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Intro: Uncertainties due to data

[Figure: NOAA]
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Intro: Uncertainties due to unknown parameters

[Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.]
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Intro: No hope to exhaustively model physics

[Figure: University of Michigan]
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Intro: Manufacturing variations

[Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the Common Research Model
configuration. Group (ADODG), 6(7), 8-9.]
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Intro: Model

Model of system of interest
• Model describes response of system to inputs, parameters, configurations
• Response typically is a quantity of interest
• Evaluating a model means numerically simulating the model
• Many models given in form of partial differential equations

model
input output

Mathematical formulation
f : D → Y

• Input domain D and output domain Y
• Maps z ∈ D input onto y ∈ Y output (quantity of interest)
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Intro: Model - Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∆u + g

Examples of inputs
• Density ρ
• Dynamic viscosity µ

Examples of outputs (quantities of interest)
• Velocity at monitoring point
• Average pressure

[Figure: MFIX, NETL, DOE]
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Intro: Model - Diffusion-convection-reaction flow

∂u

∂t
= ∆u − v∇u + g(u,µ)

Examples of inputs
• Activation energy and pre-exponential factor (Arrhenius-type reaction)
• Temperature at boundary
• Ratio of fuel and oxidizer

Examples of outputs
• Average temperature in chamber
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Intro: Uncertain inputs

Inputs are uncertain
• Measurement errors in boundary conditions
• Manufacturing variations
• Model parameters determined by engineering judgment
• ...

Mathematically formulate uncertain inputs as random variables

Z : Ω→ D

Quantify effect of uncertainties in inputs on model outputs

computational
model

input output
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Intro: General sampling-based approach to UQ

• Take many realizations of input random variable Z

z1, . . . , zn ∈ D

• Evaluate model f at all z1, . . . , zn realizations

y1 = f (z1), . . . , yn = f (zn)

• Estimate statistics (mean, std. deviation, etc) from outputs y1, . . . , yn

model
f : D → Y

input z output y

.

.
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[Figure: Martinp1, Wikipedia]

Monte Carlo

• Models treated as black box
• Dimension independent
• Easily parallelizable
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Intro: Challenges of sampling-based UQ

computational model
f : D → Y

exp
ens

ive
input z output y

.

.

Challenges
• Formulation and modeling of uncertainties
• Models based on PDEs: nonlinear, multi-scale, multi-physics
• Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
• Uncertain parameters are of high dimension
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Intro: Opportunity of low-fidelity models

Given is typically a high-fidelity model
• Large-scale numerical simulation
• Achieves required accuracy
• Computationally expensive

co
st

s

error

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

Additionally, often have available or can train low-fidelity models
• Approximate same quantity of interest as high-fidelity model
• Often orders of magnitudes cheaper than high-fidelity model
• Less accurate and typically no accuracy guarantees
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Intro: Three types of low-fidelity models

RN

u(ξ1)

u(ξ2)

u(ξM)

simplified models
• Simplifying physics
• Coarser
discretizations

• Linearized models
• Early stopping of
iterative solvers

data-fit models
• Fitting model to
data of
input-output map
given by
high-fidelity model

• Response surfaces
• Gaussian processes
• Neural networks

reduced models
• Extract important
dynamics of full states
from data

• Approximate
high-dimensional
states in subspaces

• Restrict solving
governing equations
to subspaces
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Intro: Low-fidelity models

Replace high- with low-fidelity model
• Costs of outer loop application reduced
• Often orders of magnitude speedups

Low-fidelity model introduces error
• Control with error bounds/estimators*
• Rebuild if accuracy too low
• No guarantees without bounds/estimators

Issues
• Propagation of output error on estimate
• Applications without error control
• Costs of rebuilding a low-fidelity model

surrogate
model

uncertainty
quantification

ou
tp

u
t
y in

p
u

t
z
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Multifidelity: Combine multiple models

Combine high-fidelity and low-fidelity models
• Leverage low-fidelity models for speedup
• Recourse to high-fidelity for accuracy

Multifidelity speeds up computations
• Balance #solves among models
• Adapt, fuse, filter with low-fidelity models

Multifidelity guarantees high-fidelity accuracy
• Occasional recourse to high-fidelity model
• High-fidelity model is kept in the loop
• Independent of error control of low fidelity

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization. SIAM Review, 60(3):550-591, 2018]

high-fidelity
model

...

surrogate
model

surrogate
model

uncertainty
quantification

ou
tp

u
t
y in

p
u
t
z

.

