Function approximation

Polynomial interpolation mainly has application in function approximation, with respect to some norm:

For functions, some example norms are:

\[\|f\|_\infty = \max_{x \in [a,b]} |f(x)| \]
\[\|f\|_2 = \sqrt{\int_a^b |f(x)|^2 \, dx} \]
\[\|f\|_1 = \int_a^b |f(x)| \, dx \]

Just like for \(n\)-dimensional vectors.

Norms of functions satisfy the same properties as those in the finite dimensional vector case:

1. \(\|f\| > 0 \), \(\|f\| = 0 \) iff \(f = 0 \)
2. \(\|cf\| = |c| \|f\| \)
3. \(\|f + g\| \leq \|f\| + \|g\| \)

Ex: The 2-norm of a function can be generalized by introducing a "weight" function \(w > 0 \):

\[\|f\|_{2,w} = \sqrt{\int_a^b |f(x)|^2 w(x) \, dx} \]

So: the polynomial \(p_n \) of degree \(n \) that best approximates a function \(f \) in the \(\infty \)-norm is

\[\min_{p_n} \|p_n - f\|_\infty \]

Do not think of \(p_n \) as a polynomial interpolant of maximum pointwise error, \(f \).
From analysis class, we know that continuous functions f on some finite interval can be approximated arbitrarily well by a polynomial of "some" degree; this result is known as the **Weierstrass Approximation Theorem**.

I.e. For any $\varepsilon > 0$, there exists a polynomial p such that $\|f - p\|_{\infty} < \varepsilon$.

Unfortunately, this is a completely useless theorem for numerical approximation. It doesn't tell you how to find p!

The question of restricting $p \in \mathbb{P}_n$ is much more interesting, and actually useful.

To pose the problem:

For $n \geq 0$, find $p_n \in \mathbb{P}_n$ such that

$$\|f - p_n\|_{\infty} = \min_{q \in \mathbb{P}_n} \|f - q\|_{\infty}.$$

Theorem: Such a p_n exists, and is unique. (The proof does not tell us how to find p_n.)

In general, one cannot write down the **minimax polynomial**, i.e., the polynomial p_n such that

$$\|f - p_n\|_{\infty} = \min_{q \in \mathbb{P}_n} \max_{x \in [a,b]} |f(x) - q(x)|$$
However, we can explicitly write down the minimax polynomial approximation to the monomial \(f(x) = x^{n+1} \) on \([0, 1]\):

\[
f(x) = x^{n+1}.
\]

Theorem Let \(n \geq 0 \), then \(\| p_n - f \|_\infty \), with \(f(x) = x^{n+1} \), is minimized when
\[
p_n(x) = x^{n+1} - \frac{1}{2^n} \cos((n+1)\cos x),
\]

polynomial of degree \(n \).

The function \(T_n(x) = \cos((n+1)\cos x) \) is known as the Chebyshev polynomial of degree \(n \). These functions play a very important role in numerical analysis.