 8-9.]
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Intro: Model

Model of system of interest

e Model describes response of system to inputs, parameters, configurations

e Response typically is a quantity of interest

e Evaluating a model means numerically simulating the model

e Many models given in form of partial differential equations

input

Mathematical formulation

e Input domain D and output domain Y

model

f:D—=Y

output

e Maps z € D input onto y € ) output (quantity of interest)
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Intro: Model - Navier-Stokes equations

0
p(al;—&-u-Vu) =-Vp+pulAu+g
Examples of inputs

e Density p

e Dynamic viscosity

Examples of outputs (quantities of interest)
e Velocity at monitoring point
e Average pressure

[Figure: MFIX, NETL, DOE]
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Intro: Model - Diffusion-convection-reaction flow

ou

— =Au—vVu+g(up)

ot

Examples of inputs
e Activation energy and pre-exponential factor (Arrhenius-type reaction)
e Temperature at boundary

o Ratio of fuel and oxidizer

Examples of outputs

e Average temperature in chamber
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Intro: Uncertain inputs

Inputs are uncertain
e Measurement errors in boundary conditions

e Manufacturing variations

Model parameters determined by engineering judgment
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Inputs are uncertain
e Measurement errors in boundary conditions

e Manufacturing variations

Model parameters determined by engineering judgment

Mathematically formulate uncertain inputs as random variables

Z:Q—=D
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Intro: Uncertain inputs

Inputs are uncertain

e Measurement errors in boundary conditions

e Manufacturing variations

Model parameters determined by engineering judgment

Mathematically formulate uncertain inputs as random variables

Z:Q—=D

Quantify effect of uncertainties in inputs on model outputs

input

computational
model

output
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Intro: General sampling-based approach to UQ
e Take many realizations of input random variable Z
zy,...,2,€D
e Evaluate model f at all z1, ..., z, realizations

yi="7(z1),...,y,=1(z,)

e Estimate statistics (mean, std. deviation, etc) from outputs y4,...,y,
input z model output y
f:D—=Y
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Intro: General sampling-based approach to UQ

e Take many realizations of input random variable Z
Zi,...,Z, €D
e Evaluate model f at all z1, ..., z, realizations

yi="7(z1),...,y,=1(z,)

e Estimate statistics (mean, std. deviation, etc) from outputs y, ...

21
z3 input z model output y
|
f:D—=Y
z,

Y1
Y2

Yn
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Intro: General sampling-based approach to UQ

e Take many realizations of input random variable Z

zy,...,2,€D

e Evaluate model f at all z1, ..., z, realizations

e Estimate statistics (mean, std. deviation, etc) from outputs y, ...

yi="7(z1),...,y,=1(z,)

uncertainty

input z

quantification

model

output y

f:D—=Y
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Intro: Challenges of sampling-based UQ

input z

Challenges

computational model output y
f:D—Y .
Q\QQ
e
S

e Formulation and modeling of uncertainties

e Models based on PDEs: nonlinear, multi-scale, multi-physics

e Single model solve expensive; repeated solves prohibitive = multifidelity

e Uncertain parameters are of high dimension
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Intro: Challenges of sampling-based UQ

many iterations

Z1 Y1
. P4 Y2
input z3 output Y3
: s computational model : s
f:D—
Yy é\ 4€
e
o

Challenges
e Formulation and modeling of uncertainties
e Models based on PDEs: nonlinear, multi-scale, multi-physics
e Single model solve expensive; repeated solves prohibitive = multifidelity
e Uncertain parameters are of high dimension
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Intro: Challenges of sampling-based UQ

many iterations

Z1 Y1
. P4 Y2
input z3 output Y3
: s computational model : s
f:D—
Yy é\ 4€
e
Pl

Challenges
e Formulation and modeling of uncertainties
e Models based on PDEs: nonlinear, multi-scale, multi-physics
e Single model solve expensive; repeated solves prohibitive = multifidelity

e Uncertain parameters are of high dimension
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Intro: Opportunity of low-fidelity models

“~
H high-fidelity
: model
Given is typically a high-fidelity model :
e Large-scale numerical simulation ol surrogate
7 model .
. . o surrogate
o Achieves required accuracy s o
H model
e Computationally expensive surrogd
ie surrogate
: mod model
.-E .................... (: 1?1‘-()-1? ..................... )

