Honors Numerical Analysis

There are a few questions that can be asked abort pu at this point:

Q1 If the points $\left(x_{j}, y_{j}\right)$ came from a sumouth function, What is the error betuen p_{n} and the function f :

vs.

Q2 What is the cost of evaluating in? If a new data point is added, $\left(x_{n+1}, y_{n+1}\right)$, what is the cost of updating pu?

Q3 In floating point arithmetic, is the evaluation of pu stable?

Q1 Note, if $y_{j}=f\left(x_{j}\right)$, then $p_{n}\left(x_{j}\right)=y_{j}=f\left(x_{j}\right)$ by
construction. If $x \neq x_{j}$, then
Theorem: Let $f \in C^{n+1}[a, b]$. For $x \in[a, b]$, there exists a $\xi=\xi(x) \in(a, b)$ such that

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Exact pointwise error.

Similar to Depends highly
Taylor's the on the choice of interpolation points.

Moreover:

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!}\left|\pi_{n+1}(x)\right|
$$

when

$$
M_{n+1}=\max _{t \in[a, b]}\left|f^{(n+1)}(t)\right|
$$

$$
\pi_{n+1}(x)=\prod_{j=1}^{n}
$$

(1) Only useful if M_{u+1} can be computed.
(2) The interpolation error highly depends on when the nodes x_{j} are located.

This will he very important later on.
Q2 The cost of evaluating p_{n} depends on the form it is written in.
Lagrange Form:

$$
\begin{aligned}
& p_{n}(x)=\underbrace{\sum_{k=0}^{n} y_{k} L_{k}(x)}_{\begin{array}{c}
n+1 \text { molt } \\
n \text { adds }
\end{array}}, L_{k}(x)=\prod_{\substack{j=0 \\
j \neq k}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} \\
& \underbrace{\substack{n-1) \text { flops. }}}_{3 \text { flops }} \\
& \Rightarrow(n+1) 3(n-1) \text { flops to }
\end{aligned}
$$ evaluate all $L_{k} s$.

\Rightarrow ovenil, $O\left(n^{2}\right)$ flops to evaluate pu in Lagrange form.

Compare this with Horners Method,
If the coefficients $a_{0, \ldots}, a_{n}$ are known in

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \text { the we can }
$$

rewrite p_{n} as:

$$
\begin{aligned}
& p_{n}(x)=a_{0}+x\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right) \\
&=a_{0}+x\left(a_{1}+x\left(a_{2}+a_{3} x+\cdots+a_{n} x^{n-2}\right)\right. \\
&=a_{0}+x(a_{1}+x(a_{2}+x \underbrace{(\cdots)}_{b_{n-1}}=a_{n-1}+a_{n} x \\
& b_{n-2}=a_{n-2}+b_{n-1} x \\
& b_{n-1}=a_{n-1}+a_{n} x \quad(1 \text { mull, } \mid \text { add }) \\
& b_{n-2}=a_{n-2}+b_{n-1} x(1 \text { molt, } \mid \text { add }) \\
& ; \\
& b_{0}=a_{0}+b_{1} x \\
&\left.=p_{n}(x) \Rightarrow 2 n \text { molt, ladd }\right) \\
& \Rightarrow \text { flops. }
\end{aligned}
$$

This menus that the Lagrange Form is very inefficient. Is then a better form?

Q3 The numerial stability of evaluating p_{n} in Lagrange form:

Short story: The basic Lagrange form $p_{n}(x)=\sum_{k=0}^{n} y_{k} L_{k}(x)$ can be unstable (ie. have lays condition number). (Ex: overflow/underflow, nundoff cor, etc.) Alternation form next class.

Barycentric Form (s) \& Interpolation
The numerical stability of evaluating an interpolating polynomial can be fixed by rearranging its terms - this does not change what the actinal interpolant is.

