Lectur 16 Harars Numerical Analysis

There are a few questions that can be asked about
pn at this point:
[OI] If the points
$$(x_{3}, y_{3})$$
 course from a sumwith Function,
What is the error between pn and the foundain f:
[OI] What is the cost of evaluating pn? IF a
new data point is added, (x_{nex}, y_{nex}) , what is the cost
of updating pn?
[OI] In Florting point arithmetic, is the evaluation of
pn stable?
[OI] Note, if $y_{3} = f(x_{3})$, then $p_{n}(x_{3}) = y_{3} = f(x_{3})$ by
construction. IF $x \neq x_{3}$, then
Theorem: Let $f \in C^{n+1}[a,b]$. For $x \in (a,b)$, there exists
a $s = s(x) \in (a,b)$ such that
 $f(x) - p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
Exact pointwise
 $f(x) - p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $F(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$
 $f(x) = p_{n}(x) = \frac{f^{(nex)}(s)}{(nex)!}$ if $(x = x_{3})$

Moreover:

$$\left| f(x) - p_n(x) \right| \leq \frac{M_{n+1}}{(n+1)!} \left| T_{n+1}(x) \right|$$

where $M_{n+1} = \max_{\substack{n \neq x \\ t \in [\alpha_1 \beta_2]}} \left| f^{(n+1)}(t) \right|$

 $T_{n+1}(x) = \frac{n}{||f|} (x + x_j)$

Proof is detailed, will not go through it, see text.

Two takecoway points:

(i) Only verful if Muri can be compled.

(i) The interpolation error highly depends on where the nodes x; are located.

This will be very important later on.

Will be very important later on.

Compare this with Horners Method.
If the coefficients
$$a_{0}, ..., a_{n}$$
 are become in
 $p_{n}(x) = a_{0} + a_{1}x + a_{2}x^{n} + ... + a_{n}x^{n}$ the we can
veurite p_{n} as:
 $p_{n}(x) = a_{0} + x(a_{1} + a_{2}x + ... + a_{n}x^{n-1})$
 $= a_{0} + x(a_{1} + x(a_{2} + a_{3}x + ... + a_{n}x^{n-2})$
 $= a_{0} + x(a_{1} + x(a_{2} + a_{3}x + ... + a_{n}x^{n-2})$
 $= a_{0} + x(a_{1} + x(a_{2} + a_{3}x + ... + a_{n}x^{n-2})$
 $= a_{0} + x(a_{1} + x(a_{2} + a_{3}x + ... + a_{n}x^{n-2})$
 $= a_{0} + x(a_{1} + x(a_{2} + a_{3}x + ... + a_{n}x^{n-2})$
 $= a_{0} + x(a_{1} + x(a_{2} + a_{3}x + ... + a_{n}x^{n-2})$
 $b_{n-1} = a_{n-1} + a_{n}x (1 \text{ model} + 1 \text{ add})$
 $b_{n-2} = a_{n-2} + b_{n-1}x (1 \text{ model} + 1 \text{ add})$
 $b_{n-2} = a_{n-2} + b_{n-1}x (1 \text{ model} + 1 \text{ add})$
 $= p_{n}(x) = 7 \frac{2n}{2n} \frac{p_{1}p_{0}s_{1}}{p_{1}s_{1}}$
This means that the Lagrange form is very inefficient.
Is there a better form?
 $form:$
Shurt story: The basic Lagrange form $p_{n}(x) + \sum_{k=0}^{n} y_{k} + b_{k}(x)$
 $(an be unstable (in the large condition number).$
 $(Exi overflow / underflow , roundoff error, etc.)$
Alternet in form west class.

Bangentric Form (s) of Interpolation
The numerical stability of evaluating an interpolating
polynomial can be fixed by rearranging its terms - this
does not change what the actual interpolant is.
As motivation: Examine the bangentric coordinates on
a truingle.
Ex:

$$P$$
 inside a triangle with vertices
 B
 $P = xA + BB + xC$ (x, B, X) coordinates
with $x + B + y = 1$, $x \ge 0$, $B \ge 0$, $y \ge 0$.
The center of mass of the truingle is the given by

The center of mass of the truingle is the given by
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}.$$

$$\begin{array}{rcl} \overrightarrow{Iden}: & \operatorname{Replace} & A,B,C & with & functions & that sum to 1. \end{array}$$

$$\begin{array}{rcl} Start & with the Lagrange Form: (and rewrite) \\ & p_n(x) = & \sum_{k=0}^{n} \left(\overrightarrow{\Pi} & (x-x_3) \\ & j \neq k & (x_k-x_j) \end{array} \right) & y_k \\ & & = & \sum_{k=0}^{n} \left(\overrightarrow{\Pi} & (x-x_3) \\ & j \neq k & (x_k-x_j) \end{array} \right) & y_k \\ & & = & \sum_{k=0}^{n} \left(\overrightarrow{\Pi} & (x-x_3) \\ & j \neq k & (x_k-x_j) \end{array} \right) & y_k \\ & & = & \left(\overrightarrow{\Pi} & (x-x_3) \\ & j \neq k & (x_k-x_j) \end{array} \right) & y_k \\ & & = & \left(\overrightarrow{\Pi} & (x-x_3) \\ & j \neq k & (x_k-x_j) \end{array} \right) & y_k \\ & & & = & \left(\overrightarrow{\Pi} & (x-x_3) \\ & j \neq k & (x_k-x_j) \end{array} \right) & y_k \\ & & & & \\ & & & & \\ & &$$

This firm is "stable for any reasonable choic of
$$x_{3}^{w}$$
 (2004,
Higham).
One should dimage use this from to do polynomial
interplation.
Convergence of Polynomial Interplation
Let's examine the question of what happens as $n=\infty$, i.e.
In wax $|f(x) - p_{0}(x)| = ?$
This is the ∞ -norm.
The pointwise error is approximabely:
wax $\frac{|f^{(n+1)}|}{|(n+1)!}$ wax $\frac{\pi}{3} |x-x_{3}|$
It's not obvious if this increase or decreases as $n=\infty$..
Example
Runge's Function $f(x) = \frac{1}{1+2}$
This behavior is related to the fact that the
function $f(x) = \frac{1}{1+x}$ has a sugularity of $x = \pm i$ in the
complex plane. $f(i) = \frac{1}{1+ic} = \frac{1}{1+i} = \frac{1}{0} = \infty$.

This dictates the radius of convergence A its Taylor series:

$$f(x) = 1 - x^{2} + x^{4} - x^{6} + x^{8} - x^{10} + ...$$
(can be fixed, we'll see (attr on)

[6]