Additionally, often have available or can train low-fidelity models

e Approximate same quantity of interest as high-fidelity model
e Often orders of magnitudes cheaper than high-fidelity model

e Less accurate and typically no accuracy guarantees
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Intro: Three types of low-fidelity models

simplified models data-fit models reduced models
e Extract important

dynamics of full states

e Simplifying physics e Fitting model to

e Coarser data of from data
discretizations Input-output map ,
L - ed model given by e Approximate
. by N X
Inearized models high-fidelity model high-dimensional

e Early stopping of
iterative solvers

Response surfaces states in subspaces

e Restrict solving
governing equations
to subspaces

e Gaussian processes

e Neural networks
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Intro: Low-fidelity models

Replace high- with low-fidelity model
e Costs of outer loop application reduced
e Often orders of magnitude speedups

Low-fidelity model introduces error
e Control with error bounds/estimators*
e Rebuild if accuracy too low
e No guarantees without bounds/estimators

Issues
e Propagation of output error on estimate

e Applications without error control
e Costs of rebuilding a low-fidelity model

output y

uncertainty
quantification

surrogate

z ndur

model
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Multifidelity: Combine multiple models

Combine high-fidelity and low-fidelity models

e Leverage low-fidelity models for speedup | unce.rtiainty -

e Recourse to high-fidelity for accuracy quantification
Multifidelity speeds up computations j ( \ E

e Balance #solves among models é high-fidelity E

e Adapt, fuse, filter with low-fidelity models 3 model n

surrogate

Multifidelity guarantees high-fidelity accuracy ) model |

e Occasional recourse to high-fidelity model )

e High-fidelity model is kept in the loop

e Independent of error control of low fidelity surrogate

model
\ /

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization. SIAM Review, 60(3):550-591, 2018]
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Intro: Survey with many references

SIAM Review

(© 2018 SIAM. Published by SIAM under the terms

Vol. 60, No. 3, pp. 550-591 of the Creative Commons 40 license

Survey of Multifidelity Methods
in Uncertainty Propagation,
Inference, and Optimization*

Abstract. In many situations across computational

Benjamin Peherstorfer!
Karen Willcox*
Max Gunzburger®

cience and engineering, multiple computational
models are available that describe a system uf interest. These different models have vary-
ing evaluation costs and varying fidelities. Typically, a computationally expensive high-
fidelity model describes the system with the accuracy required by the current application
at hand, while lower-fidelity models are less accurate but computationally cheaper than
the high-fidelity model. Outer-loog ions, such as optimization, inference, and
uncertainty quantification, require multiple model evaluations at many different inputs,
which often leads to computational demands that exceed available resources if only the
high-fidelity model is used. This work surve multifidelity methods that accelerate the
solution of outer-loop applications by combining high-fidelity and low-fidelity model eval-
uations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g.,
a simplified physics approximation, a reduced model, a data-fit surrogate) that approxi-
mates the same output quantity as the high-fidelity model. The overall premi
multifidelity methods is that low-fidelity models are leveraged for speedup while the high-
fidelity model is kept in the loop to establish accuracy and/or convergence guarantees.
We categorize multifidelity methods according to three classes of strategies: adaptation,
fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts
of uncertainty propagation, inference, and optimization.

these

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification,

AMS subject classifications. 65-02,

multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity op-

timization

02, 49-02

DOL. 10.1137/16M1082469
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

/\ input z
—_—

computational model
f:D—=Y

2. Multifidelity sensitivity analysis

/\ input z
—_—

computational model
f:D—=Y

output y E

output y
— (LY

3. Multifidelity failure probability estimation

/\ input z

computational model
f:D—=Y

output y g\
—

4. Other multifidelity uncertainty quantification tasks

18 /66



Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

/\ input z
—_—

computational model
f:D—=Y

2. Multifidelity sensitivity analysis

/\ input z
—_—

computational model
f:D—=Y

output y E

output y
— (LY

3. Multifidelity failure probability estimation

/\ input z

computational model
f:D—=Y

output y g\
—

4. Other multifidelity uncertainty quantification tasks

18 /66



MFMC: Monte Carlo estimation

High-fidelity (“truth”) model, costs wy > 0
fO.D Y

Random variable Z, estimate
s=E[fD(2)]