As motivation: Examine the barycentric coordinates on a triningle.
Ex:

$$
P=\alpha A+\beta B+\gamma C \quad(\alpha, \beta, \gamma) \text { coordinäts }
$$

with $\alpha+\beta+\gamma=1, \alpha \geq 0, \beta \geq 0, \gamma \geqslant 0$.
The center of mass of the triangle is the gin by

$$
\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) .
$$

Idun: Replace A, B, C with functions that sum to 1.
Start with the Lagrange Form: (and rewrite)

$$
\begin{aligned}
& p_{n}(x)=\sum_{h=0}^{n} \underbrace{\left(\prod_{j \neq h} \frac{\left(x-x_{j}\right)}{\left(x_{h}-x_{j}\right)}\right)}_{L_{k}(x) .} y_{k} \\
& =\sum_{k=0}^{n} \underbrace{\left(\prod_{j=0}^{n}\left(x-x_{j}\right)\right) \frac{1}{x-x_{k}}}_{\text {does not doping on } k}\left(\prod_{j \neq k}^{\prod} \frac{1}{\left(x_{k}-x_{j}\right)}\right) y_{k} \\
& =\underbrace{\left(\prod_{j=0}^{n}\left(x-x_{j}\right)\right)}_{\varphi(x)} \sum_{k=0} \frac{1}{x-x_{k}} \underbrace{\left(\prod_{j \neq h} \frac{1}{x_{k}-x_{j}}\right)}_{w_{k}} y_{k} \\
& =\varphi(x) \sum_{k=0}^{n} \frac{w_{k}}{x-x_{k}} y_{k} \quad \text { (Modified Lagrange Form) }
\end{aligned}
$$

We can even further simplify this form by "dividing by 1". The polynomial interpulant of the functuri 1 at the same nodes x_{3} is simply:

This interpolant is

$$
1=\varphi(x) \sum_{k=0}^{n} \frac{w_{k}}{x-x_{k}} \quad\left(\text { sine } y_{k}=1\right)
$$ mathematiclly equivalent

to 1.

Then $p_{n}(x)=\frac{\varphi(x) \sum_{k=0}^{n} \frac{w_{k}}{x-x_{k}} y_{k}}{\varphi(x) \sum \frac{w_{n}}{x-x_{n}}}=\frac{\sum_{k=0}^{n} w_{k} / x-x_{k} \cdot y_{k}}{\sum_{k=0}^{n} w_{k} / x-x_{k}} \quad \begin{aligned} & \text { Second } \\ & \text { Barycentric } \\ & \text { Formula. }\end{aligned}$

This form is "stable for any reasonable choice of x_{j} " 2004 , Highaml.
One should always use this fem to do polynomial interpolation.
Convergence of Polynomial Interpolation
Leta examine the question of what happens as $n \rightarrow \infty$, iii.

$$
\lim _{n \rightarrow \infty} \max _{x} \underbrace{\left|f(x)-p_{n}(x)\right|}_{\text {this if the } \infty-\text {-nom. }}=\text { ? }
$$

The pointwise eros is approximately:

$$
\max _{\xi} \frac{\left|f^{(n+1)}(\xi)\right|}{(n+1)!} \cdot \max _{x} \prod_{j=0}^{n}\left|x-x_{j}\right|
$$

Its not obvious if this increases or decienges as $n \rightarrow \infty \ldots$
Example

Rune's Function $f(x)=\frac{1}{1+(3 x)^{2}}$
The Range Effect

$n=4$

This behavior is related to the fact that the function $f(x)=\frac{1}{1+x^{2}}$ has a singularity at $x= \pm i$ in the complex plane. $f(i)=\frac{1}{1+i \cdot i}=\frac{1}{1+-1}=\frac{1}{0}=\infty$.

This dictates the radius of convergence of its Taylor series:

$$
f(x)=1-x^{2}+x^{4}-x^{6}+x^{8}-x^{10}+\cdots
$$

(can be fixed, well sue later on)