.
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Intro: Survey with many references
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks
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MFMC: Monte Carlo estimation

High-fidelity (“truth”) model, costs w1 > 0

f (1) : D → Y

Random variable Z , estimate

s = E[f (1)(Z )]

Monte Carlo estimate of s with real. z1, . . . , zn

ȳ (1)
n =

1
n

n∑
i=1

f (1)(zi )

Computational costs
• Many evaluations of high-fidelity model
• Typically 103 − 106 evaluations
• Intractable if f (1) expensive

high-fidelity
model

uncertainty
quantification

ou
tp

u
t
y in

p
u

t
z
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MFMC: Control variates

Given is a random variable A and we want to estimate its mean

sA = E[A]

Independent and identically distributed (i.i.d.) samples

a1, . . . , an

Regular Monte Carlo estimator of sA

ān =
1
n

n∑
i=1

ai

Unbiased estimator E[ān] = sA with mean-squared error (MSE)

Var[ān] =
1
n2

Var

[
n∑

i=1

ai

]
=

Var[A]

n
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MFMC: Control variates (cont’d)

Additional random variable B with known mean sB = E[B] and samples

b1, . . . , bn

Regular Monte Carlo estimator of sB

b̄n =
1
n

n∑
i=1

bi

Control variate estimator of sA that uses samples from A and B

ŝA = ān +
(
sB − b̄n

)
Introduce coefficient α ∈ R to balance A and B

ŝA = ān + α
(
sB − b̄n

)
Combines n samples of A and n samples of B

[Nelson, 87]
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ŝA = ān + α
(
sB − b̄n

)
Combines n samples of A and n samples of B

[Nelson, 87]

21 / 66



MFMC: Control variates (cont’d)

Control variate estimator

ŝA = ān + α
(
sB − b̄n

)

Unbiased estimator of sA because

E[ŝA] = E[ān]︸ ︷︷ ︸
=sA

+αE[sB − b̄n]︸ ︷︷ ︸
=0

= sA

Variance of control variate estimator for optimal∗ α ∈ R

Var[ŝA] = (1− ρ2)
Var[A]

n
= (1− ρ2) Var[ān]

• Correlation coefficient −1 ≤ ρ ≤ 1 of A and B

• If ρ = 0, same variance as regular Monte Carlo
• If |ρ| > 0, lower variance
• The higher correlated, the lower variance of ŝA
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MFMC: Multifidelity Monte Carlo Estimation

Estimate expected value

s = E[f (1)(Z )]

Low-fidelity models

f (2), f (3), . . . , f (k) : D → Y

Correlation coefficients

ρ2 = Corr[f (1), f (2)], ρ3 = Corr[f (1), f (3)], . . . , ρk = Corr[f (1), f (k)]

Costs
w1,w2, . . . ,wk > 0

No need to know expected values of low-fidelity models!
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MFMC: Multifidelity Monte Carlo
Reminder: Monte Carlo estimator

ȳ (1)
n =

1
n

n∑
i=1

f (1)(zi )

Multifidelity Monte Carlo (MFMC) estimator

ŝ = ȳ (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
ȳ (i)
mi
− ȳ (i)

mi−1

)
︸ ︷︷ ︸
from low-fid. models

• Monte Carlo estimator

ȳ (i)
mi

=
1
mi

mi∑
i=1

f (i)(z i )

• Number of model evaluations m = [m1, . . . ,mk ]T

• Control variate coefficients α = [α2, . . . , αk ]T

• Optimal selection of m and α → our code
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MFMC: Recipe 1

Download

https://github.com/pehersto/mfmc

Given
• Models f (1), f (2), . . . , f (k)

• Computational budget b

Pilot run
• Draw m0 (≈ 50) realizations of Z
• Evaluate each model f (1), f (2), . . . , f (k) at the m0 realizations

Y =

 f (1)(z1) f (2)(z1) . . . f (k)(z1)
...