Monte Carlo estimate of s with real. z,..., z,
g1 Z FD(z)
’ i3

Computational costs
e Many evaluations of high-fidelity model
e Typically 103 — 10° evaluations
e Intractable if f(1) expensive

output y

uncertainty
quantification

high-fidelity

z ndur

model
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MFMC: Control variates

Given is a random variable A and we want to estimate its mean

S5A4 = E[A]
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MFMC: Control variates

Given is a random variable A and we want to estimate its mean
S5A = E[A]
Independent and identically distributed (i.i.d.) samples

dly...,dn
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MFMC: Control variates

Given is a random variable A and we want to estimate its mean
sa = E[A]

Independent and identically distributed (i.i.d.) samples
ai,...,an

Regular Monte Carlo estimator of s

n
_ 1
an:*E aj
n-
i=1
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MFMC: Control variates

Given is a random variable A and we want to estimate its mean
sa = E[A]

Independent and identically distributed (i.i.d.) samples
ai,...,an

Regular Monte Carlo estimator of s

n
_ 1
an:*E aj
n<
i=1

Unbiased estimator E[3,] = sa with mean-squared error (MSE)

n

>a

i=1

_ Var[A]

1
Var[a,] = ﬁVar
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MFMC: Control variates (cont’'d)

Additional random variable B with known mean sg = E[B] and samples

bi,..., by
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MFMC: Control variates (cont’'d)

Additional random variable B with known mean sg = E[B] and samples
by,... by

Regular Monte Carlo estimator of sg
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MFMC: Control variates (cont’'d)
Additional random variable B with known mean sg = E[B] and samples

by,.... b,

Regular Monte Carlo estimator of sg

Control variate estimator of s that uses samples from A and B

Sa=ap+ (SB - Bn)
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MFMC: Control variates (cont’'d)
Additional random variable B with known mean sg = E[B] and samples
by, ..., by

Regular Monte Carlo estimator of sg

Control variate estimator of s that uses samples from A and B
$a =3, + (s8 — bn)
Introduce coefficient & € R to balance A and B
= §n+a(53 71;,,)

Combines n samples of A and n samples of B

[Nelson, 87]
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MFMC: Control variates (cont’'d)

Control variate estimator

§A=§n+a(53—bn)
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MFMC: Control variates (cont’'d)

Control variate estimator

§A:§n—|—a(53—5n)

Unbiased estimator of sy because

E[$4] = E[3,] +a E[sg — by] = sa

=5 =0
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MFMC: Control variates (cont’'d)

Control variate estimator

Sp = 5,,—|—0¢(SB —bn)
Unbiased estimator of sy because
E[84] = E[3,] +aE[sg — b,] = sa
~—~— | S ——
=sp -0
Variance of control variate estimator for optimal* o € R

Varfga) = (1 - p7) 2

(1 - p*) Var[a,]

Correlation coefficient —1 < p <1 of Aand B

If p =0, same variance as regular Monte Carlo

If |p| > 0O, lower variance

The higher correlated, the lower variance of 4

22/66



MFMC: Multifidelity Monte Carlo Estimation

Estimate expected value

s =E[fV(Z)]

Low-fidelity models
A SR AR ) P
Correlation coefficients

P2 = Corr[f(l)7 f(2)], p3 = Corr[f(l)7 f(3)]7 sy PE = Corr[f

Costs

Wi, Wo,...,wx >0

No need to know expected values of low-fidelity models!

