Honors Numerical Analysis

Next topic : Erginvalue Publems

Recall:
$$\lambda, \hat{\nu}$$
 and an eigenvalue puir if $A \cdot \hat{\nu} = \lambda \cdot \hat{\nu}$.
Direct conjustation : form characteristic equation:
 $d_{i+}(A - \lambda I) = 0$
polynomial in λ of degree n if $A \in \mathbb{R}^{nm}$.
 $p(\lambda)$
The solution to $p(\lambda) = 0$ an the eigenvalue.

Application: Systems of linear Initial Value problems:

[3]

Pick largest element of
$$T$$
, call it T_k . (in absolute value)
=7 $(\lambda - a_{kk}) T_k = \sum_{\substack{j \neq k}} a_{kj} T_j$
 $|\lambda - a_{kk}| |T_k| \le \sum_{\substack{j \neq k}} |a_{kj}| |T_j|$
 ≤ 1
 $\leq 2 |a_{kj}|$ We will revist this theorem
in detail when discosing
Jacobi is metod.

The Power Method

- <u>Gool</u> Calculate the enginvalue with largest magnitude and associated enginvactor. (Assume that A is daugonalizable.) Start with a random vector w.
 - If \vec{w} is truly rundom, then it is a livient combination \vec{A} every eigenvector \vec{A} A. $= \vec{v} \vec{w} = \sum_{j=1}^{2} c_j \vec{v}_j$ regenvectors.Apply $A + \vec{w} = A (\sum_{j=1}^{2} c_j \vec{v}_j)$ $= \sum_{j=1}^{2} c_j A_j \vec{v}_j$ $A^2 \vec{w} = A (A \vec{w})$ $= \sum_{j=1}^{2} c_j A_j^2 \vec{v}_j$ $A^2 \vec{w} = \sum_{j=1}^{2} c_j A_j^2 \vec{v}_j$ $A^k \vec{w} = \sum_{j=1}^{2} c_j A_j^k \vec{v}_s$ $A^k \vec{w} = \sum_{j=1}^{2} c_j A_j^k \vec{v}_s$ $A^k \vec{w} = \sum_{j=1}^{2} c_j A_j^k \vec{v}_s$

(Assume that
$$|\lambda_1| > |\lambda_2| > |\lambda_3| \dots$$
)
If $|\lambda_1| > |\lambda_2|$, sufficiently larger, then λ_1 dominates.
So eventually, if $g^{(h)} = A^{h} \vec{w}$, then
 $g^{(hrl)} = A^{hrl} \vec{w}$
 $= A \vec{y}^{(h)} \approx \vec{\lambda}_1 \vec{y}^{(h)}$

Normalize these iterats on every step: $\vec{w}_0 = \vec{w} / \| \vec{w} \|$ $\vec{w}_1 = \frac{A \vec{w}_0}{\|A \vec{w}_0\|}$ -- $\vec{w}_n = \frac{A \vec{w}_{n-1}}{\|A \vec{w}_{n-1}\|}$.

Under this normalization, the eigenvector λ_i is approximately equal to (i) Which $\approx \lambda_i$ it component of Wh

(2) Better option is to estimate
$$\lambda_1$$
 as
 $\lambda_1 \simeq (A \vec{w}_k, \vec{w}_k)$
Since $A \vec{w}_k \simeq \lambda_1 \vec{w}_k$
 $\vec{w}_k A \vec{w}_k \simeq \lambda_1 \vec{w}_k \vec{w}_k$
=1 since \vec{w}_k is a unit vector.

The Whi's approach V, as k-00.

How fast does the power method converge?

If k is sufficiently large, then
$$A^{k}\vec{w} \simeq c_{1}\lambda^{k}\vec{v}_{1}$$
 (assume)
 $A^{k}\vec{w} \simeq c_{1}\lambda^{k}\vec{v}_{1}$
 $\Rightarrow \vec{v}_{1} \simeq \frac{1}{c_{1}\lambda^{k}} A^{k}\vec{w}$
 $= \frac{1}{c_{1}\lambda^{k}} \left(c_{1}\lambda^{k}\vec{v}_{1} + c_{2}\lambda^{k}\vec{v}_{2} + \dots + c_{n}\lambda^{k}\vec{v}_{n}\right)$
 $= \vec{v}_{r} + \frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}\vec{v}_{2} + \frac{c_{3}}{c_{1}}\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k}\vec{v}_{3} + \dots + \frac{c_{n}}{c_{n}}\left(\frac{\lambda_{n}}{\lambda_{n}}\right)^{k}\vec{v}_{n}$.
If $[\lambda_{3}]c[\lambda_{1}]$ for $j > l$, then $\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} \rightarrow 0$ as $k \neq \infty$
 $\vec{w}_{k} = \frac{A^{k}\vec{w}}{\|A^{k}\vec{w}\|}$
 $\|\vec{w}_{k} - \vec{v}_{r}\| \approx \left[\frac{c_{2}}{c_{1}}\right]\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}$
The convergence of the
 $\sim O\left(\left|\frac{\lambda_{n}}{\lambda_{1}}\right|^{k}\right)$ power method dypends on
the gap in the eigenvalue.
This means that if $\left[\frac{\lambda_{n}}{\lambda_{1}}\right] \approx l$, then convergence is
very show.
How do we accelerate this convergence?

Idea one Power method with shift
If a matrix A has eigenvalues
$$\lambda_1 - \lambda_n$$
, then
A-sI has eigenvalues λ_{i-s} .
Pf: (A-sI) $\vec{v} = A\vec{v} - s\vec{v}$
 $= A\vec{v} - s\vec{v}$
 $= (\lambda - s)\vec{v}$

 $\begin{array}{c|c} \lambda_{1} & & & \\ \lambda_{1} & & & \\ \lambda_{2} & & \\ \lambda_{3} & & \\ \lambda_{4} & & \\ \lambda_{5} & & \\ \lambda_{7} & & \\ \lambda_{7}$