Honors Numerical Analysis

Next topie: Esinvalu Problems
Recull: λ, \vec{v} an an eiginumlu puir if $A \vec{v}=\lambda \dot{v}$. Dinct congutation: form chaructristic equativi:

$$
\underbrace{\operatorname{det}(A-\lambda I)}=0
$$

$\underset{\rho(x)}{\text { polynomini }}$ in λ of degnee n if $A \in \mathbb{R}^{n \times n}$.
The solution to $\rho(\lambda)=0$ an the ecyinvals.
This is expensin for variois nusons : forming $\rho(\lambda)$ cost n ! flops. Thin, a nonlineir nost findigy algorithm mot be used to solu $p(x)=0$. (Bisiction, Newten, etr.)

Applicatuin: Systems of linear Initial Valu problens:

$$
\vec{y}^{\prime}=A \vec{y} \quad \quad \vec{y}^{\prime}(t)=\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right) \quad y^{\prime}(t)=\left(\begin{array}{c}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t) \\
\vdots \\
y_{n}^{\prime}(t)
\end{array}\right)
$$

One solution mathod is to diayonalize A. (Investigate dicyonalization of matris.)

$$
\begin{aligned}
& A=P D P^{-1} \\
& \left(\begin{array}{lll}
\left.\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{n}\right) \\
& \\
& \\
& & \\
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \\
& \vec{y}^{\prime}=\operatorname{PD} P^{-1} \vec{y} \\
& \underbrace{P^{-1} \vec{y}^{\prime}}_{\vec{u}^{\prime}}=D \underbrace{D-1}_{\vec{u}} \\
& \Rightarrow \vec{u}^{\prime}=D \vec{u} \\
& \Rightarrow \quad u_{1}^{\prime}=\lambda_{1} u_{1} \\
& u_{i}^{\prime}=\lambda_{2} u_{2} \quad \Rightarrow \quad u_{i}=c_{i} e^{\lambda_{i} t} \\
& u_{n}^{\prime}=\lambda_{n} u_{n} \\
& u_{i}^{\prime}=\lambda_{i} c_{i} e^{\lambda_{i} t} \\
& =\lambda_{i} u_{i}
\end{aligned}
$$

\Rightarrow Change varciabls buck.

$$
\begin{aligned}
& \vec{u}=\left(\begin{array}{c}
c_{1} u_{1} \\
\vdots \\
c_{n} u_{n}
\end{array}\right)=P^{-1} \vec{y} \\
& \Rightarrow \vec{y}=P \vec{u} .
\end{aligned}
$$

Solving $\vec{y}^{\prime}=A \vec{y}$ was radued to fuiding elyénvalus, and eegenvectors of A.

Big Important Theonm:
Gerschyorius Theorem Let A be an $n \times n$ matrix (raloor complex). Then, all the ecyenvaly of A lie in $\bigcup_{i=1}^{n} D_{i}$, when $i^{\text {th }}$ diagonal of A

$$
D_{i}=\{z \in \mathbb{C} \text { sch that }\left|z-a_{i i}\right| \leq \underbrace{\sum_{j \neq i}\left|a_{i j}\right|}\}
$$

referred to as a
"Gerschgorin Dish".

Sum of off-diayoinal entries in wow i.
$\leftarrow 5$ dishes connected,
If m disks are connected,
then m ecyenvalves ar located in this vegisur.
Graphically

Simplest un:
A is diagonal : $A=\left(\begin{array}{ccc}a_{11} & & \\ & a_{22} & \\ 0 & \ddots & \\ & & a_{n n}\end{array}\right) \Rightarrow \lambda_{i}=a_{i i}$
Proof: Let λ, \vec{v} be an eigiuvrlu/vector pair.
Then $A \vec{v}=\lambda \vec{v} \Rightarrow$ ith component

$$
\begin{aligned}
& \sum a_{i j} v_{j}=\lambda v_{i} \quad \text { for all } i \\
\Rightarrow & \left(\lambda-a_{i i}\right) v_{i}=\sum_{j \neq i} a_{i j} v_{j}
\end{aligned}
$$

Pick largest element of v_{v}, call it v_{k}. (in absolvte valu)

$$
\begin{aligned}
\Rightarrow & \left(\lambda-a_{k k}\right) v_{k}=\sum_{j \neq k} a_{k j} v_{j} \\
& \left|\lambda-a_{k k}\right|\left|v_{k}\right| \leq \sum_{j \neq h}\left|a_{k j}\right| \underbrace{\frac{\left|v_{j}\right|}{\left|v_{k}\right|}}
\end{aligned}
$$

$\leq \sum_{j \neq k}\left|a_{k j}\right|$ We will sevist this thearm in ditail when dosicisig
Jacbbi's mitiod.
The Power Method
Goul Calculate the elyinvalu w.th largest magnitede and associated eiginvictor. (Assume that A is dingonalizable.) Start with a random vacter $\stackrel{\rightharpoonup}{w}$.