]
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MFMC: Multifidelity Monte Carlo

Reminder: Monte Carlo estimator

n

_ 1
w0 =13 iz

i=1

Muiltifidelity Monte Carlo (MFMC) estimator

k
s= A+ (-
from HFM

from low-fid. models

Monte Carlo estimator

Number of model evaluations m = [my,..., m]"
Control variate coefficients o = [, ..., ] "

Optimal selection of m and o — our code
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MFMC: Recipe 1

Download

https://github.com/pehersto/mfmc

Given
e Models FM) £ k)
e Computational budget b

Pilot run

e Draw myg (= 50) realizations of Z

e Evaluate each model fW £ . () at the my realizations
f(l)(zl) f(z)(Zl) f(k)(zl)
Y = : : :
f(l)(zmo) f(2)(zmo) . f(k)(zmo)

e Estimate computational costs of model evaluations w = [wy, ..., w]"



MFMC: Recipe 1 (cont’d)

Determine number of model evaluations
[ m, a ]l = optiMlevelCorr( Y, w, b )

e Number of model evaluations m = [my, my, ..., m]"
e Coefficients a = [z, a3, . .., ] T
Draw realizations
Z1,2Zp,... ,ka

Evaluate models

Estimate

—(1

(5%
I
3
+
0=
S
)
DS
\
B
3

from HFM from low.-fid. models



MFMC: Matlab code for Recipe 1
modelList = {HFM,LFM1,LFM2,LFM3}; 7%
w = [100, 50, 20, 10]1'; %
budget = 1000*w(1);

models
costs

% total budget
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; 7
w = [100, 50, 20, 10]'; % costs
budget = 1000*w(1); ) total budget

models

mu = drawSamples (50); 7% pilot samples
for i=1:length(modellist)

Y(:, i) = modellist{i}(mu);
end
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs

budget = 1000*w(1); ) total budget

mu = drawSamples(50); % pilot samples

for i=1:length(modellist)

Y(:, i) = modellist{i}(mu);
end

[m, alphal] = optiMlevelCorr(Y, w, budget); % MFMC

z = drawSamples(m(end)); ) draw realizations
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs

budget = 1000*w(1); ) total budget

mu = drawSamples(50); % pilot samples
for i=1:length(modellist)

Y(:, i) = modellList{i}(mu);
end

[m, alphal] = optiMlevelCorr(Y, w, budget); % MFMC

z = drawSamples(m(end)); ) draw realizations

y modelList{1}(z(1:m(1), :)); % evaluate HFM
sHat = alpha (1) *mean(y) ;
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs

budget = 1000*w(1); ) total budget

mu = drawSamples(50); % pilot samples
for i=1:length(modellist)

Y(:, i) = modellList{i}(mu);
end

[m, alphal] = optiMlevelCorr(Y, w, budget); % MFMC

N
|

= drawSamples (m(end)); % draw realizations

y modelList{1}(z(1:m(1), :)); % evaluate HFM
sHat = alpha (1) *mean(y) ;

% evaluate low-fidelity models
for i=2:length(modellList)
y = modellist{i}(z(1:m(i), :));
sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
end 27 /66



MFMC: Recipe 2 (MFMC as post-processing)

Given
e Model evaluations

f(i)(Zl),...vf(")(zmi), i=1,...,k

e Model evaluation costs wy, ..., wy

Pilot samples
e Use the first my < my samples to form

fW(z))  f@(z1) ... fR(z)
y=| z 5
fO(zme) fDzm) ... FR(zp)
e Derive coefficients
[ ~, a] = optiMlevelCorr( Y, w, b )

Estimate

s= ym1 JrZa <)’m, ym, 1)
N————

from HFM from low.-fid. models



MFMC: Recipe 2 (MFMC as post-processing)

Given
o Model
f(i)(Zl),...vf(")(zmi), i=1,...,k
e Model evaluation costs wy, ..., wy

Pilot samples
e Use the first my < my samples to form

fW(z))  f@(z1) ... fR(z)
y=| z 5
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MFMC: AeroStruct: Problem setup

Coupled aero-structural wing analysis

e Uncertain are angle of attack, air density,
Mach number

e Estimate expected fuel burn

High-fidelity model ()
e OpenAeroStruct code
e Vortex-lattice method

e 6 DoF 3-dim spatial beam model

e Used with default configuration

Low-fidelity models

[Jasa, J. P., Hwang, J. T., and Martins, J. R.