...
...

f (1)(zm0) f (2)(zm0) . . . f (k)(zm0)


• Estimate computational costs of model evaluations w = [w1, . . . ,wk ]T
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MFMC: Recipe 1 (cont’d)

Determine number of model evaluations

[ m, a ] = optiMlevelCorr( Y, w, b )

• Number of model evaluations m = [m1,m2, . . . ,mk ]T

• Coefficients a = [α2, α3, . . . , αk ]T

Draw realizations
z1, z2, . . . , zmk

Evaluate models

f (i)(z1), . . . , f (i)(zmi ) , i = 1, . . . , k

Estimate

ŝ = ȳ (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
ȳ (i)
mi
− ȳ (i)

mi−1

)
︸ ︷︷ ︸

from low.-fid. models
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MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4

5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9
10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11
12 z = drawSamples(m(end)); % draw realizations
13
14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16
17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end
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MFMC: Recipe 2 (MFMC as post-processing)
Given

• Model evaluations

f (i)(z1), . . . , f (i)(zmi ) , i = 1, . . . , k

• Model evaluation costs w1, . . . ,wk

Pilot samples
• Use the first m0 � m1 samples to form

Y =

 f (1)(z1) f (2)(z1) . . . f (k)(z1)
...

...
...

f (1)(zm0) f (2)(zm0) . . . f (k)(zm0)


• Derive coefficients

[ ∼, a ] = optiMlevelCorr( Y, w, b )

Estimate

s = ȳ (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
ȳ (i)
mi
− ȳ (i)

mi−1

)
︸ ︷︷ ︸

from low.-fid. models 28 / 66
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MFMC: AeroStruct: Problem setup

Coupled aero-structural wing analysis
• Uncertain are angle of attack, air density,

Mach number
• Estimate expected fuel burn

High-fidelity model f (1)

• OpenAeroStruct code
• Vortex-lattice method
• 6 DoF 3-dim spatial beam model
• Used with default configuration

Low-fidelity models
• Spline interpolants on equidistant grid
• Low-fidelity model f (2) from 343 points
• Low-fidelity model f (3) from 125 points

[Jasa, J. P., Hwang, J. T., and Martins, J. R.
R. A., “Open-source coupled aerostructural
optimization using Python,” Structural and

Multidisciplinary Optimization, 2018.]

https://github.com/johnjasa/OpenAeroStruct/
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MFMC: AeroStruct: Distribution of work

Model properties
model evaluation costs [s] offline costs [s] correlation coefficient
high-fid. f (1) 1.61× 10−1 - -
low-fid. f (2) 1.23× 10−7 55.382 9.9552× 10−1

low-fid. f (3) 1.21× 10−7 20.183 9.9192× 10−1

Number of model evaluations
Monte Carlo MFMC with f (1), f (2) MFMC with f (1), f (3)

online costs [s] #evals f (1) #evals f (1) #evals f (2) #evals f (1) #evals f (3)

7.99× 100 50 4.90× 101 4.48× 105 4.90× 101 5.97× 105

1.61× 101 100 9.90× 101 8.95× 105 9.90× 101 1.19× 106

8.07× 101 500 4.96× 102 4.48× 106 4.95× 102 5.97× 106

1.61× 102 1000 9.93× 102 8.95× 106 9.90× 102 1.19× 107

8.07× 102 5000 4.97× 103 4.48× 107 4.95× 103 5.97× 107

MFMC trades high-fidelity evaluations for low-fidelity evaluations
• The high-fidelity model evaluations guarantee unbiased
• The low-fidelity model evaluations help to reduce the variance
• The balance is optimal with respect to the mean-squared error
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MFMC: AeroStruct: Speedup results
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high-fidelity model f (1) alone

low-fidelity model f (3) alone

MFMC with f (1), f (3)

• Low-fidelity model alone leads to biased estimators
• MFMC achieves speedup of about two order of magnitude
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MFMC: AeroStruct: Speedup with offline costs
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• Constructing low-fidelity models incurs offline costs
• In this example, offline costs low compared to savings