If \vec{w} is troly rundom, then it is a liaieur combinaton of evry eigenvector of A.

$$
\Rightarrow \vec{w}=\sum_{j=1}^{n} c_{j} \vec{v}_{j} \hat{c}^{\text {elyenvectus. }}
$$

$A_{\text {pply }} A$ to $\vec{w}: A \vec{\omega}=A\left(\sum_{j} c_{j} \vec{v}_{j}\right)$

$$
=\sum_{j} C_{j} A \vec{v}_{j}
$$

$$
=\sum_{j} c_{j} \lambda_{j} \vec{v}_{j}
$$

$$
A^{2} \stackrel{\rightharpoonup}{w}=A(A \stackrel{\rightharpoonup}{w})
$$

$$
=\sum_{j} c_{j} \lambda_{j}^{2} \vec{v}_{j}
$$

$$
A^{k} \vec{w}=\sum_{j} c_{j} \lambda_{j}^{k} \vec{v}_{s}
$$

For sufficiently layg k, this is dominoted by the lageat $\lambda, \approx c_{1} \lambda_{1}^{k} \vec{v}_{1}$.
(Assume that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right| \cdots$)
If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, sufficiently larger, then λ_{1} dominates.
So eventually, if $\vec{y}^{(h)}=A^{k} \vec{w}$, then

$$
\begin{aligned}
\vec{y}^{(k+1)} & =A^{h+1} \vec{w} \\
& =A y^{(h)} \approx \lambda_{1} \tilde{y}^{-(h)}
\end{aligned}
$$

Normalize these intents on every step:

$$
\begin{aligned}
& \vec{w}_{0}=\vec{w} /\|\vec{w}\| \\
& \vec{w}_{1}=\frac{A \vec{w}_{0}}{\left\|\vec{A} \vec{w}_{0}\right\|} \quad \cdots \quad \vec{w}_{k}=\frac{A \vec{w}_{k-1}}{\left\|A \vec{w}_{k-1}\right\|} .
\end{aligned}
$$

Under this normulizatoin, the erginnctor λ_{1} is approximately equal to
(1) $w_{k i} / w_{(k-1) i} \approx \lambda_{1}$

$$
\begin{aligned}
& \hat{\uparrow} \\
& \text { th component } \\
& \text { of } \vec{w}_{h}
\end{aligned}
$$

(2) Better option is to estimate λ_{1} as

$$
x_{2} \approx\left(A \stackrel{\rightharpoonup}{w}_{k}, \vec{w}_{k}\right)
$$

Since $A \vec{\omega}_{k} \approx \lambda_{1} \vec{\omega}_{k}$

$$
\vec{W}_{h}^{\top} A \vec{w}_{k} \approx \lambda_{1} \vec{w}_{w}^{\top} \vec{w}_{k}
$$

$=1 \sin u \vec{w}_{k}$ is a unit vector.
The \vec{w}_{k}^{\prime} s appouch \vec{v}_{1} as $k \rightarrow \infty$.

How fast does the power method converge?

If k is sufficiently large, then $A^{k} \vec{w} \approx c_{1} \lambda_{1}^{k} \vec{v}_{1}\binom{$ assume }{$c_{1}>0}$

$$
\begin{aligned}
A^{k} \vec{w} & \approx c_{1} \lambda_{1}^{k} \vec{v}_{1} \\
\Rightarrow \vec{v}_{1} & \approx \frac{1}{c_{1} \lambda_{1}^{k}} A^{k} \vec{w} \\
& =\frac{1}{c_{1} \lambda_{1}^{k}}\left(c_{1} \lambda_{1}^{k} \vec{v}_{1}+c_{2} \lambda_{2}^{k} \vec{v}_{2}+\ldots+c_{n} \lambda_{n}^{k} \vec{v}_{n}\right) \\
& =\vec{v}_{1}+\frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\frac{k}{v_{2}}}+\frac{c_{3}}{c_{1}}\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} \vec{v}_{3}+\ldots+\frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \vec{v}_{n}
\end{aligned}
$$

If $\left|x_{j}\right|<\left|\lambda_{1}\right|$ for $j>1$, then $\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{h} \rightarrow 0$ as $k \rightarrow \infty$

$$
\begin{aligned}
& \vec{w}_{k}=\frac{A^{k} \vec{w}_{w}}{\left\|A^{h} \vec{w}\right\|} \\
&\left\|\vec{w}_{k}-\vec{v}_{1}\right\| \approx\left|\frac{c_{2}}{c_{1}}\right|\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} \\
& \sim g\left(\left|\frac{x_{2}}{\lambda_{1}}\right|^{k}\right)
\end{aligned}
$$

The convergence of the power method depends on the gap in the exievivalus.
Fie. the relutie size of λ_{2} to λ_{1}.
This menus that if $\left|\frac{\lambda_{2}}{\lambda_{1}}\right| \approx 1$, then consequence is ven slow,

How do we accelerate this convergence?

Idea one Power method with shift
If a matrix A has eigenvalue $\lambda_{1}-\lambda_{n}$, then A-sI has eigenvalues $x_{i}-5$.

Pf: $(A \cdot s I) \vec{v}=A \vec{v}-s \vec{v}$

$$
\begin{aligned}
& =\lambda \vec{v}-s \vec{v} \\
& =(\lambda-s) \vec{v}
\end{aligned}
$$

Choose s to increase the convergence rate:

to minimize the ratio $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)$, chook shift such that $\left|\lambda_{2}\right|=|\tilde{\lambda}|$.

Ie. choose s sech that

$$
\left|\frac{\lambda_{2}-s}{\lambda_{1}-s}\right|=\left|\frac{\tilde{\lambda}-s}{\lambda_{1}-s}\right|
$$

Power method with shift allows for computing the most meyatin or the most position erigenvulu.