[ ] Sp|lne Interp0|a nts on eqUIdIStant gnd R. A., "Open-source coupled aerostructural
. optimizafi??. u;sirll-g Python:" .Stru.ctural and
e Low-fidelity model f(®) from 343 points v Op 2018]

o Low-fidelity model £(3) from 125 points

https://github.com/johnjasa/OpenAeroStruct/
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MFMC: AeroStruct: Distribution of work

Model properties

model | evaluation costs [s] | offline costs [s] | correlation coefficient
high-fid. £ 1.61 x 10~ - -

low-fid. £ 1.23 x 1077 55.382 9.9552 x 1071
low-fid. £ 1.21 x 1077 20.183 9.9192 x 10~ *

Number of model evaluations

Monte Carlo

MFMC with @) £

MFMC with £, £(3)

online costs [s] ‘ #evals £V ‘ #evals FO)  #evals £ ‘ #evals F1) #evals F3)
7.99 x 10° 50 | 4.90 x 101  4.48 x 10° | 4.90 x 10*  5.97 x 10°
1.61 x 10* 100 | 9.90 x 10* 8.95 x 10®° | 9.90 x 10*  1.19 x 10°®
8.07 x 10* 500 | 4.96 x 10>  4.48 x 10° | 4.95 x 10>  5.97 x 10°
1.61 x 10? 1000 | 9.93 x 10>  8.95 x 10°® | 9.90 x 10>  1.19 x 107
8.07 x 102 5000 | 4.97 x 10>  4.48 x 107 | 4.95 x 10>  5.97 x 107

MFMC trades high-fidelity evaluations for low-fidelity evaluations

e The high-fidelity model evaluations guarantee unbiased

e The low-fidelity model evaluations help to reduce the variance

e The balance is optimal with respect to the mean-squared error
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MFMC: AeroStruct: Speedup results

le-02 — : ‘ :
high-fidelity model f™) alone
w103 o fidelity model £ alone —w—
= le-04 | MFMC with f®), f() e
>
g 18-05 P
0 ¢
- le-06 +
2
g 1e-07 ¢t
8 1e08 |
1e-09 ‘ ‘ ‘

le-04 1e-02 1e+00 1e+02 1le+04

online costs [s]

e Low-fidelity model alone leads to biased estimators

e MFMC achieves speedup of about two order of magnitude
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MFMC: AeroStruct: Speedup with offline costs

le-02

high-fidelity model () alone
low-fidelity model f® alone —s—
le-04 | MFMC with ), f3) e

le-05 ¥
le-06 F {

1e-07 ¢t

1le-03 ¢

estimated relative MSE

1e-08 t

1e-09 : :
le+402 le+04

offline plus online costs [s]

e Constructing low-fidelity models incurs offline costs

e In this example, offline costs low compared to savings
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MFMC: AeroStruct: Combining all three models

1e-02 |
high-fidelity model f() alone
w103y MFMC with £, f®) ——
3 le04y MFMC with f), /2 —e—
fﬁ le-05 ¥ MFMC with f f(Q f()
(0]
- 1le-06 +
3 ry
g le-07 \Q}
b <
8 le08 | \\
1le-09 ‘ ‘
le+02 le+04

online costs [s]

e Model £ and ) are similar with respect to costs/correlations

e Adding model £ has little effect

33/66



MFMC: Plate

Locally damaged plate in bending
e Inputs: nominal thickness, load, damage

e Output: maximum deflection of plate

Only distribution of inputs known

e Estimate expected deflection

Six models

e High-fidelity model: FEM, 300 DoFs
Reduced model: POD, 10 DoFs
Reduced model: POD, 5 DoFs
Reduced model: POD, 2 DoFs
Data-fit model: linear interp., 256 pts

Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples

‘/\

lo ‘
r/ﬂ\

spatial coordinate o

o
0

©c o
S o

o
N

o

(a) wing panel

L

0 02 04 06 0.8
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MFMC: Plate: Combining many models

le4+00 | one model (Monte Carlo) =i
le-01 | two models =g
three models i

six models =

le-02

1e-03 +

le-04 +

estimated MSE

le-05 t

le-06

1le-07
le-04 1e-02 1le+00 1le4+02 1e404

runtime [s]

e Largest improvement from “single — two" and "two — three”
e Adding yet another reduced/SVM model reduces variance only slightly
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MFMC: Plate: #evals of models

102

99. 69%

10°F

share of samples|%)]