32 / 66



MFMC: AeroStruct: Combining all three models
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• Model f (2) and f (3) are similar with respect to costs/correlations
• Adding model f (2) has little effect
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MFMC: Plate
Locally damaged plate in bending

• Inputs: nominal thickness, load, damage
• Output: maximum deflection of plate
• Only distribution of inputs known
• Estimate expected deflection

Six models
• High-fidelity model: FEM, 300 DoFs
• Reduced model: POD, 10 DoFs
• Reduced model: POD, 5 DoFs
• Reduced model: POD, 2 DoFs
• Data-fit model: linear interp., 256 pts
• Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples
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spatial coordinate x1

0 0.2 0.4 0.6 0.8 1

sp
a
ti
al

co
o
rd

in
a
te

x
2

1

0.8

0.6

0.4

0.2

  0

th
ic

kn
es

s

0.05

0.06

0.07

0.08

(b) damaged plate
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MFMC: Plate: Combining many models
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• Largest improvement from “single → two” and “two → three”
• Adding yet another reduced/SVM model reduces variance only slightly
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MFMC: Plate: #evals of models

one m
odel

two m
odels

three m
odels

six m
odels
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2.11e-3%

3.47e-5%

high--delity f (1)

reduced f (2)

reduced f (4)

reduced f (5)

data f (3)

SVM f (6)

• MFMC distributes #evals among models depending on corr/costs
• Number of evaluation changes exponentially between models
• Highest #evals in data-fit models (cost ratio w1/w6 ≈ 106)
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MFMC: Multi-fidelity Monte Carlo in the wild
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks
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MFGSA: Sensitivity analysis
Y

Z

Y

Z

Y is sensitive to Z Y is not sensitive to Z

Sensitivity analysis
• Determine which inputs influence output most
• Can sample Y as a black box for inputs Z and need to determine what

components of Z = [Z1, . . . ,Zd ]T influence Y most
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MFGSA: Sensitivity analysis in engineering

Risk communication for decision-making
• Determine if one can rely on model output or if “noise”
• Communicate to upstream decision-making which inputs are critical

Feedback to improve model
• Determine which inputs need to be sampled carefully
• Prioritize effort on reducing uncertainty
• Modify model with respect to sensitive inputs

Model reduction and dimensionality reduction
• Focus on important inputs and ignore ineffective inputs
• Derive surrogate models that depend on important inputs only
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MFGSA: Variance-based global sensitivity analysis

• Input Z = [Z1, . . . ,Zd ]T ∈ D is a random vector

• Output of model Y = f (1)(Z1, . . . ,Zd) is sensitive to inputs

• Measure sensitivity with variance

• Main effect sensitivity

Si =
Var[E[Y |Zi ]]

Var[Y ]

• Main sensitivity indices are normalized

d∑
i=1

Si = 1 , Si ∈ [0, 1]
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MFGSA: Multifidelity estimation

Estimation of sensitivity indices
• Estimate variance instead of expected value

Si =
Var[E[Y |Zi ]]

Var[Y ]

• Requires estimating variance for all d inputs Z = [Z1, . . . ,Zd ]

Multifidelity estimation
• Given are low-fidelity models f (2), . . . , f (k)

• Similarly to MFMC, exploit correlations

ρ2 = Corr[f (1), f (2)], ρ3 = Corr[f (1), f (3)], . . . , ρk = Corr[f (1), f (k)]

• Estimator has similar structure as estimator for expected values
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MFGSA: Premixed flame

Inputs to model are
• Parameters of Arrhenius reaction
• Temperatures at boundary
• Ratio of fuel and oxidizer
• Activation Energy

Output is maximum
temperature in chamber

x
1
 [cm]

x 2 [c
m

]

 

 

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p 
[K

]

0

500

1000

1500

2000

x
1
 [cm]

x 2 [c
m

]

 

 

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p 
[K

]

0

500

1000

1500

2000

Models
• Model based on finite differences serves as high-fidelity model
• Model with lower fidelity derived with proper orthogonal decomposition

Code available on GitHub

https://github.com/elizqian/mfgsa
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MFGSA: Premixed flame: Results

• Monte Carlo too inaccurate for ranking inputs
• Multi-fidelity Monte Carlo allows ranking of inputs
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks
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MFIS: Failure probabilities

System described by high-fidelity model f (1) : D → Y
• Input z ∈ Z
• Output y ∈ Y
• Costs of one high-fidelity model evaluation w1 > 0

Define indicator function

I (1)(z) =

{
1 , f (1)(z) < 0
0 , else .

