Honors Numerical Analysis [Lecture 3]

$$\frac{First + 5pii}{1000} = Solving a nonlinear equation
Linear : $3x + 7 = 2$ Can solve by hand,
explicit form of solution
Nonlinear : $\cos x + x^{2} - 7 = 5$ No closed form solution,
must use a numerical method
General form of the problem:
Solve $f(x) = 0 \Rightarrow Root = finding = y = f(x)$

$$\frac{y}{\sqrt{x}} = \frac{y}{\sqrt{x}} = \frac{y}{\sqrt{x}} + \frac{y}{\sqrt{x}} = \frac{y}{\sqrt{x}} + \frac{y}{\sqrt{x}} +$$$$

Then: If f is contributed and (a,b),
and if
$$f(a) \cdot f(b) \ge 0$$
, then there exists an
 $x \in (a,b)$ s.t. $f(x) = 0$.
Proof: Merely apply the Intermodule Valu Then. (Cale I).
Can use use this Then to disjin a numerical method
for solving $f(x) = 0$?
Bischier
 $\begin{cases} y \\ f(a) \le 0 \end{cases}$, $f(b) \ge 0 \Longrightarrow f(x) \ge 0$ has
a solution on $[a,b]$
 $f(a) \le 0$, $f(b) \ge 0 \Longrightarrow f(x) \ge 0$ has
a solution on $[a,b]$
 $f(a) \le 0$, $f(b) \ge 0 \Longrightarrow f(x) \ge 0$ has
a solution on $[a,b]$
 $f(a) \le 0$, $f(b) \ge 0 \Longrightarrow f(x) \ge 0$ has
a solution on $[a,b]$
 $f(a) \le 0$, $f(b) \ge 0 \Longrightarrow f(x) \ge 0$ has
a solution on $[a,b]$
 $f(a) \le 0$, $f(b) \ge 0 \Longrightarrow f(x) \ge 0$ has
a solution on $[a,b]$
 $f(a) \le 0$, then $f(x) \ge 0$ has a solution on $[a, b, b]$
 $If = f(\frac{a+b}{2}) \ge 0$, then $f(x) \ge 0$ has a solution on $[a, \frac{a+b}{2}]$.
Split interval in half, and repeat.
Let $a_0 = a_1$ $b_0 = b_1$. The original interval.
 $[a_2, b_2]$ he the initerval obtained offer $f(a)$ solution to
 $f(x) = 0$ on step d .
[2]

When do we stop the splittings? How many steps of
bisiction do we take?
If we want to guarantee that
$$|x_{\ell} - x^{\ell}| \le 6$$
,
 $\lim_{t \to \infty} \frac{x^{\ell}}{k_{\ell}} = \lim_{t \to \infty} \frac{1}{k_{\ell}} + \lim_{t \to \infty} \frac{1}{k_$

Bisaction only used the sign of the Suction of at a and b. Can we derive a better (fuster) method by using the actual values flat and flbt? The Bisection Method used two preces of information to approximate the solution to f(x)=0 - the sign of the function. What if we use value? The result is the <u>Secont Method</u>.

Start with two greats for the rost ,
$$x_0, x_1$$
:
Graphically:
 y the secant has $y=f(x)$
 $y = f(x)$
 $y = f(x) = x_0$
 $y = x_0$
 $y = x_1 - f(x)$
 $y = f(x) = x_0$
 $y = x_0$
 $y = x_1 - f(x)$
 $y = f(x)$
 $y = f(x) = x_0$
 $y = x_0$
 $y = x_1 - f(x)$
 $y = f(x)$
 $y = f(x) = x_0$
 $y = x_0$
 $y = x_1 - f(x)$
 $y = f(x) = x_0$
 $y = x_0$

Call this not x_2 , the next approximation to the not of f. Also, define $f(x_n) = f_n$. The secont method generats a sequence of approximations

to the root A F by:

$$\chi_{k+1} = \chi_{k} - f_{k} \left(\frac{\chi_{k} - \chi_{k-1}}{f_{k} - f_{k-1}} \right)$$

We will revisit the convergence properties of this method later.