98. 29%

1.36%

[ high-fidelity £V

[ reduced f®
Il reduced f4)
Bl reduced f©)
Bl data £
ElsVM 7©

e MFMC distributes #evals among models depending on corr/costs
e Number of evaluation changes exponentially between models
e Highest #evals in data-fit models (cost ratio wi/wg ~ 10°)
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MFMC: Multi-fidelity Monte Carlo in the wild
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation
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MFGSA: Sensitivity analysis

> > b - - e ARt - e - -
z z
Y is sensitive to Z Y is not sensitive to Z

Sensitivity analysis
e Determine which inputs influence output most

e Can sample Y as a black box for inputs Z and need to determine what
components of Z = [Zy,...,Z4]" influence Y most
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MFGSA: Sensitivity analysis in engineering

Risk communication for decision-making
e Determine if one can rely on model output or if “noise”

e Communicate to upstream decision-making which inputs are critical

Feedback to improve model
e Determine which inputs need to be sampled carefully
e Prioritize effort on reducing uncertainty

e Modify model with respect to sensitive inputs

Model reduction and dimensionality reduction
e Focus on important inputs and ignore ineffective inputs

e Derive surrogate models that depend on important inputs only
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MFGSA: Variance-based global sensitivity analysis

Input Z = [Zy,...,2Z4]" € D is a random vector

Output of model Y = f()(Zy,..., Zy) is sensitive to inputs

e Measure sensitivity with variance

Main effect sensitivity
Var[E[Y|Z]
Si =
Var[Y]

e Main sensitivity indices are normalized

dYosi=1, S elo1]
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MFGSA: Multifidelity estimation

Estimation of sensitivity indices

e Estimate variance instead of expected value

_ Var[E[Y]Z]]

5= Var[Y]
e Requires estimating variance for all d inputs Z = [Z, ..., Z4]
Multifidelity estimation
e Given are low-fidelity models (), ... f(k)

e Similarly to MFMC, exploit correlations
P2 = Corr[f(l), f(z)], p3 = Corr[f(l)7 f(3)], ce PE = Corr[f(l)7 f(k)]

e Estimator has similar structure as estimator for expected values
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MFGSA: Premixed flame

2000

Inputs to model are 08
1500
e Parameters of Arrhenius reaction £ 06 000 =
= £
Q
e Temperatures at boundary 500 2
e Ratio of fuel and oxidizer Mo
e Activation Energy
2000
0.8]
1500
= 53
Output is maximum <04 oo &
temperature in chamber 02
0 0.5 15 0

X, [cmj]

Models
e Model based on finite differences serves as high-fidelity model
e Model with lower fidelity derived with proper orthogonal decomposition

Code available on GitHub
https://github.com/elizqgian/mfgsa
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MFGSA: Premixed flame: Results

1 T T T

— Monte Carlo =

0.8 - — Multifidelity |
0.6

0.4

“éééé éégé |

Index estimates

—0.2 \ \ \ \ \
ot toot Gt t tot ot ot
7 Sy Sy  S; S5 Sy S5 S3  S; S5

Computational budget = 10000 minutes

e Monte Carlo too inaccurate for ranking inputs

e Multi-fidelity Monte Carlo allows ranking of inputs
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MFIS: Failure probabilities

System described by high-fidelity model f) : D — )
e Inputze Z
e Outputy € Y

e Costs of one high-fidelity model evaluation wy > 0

Define indicator function

1D(z) = {17 fM(z) <0

0, else.

Indicator function /()(z) = 1 signals failure for input z

Given random variable Z, estimate failure probability

Pr = Ep[IV(Z)]
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MFIS: Rare event simulation

e Monte Carlo estimator of Pr
using m € N realizations

m

1
PMC _ = I(l) ;
f m E (zi)

i=1

e If Ps small, then only few
realizations with f(1)(z) < 0

e Require (very) large m to obtain
Monte Carlo estimator with
acceptable accuracy —
expensive

1 L

x

realizations
density
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MFIS: Rare event simulation is challenging

Costs of rare event simulation grow inverse proportional to Ps
e Monte Carlo estimation of Pr with m realizations