Indicator function I (1)(z) = 1 signals failure for input z

Given random variable Z , estimate failure probability

Pf = Ep[I (1)(Z )]
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MFIS: Rare event simulation

• Monte Carlo estimator of Pf

using m ∈ N realizations

PMC
f =

1
m

m∑
i=1

I (1)(z i )

• If Pf small, then only few
realizations with f (1)(z) < 0

• Require (very) large m to obtain
Monte Carlo estimator with
acceptable accuracy →
expensive -0.5 0 0.5 1 1.5

outputs f (1)(z)
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5

de
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ity

realizations
density
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MFIS: Rare event simulation is challenging
Costs of rare event simulation grow inverse proportional to Pf

• Monte Carlo estimation of Pf with m realizations

PMC
f =

1
m

m∑
i=1

I (1)(z i )

• Relative mean-squared error (MSE) of PMC
f

e(PMC
f ) = Ep

[(
PMC
f − Pf

Pf

)2]
=

Varp
[
I (1)(Z )

]
P2
f m

=
1− Pf

Pfm

• For constant m, the rel. MSE increases inverse proportional to Pf

• A small failure probability Pf needs to be compensated with a large
number of samples m

• Example: For Pf = 10−5 need m ≈ 107 to achieve e(PMC
f ) ≤ 10−2

Challenge

costs per sample + number of samples
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MFIS: Rare events in aerospace engineering

Rare event simulation
• Failure probability estimation
• Reliability engineering

Risk assessment
• Communicate to upstream decision-making
• Mitigate catastrophic events

Risk-averse optimization
• Deliver baseline performance outside nominal operating conditions
• Take into account dynamics at limit states
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MFIS: Importance sampling

• Importance sampling (IS)
creates biasing density q to put
more weight on failure events

• Let Ẑ be the corresponding
random variable

• Introduce the weight function

r(z ′) =
p(ẑ)

q(ẑ)

• Reformulate failure probability

Pf = Ep[I (1)(Z )] = Eq[I (1)(Ẑ )r(Ẑ )] -0.5 0 0.5 1 1.5
outputs f (1)(z)
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MFIS: Multifidelity importance sampling
step 1

construction of
biasing distribution

step 2
estimation of

failure probability

low-fidelity
model

low-fidelity
modellow-fidelity, cheap

biased

high-fidelity
model

high-fidelity
model

high-fidelity, expensive

unbiased

co
m
pu

ta
tio

na
lc

os
ts

multifidelity

unbiased
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MFIS: Recipe 3
Step 1: Construct biasing distribution using low-fidelity model f (2)

• Evaluate f (2) at (many) realizations z1, . . . , zn of Z
• Fit mixture model q (biasing) to realizations → scikit-learn, Matlab

{z i | I (2)(z i ) = 1 , i = 1, . . . , n}

• Derive random variable Ẑ with density q

Step 2: Estimate Pf with high-fidelity model f (1)

PMFIS
f =

1
m

m∑
i=1

I (1)(ẑ i )

︸ ︷︷ ︸
uses

high-fidelity

p(ẑ i )

q(ẑ i )

︸ ︷︷ ︸
uses

low-fidelity

Multifidelity estimator PMFIS
f is unbiased

Pf (1) = Eq[PMFIS
f ]
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MFIS: Optimization for risk-averse designs

optimization
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MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct
• Design variables are thickness and position of control points
• Uncertain flight conditions (angle of attack, air density, Mach number)
• Output is fuel burn

Minimize fuel burn at limit states

min
x∈X

E[f (1)(x ,Z ) | f (1)(x ,Z ) ≤ β]