What if we are now allowed to use derivating information
to approximiste
$$f$$
? (And then find the rost of this
approximant.)
(Suppose we know $f(x_0)$ and $f'(x_0)$,
 $f(x_0)$ then we can draw the tungent line.
 x_0
 $f(x) = tungent line$

The equation of the trugent line is givin as:

$$t(x) = f(x_0) + f'(x_0)(x - x_0)$$

The root of the trugent line satisfies $t(x) = 0$
 $=7 \quad x = x_0 - \frac{f(x_0)}{f'(x_0)} = x_1$

$$X_i$$
 is the next approximation to the voot of f .
Repeating this procedure at X_i we obtain Newton's Mathad:
 $X_{k+i} = X_k - \frac{f(x_k)}{f'(x_k)}$.

Alternation interpretation : the tangent line is a first-order Taylor approximation to f.

$$\begin{aligned} \text{Recall: The Taylor series of f about } x_{o} & (\text{assuming f has infinite} \\ \text{derivatives}) : \\ f(x) &= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_{o})}{n!} (x - x_{o})^{n} \\ &= f(x_{o}) + f'(x_{o})(x - x_{o}) + \frac{f''(x_{o})}{2!} (x - x_{o})^{2} + \frac{f^{(s)}(x_{o})(x - x_{o})^{3} + \dots}{3!} \\ &= \frac{f(x_{o})}{3!} (x - x_{o}) + \frac{f''(x_{o})(x - x_{o})}{2!} + \frac{f^{(s)}(x_{o})(x - x_{o})^{3} + \dots}{3!} \end{aligned}$$

Truncating this series after the first two terms gives:

$$f(x) \approx f(x_0) + f'(x_0) (x-x_0)$$

If x_0 is close to the voot of f , s , $f(s) = 0$, then
we get that
 $f(s) = 0 \approx f(x_0) + f'(x_0) (s-x_0)$
Solve for $s \Rightarrow \quad s \approx x_0 - \frac{f(x_0)}{f'(x_0)}$. This is Newton's
 f approximately
Method.
Summary the Secant Method and Newton's Method both work
by the same mechanism : approximate f by a livear
function, find the voot of that livear function.
Update and repeat.

Convergence Behavior
Let
$$4$$
 be the tric root of f , i.e. $f/5) = 0$.
We are interested in how the absolute error of x_{1e}
changes from iteration to iteration. $\mathcal{E}_{1e} = |4 - x_{1e}|$.
For the bisection method:

$$e_{\rm kH} \approx \frac{1}{2} e_{\rm k}$$

It turns out that Newton converges <u>quadratically</u>: $e_{k+1} \approx A e_k^2$ E_{k+1} is fast.¹ If $e_0 = 10^1$ $e_3 - 10^8$ $e_1 \sim 10^2$ $e_4 \sim 10^{-16}$ Ne will prove this $e_2 \sim 10^4$ rate next class.

6

Analysis of Newton's Method

Recall: Newton's Method approximates a function by its tangent line and then finds the nost of the tangent line. "And then repeats this:

Two guesting to ask:
() Does Newton's method convey?
I.e. Does the sequence
$$\{x_k\}$$
 converge to $\{s\}$?
I.e. Is $\lim_{k \to \infty} x_k = \{?\}$
(2) If it converge, how fast does it converge.
We answer these guestions via Theorem / Proof, placing
certain assumption on f.

$$\frac{\text{Theorem } \left(1:\$ \text{ from Suli & Mayers}\right)}{\text{Suppose that } f \text{ is twice cartinuously differentiable } \left(cc. f, f', and f'' are continuous}\right) \text{ on the interval } I_{\$} = \left[\frac{5}{5} \cdot \$, \frac{5}{5} \cdot \$\right], \\ 5:0, and that f(5) = 0 \text{ and } f'(5) \neq 0.$$

$$\frac{9}{15} \frac{9}{5} \cdot \$, \frac{1}{5} \cdot 1 \cdot 1 \cdot 15 \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot 1 \cdot 15 \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot 15 \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot 15 \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot 15 \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot 15 \cdot \frac{1}{5} \cdot \frac{1}{5}$$

Repeating le times we have that

$$|\{3 - X_k| \leq \frac{1}{2^k}h = 7$$
 lim $X_k = 3$
 $k = 7$ koos
 $= 7$ [convergence]