1 m
PMC = —~ > 1W(z))
i=1

e Relative mean-squared error (MSE) of PMC

PMC _ p\?
Pr

e For constant m, the rel. MSE increases inverse proportional to Py

_ Var, [I0(2)] 1- Py
B PZm ~ Prm

e(Pf') = E,

e A small failure probability Pr needs to be compensated with a large
number of samples m

e Example: For P = 1075 need m ~ 107 to achieve e(PM¢) < 1072

Challenge

costs per sample + number of samples
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MFIS: Rare events in aerospace engineering

Rare event simulation
e Failure probability estimation

e Reliability engineering

Risk assessment
e Communicate to upstream decision-making

e Mitigate catastrophic events

Risk-averse optimization

e Deliver baseline performance outside nominal operating conditions

e Take into account dynamics at limit states

49 /66



MFIS: Importance sampling

e Importance sampling (IS)
creates biasing density g to put 5

more weight on failure events % realizations
nominal
e Let Z be the corresponding 41 —biasing
random variable
. . 2%
e Introduce the weight function S
c
)
~ 'D 2 L
() = P&
q(2)
1 L
e Reformulate failure probability
5 5 0
Pr = E,[IM(2)] = Eo[1M(2)r(2)] 05 0 05 1 15

outputs f1)(2)
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MFIS: Multifidelity importance sampling

step 1 step 2
construction of estimation of
biasing distribution failure probability
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MFIS: Multifidelity importance sampling

step 1
construction of
biasing distribution

step 2
estimation of
failure probability

low-fidelity low-fidelity
model low-fidelity, cheap model

—_— - —————— e —

biased HR ]

' S

multifidelity 2

P E

1 8
high-fidelity, expensive :
L DEEGEEEEEEEE R B ECEEEEEE —
high-fidelity unbiase high-fidelity ;
model model

v
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MFIS: Recipe 3

Step 1: Construct biasing distribution using low-fidelity model (2
e Evaluate f(®) at (many) realizations zy,...,z, of Z

e Fit mixture model g (biasing) to realizations — scikit-learn, Matlab
{zi[I®(z;))=1,i=1,...,n}

e Derive random variable Z with density g

Step 2: Estimate P; with high-fidelity model (1)

pMFIS _ ii ,(1)(A, p(2i)
= 2;)
i=1

Multifidelity estimator PMF'S is unbiased

Pra) = Eq[PY'™]
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MFIS: Optimization for risk-averse designs

optimization
Q
-
Nol
2 =
= 7
.E >
< - =]
2 uncertainty &0
quantification )
=)

output y
Z UOoTjRZI[RAI

high-fidelity
model
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MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct
e Design variables are thickness and position of control points

e Uncertain flight conditions (angle of attack, air density, Mach number)
e Output is fuel burn

Minimize fuel burn at limit states
min E[fV(x, 2) [ fV(x, Z) < 5]
xe

Derive a data-fit surrogate at current design x

e Take a 3 x 3 x 3 equidistant grid in stochastic domain

e Evaluate high-fidelity model at those 27 points at current design x
e Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method

54 /66



MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct
e Design variables are thickness and position of control points
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MFIS: Risk-averse design of wing (cont’d)

2 x 106
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1.6 x 10° |
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800000

600000
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Uncertainty quantification tasks
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Outlook: Inverse problems

i physics-based
model 7
data “——— / f\Jinputs
. :.(.) + € £~ noise and

model bias

Bayesian inference of parameters z from data y
o Parameters represented as random variable z with prior p(z)
e Define likelihood p(y|z) of data y using model f
e Update distribution of z (“infer’) with Bayes' rule

p(zly) o< B =) p(2)

posterior likelihood prior

57 /66



Outlook: Inverse problems (cont’d)
p(zly) o B 1Z0) p(2)
~——— —~—

—_———
posterior likelihood  Prior
Posterior provides complete description of uncertainties in z
e Input to future simulations for predictions with quantified uncertainties

e Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z|y)
e Evaluate posterior expectation for function g