Derive a data-fit surrogate at current design x
• Take a 3× 3× 3 equidistant grid in stochastic domain
• Evaluate high-fidelity model at those 27 points at current design x
• Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method
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MFIS: Risk-averse design of wing (cont’d)
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks
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Outlook: Inverse problems

physics-based
model ?

y = f ( z ) + ε

data inputs

noise and
model bias

Bayesian inference of parameters z from data y
• Parameters represented as random variable z with prior p(z)

• Define likelihood p(y |z) of data y using model f
• Update distribution of z (“infer”) with Bayes’ rule

p(z |y)︸ ︷︷ ︸
posterior

∝ p ( y | z )︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

57 / 66



Outlook: Inverse problems (cont’d)
p(z |y)︸ ︷︷ ︸
posterior

∝ p ( y | z )︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

Posterior provides complete description of uncertainties in z
• Input to future simulations for predictions with quantified uncertainties
• Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z |y)

• Evaluate posterior expectation for function g

E[g ] =

∫
g(z)p(z |y)dz

• Samples required as inputs in upstream simulations
• Explore posterior to decide where to take new data points
• Estimate quantiles

Making sampling tractable ⇒ multifidelity
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Outlook: Learning surrogates for multifidelity
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Traditional model reduction is separate from multifidelity computations
• Measures error w.r.t. HFM output while outer-loop result is goal
• Ignores that surrogates are used together with other information sources
• While approximating HFM can be hard, supporting HFM might be easy

⇒ Need for model reduction that targets multifidelity
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Outlook: Learning surrogates for multifidelity
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Adapt surrogate models - but not too much
• Adapting surrogate models towards multifidelity is beneficial
• Crude, cheap surrogates can have better costs/benefit ratio
• Proved for MFMC that optimal amount to spend on learning surrogates

is bounded
[P.: Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM/ASA Journal on Uncertainty

Quantification, 2019.]
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Summary: Multi-fidelity uncertainty quantification

Wide applicability; integrates well with machine-learning surrogates
• Applicable to general low-fidelity models such as response surfaces,

coarse-grid approximations, linearized models, neural-network models

Accuracy guarantees; even if errors of low-fidelity models unknown
• High-fidelity model stays in the loop; same accuracy guarantees

as using high-fidelity model only
• Useful in real-world applications, where typically error control for

low-fidelity models such as neural-network models is unavailable

Nonintrusive technique; no re-implementation of codes necessary
• Applicable in a black-box fashion; no in-depth insight in

code/implementation/theory necessary

Embarrassingly parallel; just as regular Monte Carlo
• Evaluations of low- and high-fidelity models can often be decoupled
• Applicable as post-processing step (re-use databases of past simulations)
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Survey with many references
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Further reading on methods covered in this talk
[1] L. W. T. Ng and K. Willcox.

Multifidelity approaches for optimization under uncertainty.
International Journal for Numerical Methods in Engineering,
100(10):746–772, 2014.

[2] B. Peherstorfer, T. Cui, Y. Marzouk, and K. Willcox.
Multifidelity importance sampling.
Computer Methods in Applied Mechanics and Engineering, 300:490–509,
2016.

[3] B. Peherstorfer, B. Kramer, and K. Willcox.
Multifidelity preconditioning of the cross-entropy method for rare event
simulation and failure probability estimation.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):737–761, 2018.

[4] B. Peherstorfer, K. Willcox, and M. Gunzburger.
Optimal model management for multifidelity monte carlo estimation.
SIAM Journal on Scientific Computing, 38(5):A3163–A3194, 2016.

[5] E. Qian, B. Peherstorfer, D. O’Malley, V. Vesselinov, and K. Willcox.
Multifidelity monte carlo estimation of variance and sensitivity indices.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):683–706, 2018.
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Books on uncertainty quantification
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Software
Software for uncertainty quantification

[Figure: Pflüger et al., 2016]

Software with explicit multifidelity support

MFMC
https://dakota.sandia.gov/ https://github.com/pehersto/mfmc
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Summary: Multi-fidelity uncertainty quantification
Wide applicability; integrates well with machine-learning surrogates
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