Elg] = / g(2)p(zly)dz

e Samples required as inputs in upstream simulations
e Explore posterior to decide where to take new data points

e Estimate quantiles

Making sampling tractable = multifidelity
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Outlook: Learning surrogates for multifidelity

high-fidelity
model

costs

Traditional model reduction is separate from multifidelity computations
e Measures error w.r.t. HFM output while outer-loop result is goal
e Ignores that surrogates are used together with other information sources
e While approximating HFM can be hard, supporting HFM might be easy
= Need for model reduction that targets multifidelity
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Outlook: Learning surrogates for multifidelity
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Outlook: Learning surrogates for multifidelity
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Traditional model reduction is separate from multifidelity computations
e Measures error w.r.t. HFM output while outer-loop result is goal
e Ignores that surrogates are used together with other information sources
e While approximating HFM can be hard, supporting HFM might be easy

= Need for learning surrogates that target multifidelity
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Outlook: Learning surrogates for multifidelity

le+00 1e+07 - —— po
— ‘numertl}cal adpproxlmatlon of i N
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Q o
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B le0s5 | & let02 | I
—+— AMEMC ® ~
1e-06 | Static MEMC, n = 5T ¥ let01 |
1e-07 tatic 1. 568 1e+00
le+02 1le+03 1le+04 1e+05 le406 le+02 le+04 le+06
budget p (runtime [s]) budget p

Adapt surrogate models - but not too much
e Adapting surrogate models towards multifidelity is beneficial
e Crude, cheap surrogates can have better costs/benefit ratio

e Proved for MFMC that optimal amount to spend on learning surrogates
is bounded

[P.: Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM/ASA Journal on Uncertainty
Quantification, 2019.]
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Summary: Multi-fidelity uncertainty quantification

Wide applicability; integrates well with machine-learning surrogates

e Applicable to general low-fidelity models such as response surfaces,
coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown

e High-fidelity model stays in the loop; same accuracy guarantees
as using high-fidelity model only

e Useful in real-world applications, where typically error control for
low-fidelity models such as neural-network models is unavailable

Nonintrusive technique; no re-implementation of codes necessary

e Applicable in a black-box fashion; no in-depth insight in
code/implementation/theory necessary

Embarrassingly parallel; just as regular Monte Carlo
e Evaluations of low- and high-fidelity models can often be decoupled

e Applicable as post-processing step (re-use databases of past simulations)
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fidelity model is kept in the loop to establish accuracy and/or convergence guarantees.
We categorize multifidelity methods according to three classes of strategies: adaptation,
fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts
of uncertainty propagation, inference, and optimization.
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Further reading on methods covered in this talk

[1] L. W. T. Ng and K. Willcox.
Multifidelity approaches for optimization under uncertainty.
International Journal for Numerical Methods in Engineering,
100(10):746-772, 2014,

[2] B. Peherstorfer, T. Cui, Y. Marzouk, and K. Willcox.
Multifidelity importance sampling.
Computer Methods in Applied Mechanics and Engineering, 300:490-509,
2016.

[3] B. Peherstorfer, B. Kramer, and K. Willcox.
Multifidelity preconditioning of the cross-entropy method for rare event
simulation and failure probability estimation.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):737-761, 2018.

[4] B. Peherstorfer, K. Willcox, and M. Gunzburger.
Optimal model management for multifidelity monte carlo estimation.
SIAM Journal on Scientific Computing, 38(5):A3163-A3194, 2016.

[5] E. Qian, B. Peherstorfer, D. O'Malley, V. Vesselinov, and K. Willcox.
Multifidelity monte carlo estimation of variance and sensitivity indices.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):683-706, 2018.
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Software

Software for uncertainty quantification

[Figure: Pfliiger et al., 2016]

Software with explicit multifidelity support

) R Vo V T

https://dakota.sandia.gov/ https://github.com/pehersto/mfmc
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Summary: Multi-fidelity uncertainty quantification

Wide applicability; integrates well with machine-learning surrogates

e Applicable to general low-fidelity models such as response surfaces,
coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown

e High-fidelity model stays in the loop; same accuracy guarantees
as using high-fidelity model only

e Useful in real-world applications, where typically error control for
low-fidelity models such as neural-network models is unavailable

Nonintrusive technique; no re-implementation of codes necessary

e Applicable in a black-box fashion; no in-depth insight in
code/implementation/theory necessary

Embarrassingly parallel; just as regular Monte Carlo
e Evaluations of low- and high-fidelity models can often be decoupled

e Applicable as post-processing step (re-use databases of past simulations)
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