Honors Numerical Analysis Lectur3

First topic Solving a nonlinear equation
Linear: $\quad 3 x+7=2 \quad$ Can solve by hand, explicit form \& solution
Nonlinear: $\cos x+x^{2}-7=5 \quad$ No closed form solution, must use a numerical method
Gerent form of the problem:
Solve $f(x)=0 \Rightarrow$ Rout finding

Many solutions
vs.

No solution (at least if x is requind to be renl-valud)
Ie. $x^{2}+1=0 \quad \Rightarrow \quad x= \pm i$

A sufficient condition for a solution to exist on the interval $[a, b]: \quad f(a)<0$ \& $f(b)>0$ OR $\quad f(a)>0 \quad \Delta \quad f(b)<0$

Thu: If f is continuous and real-valued on $[a, b]$, and if $f(a) \cdot f(b)<0$, then then exists an $x \in(a, b)$ sit. $f(x)=0$.
Proof: Merely apply the Intermediate Valu Thu. (Cal I).

Can we use this Thu to design a numerical method for solving $f(x)=0$?

Bisection

$$
f(a)<0, f(b)>0 \Rightarrow f(x)=0 \text { has }
$$

$$
\text { a solution on }[a, b] \text {. }
$$

Idea: Split the interonl in half, apply the some Thu:

If $f\left(\frac{a+b}{2}\right)<0$, then $f(x)=0$ has a solution on $\left[\frac{a+b}{2}, b\right]$
If $f\left(\frac{a+b}{2}\right)>0$, then $f(x)=0$ has a solution on $\left[a, \frac{a+b}{2}\right]$.
Split internal in half, and repent.
Let $a_{0}=a, b_{0}=b$, the original interval.
$\left[a_{l}, b_{l}\right]$ be the interoul obtained after l splittings.
Then $b_{l}-a_{l}=\frac{b_{0}-a_{0}}{2^{l}}=\frac{L}{2^{l}}$ with $L=b_{0}-a_{0}$.

Let $x_{l}=\frac{a_{l}+b_{l}}{2}$ be our approximation of the solution to $f(x)=0$ on step l.

When do we stop the splittings? How many steps of bisictoín do we take?
If we want to guarantee that $\left|x_{l}-x^{*}\right|<\epsilon^{\ell}$ pr

then we nad to choose l such that

$$
\begin{aligned}
& \left|x_{l}-x^{*}\right| \leq \frac{b_{l}-a_{l}}{2}=\frac{1}{2} \frac{b_{0}-a_{0}}{2^{l}}=\frac{1}{2^{l+1}} L<\epsilon \\
\Rightarrow \quad & 2^{l+1}>\frac{L}{\epsilon} \quad \Rightarrow \quad l>1+\log _{2} L / \epsilon .
\end{aligned}
$$

If $e_{l}=$ error on $l^{\text {th }}$ step

$$
=\left|x_{l}-x^{*}\right|=\text { absolute err in } x_{l} \text {. }
$$

then $e_{l+1} \leq \frac{1}{2} e_{l}$.
\Rightarrow The error goes down by a factor of 2 .
This is not very fist.
Bisection only and the sign of the factor f at a and b. Can we deriv a better (foster) method by using the actual values $f(a)$ and $f(b)$?

The Bisection Method used two prices of informatoin to approximate the soluturi to $f(x)=0$ - the sign of the functur. What if we use vale? The result is the Scant Method.

Start with two guess for the root, x_{0}, x_{1} :
Graphically:

Find the not of the secant live:

$$
s(x)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

The root of the secant line sutisfies $s(x)=0$:

$$
s(x)=0 \quad \Rightarrow \quad x=x_{1}-f\left(x_{1}\right)\left(\frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)}\right)
$$

Call this not x_{2}, the next approximation to the wot of f, Also, define $f\left(x_{k}\right)=f_{k}$.

The secant method geverats a sequence of approximations to the root \& f by:

$$
x_{k+1}=x_{k}-f_{k}\left(\frac{x_{k}-x_{k-1}}{f_{k}-f_{k-1}}\right)
$$

We will revisit the convergence properties of this method later.

Summary Approximate f by a secant line, find root of secant line, repent using new approximate sot.

Newtons) Method
What if we an now allowed to use derivation information to approximate f ? (And then find the coot of this approximant.)
/ Suppose we know $f\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right)$,

The equation of the tangent line is given as:

$$
t(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

The cost of the tangent line satisfies $t(x)=0$

$$
\Rightarrow \quad x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \equiv x_{1}
$$

x_{1} is the next approximation to the not of f. Repeating this procedure at x_{1} we obtain Newton's Method:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} .
$$

Alternation interpretation : the tangent line is a first-order Taylor approximation to f.

Recall: The Taylor series of f about x_{0} (assuming f has infinite derivation) :

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\ldots
\end{aligned}
$$

Truncating this series after the first two terms gives:

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

If x_{0} is close to the root of $f, \xi, f(\xi)=0$, then we get that

$$
f(s)=0 \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(s-x_{0}\right)
$$

Solve for $\left.\Leftrightarrow \quad \xi \approx x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}.\right]$ This is Newtoris \uparrow approximately Method.
Summary The Secant Method and Newturs Method both work by the same mechanisin: approximate f by a linear function, find the not of that livens function. Update and repeat.

Convergence Behavior
Let ξ be the true not of f, ie $f(s)=0$.
We are interested in how the absolute error of x_{k} changes from iteration to iteration. $e_{k}=\left|4-x_{k}\right|$.
For the bisection method:

$$
e_{k+1} \approx \frac{1}{2} e_{k}
$$

It turns out that Newton converges quadratically:

$$
e_{k+1} \approx A e_{k}^{2} \quad \leftarrow \text { this is fast! }
$$

If $e_{0}=10^{-1} \quad e_{3} \sim 10^{-8}$

$$
e_{1} \sim 10^{-2} \quad e_{4} \sim 10^{-16}
$$

We will par this

$$
e_{2} \sim 10^{-4}
$$ rate next class.

Analysis of Newton's Method
Recall: Newton's Method approximates a function by its tangent line and then finds the not of the tangent line. And then repeats this:

$$
\begin{aligned}
& f(\xi)=0 \\
& t_{0}(x)=f\left(x_{0}\right)+\underbrace{f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}_{\text {Newton iteration }} \\
& t_{0}\left(x_{1}\right)=0 \Rightarrow x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

In general, Newtaris method is:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} .
$$

Two questions to ask:
(1) Does Newtons method conurge?

Fie. Does the sequence $\left\{x_{n}\right\}$ conn age to $\{$?
Ire. Is $\lim _{k \rightarrow \infty} x_{k}=\{$?
(2) If it conveys, how fast does it converge.

We answer these questions via Therm / Proof, placing certain assumptions on f.

Therm (1.8 from Sulis Payers)
Suppose that f is twice continuously differentiable (ie. f, f^{\prime}, and $f^{\prime \prime}$ are continuous) on the interval $I_{\delta}=[\xi-\delta, \xi+\delta]$, $\delta>0$, and that $f(\varepsilon)=0$ and $f^{\prime \prime}(\varepsilon) \neq 0$.

Also assume that then exists $A>0$ such that $\left|\frac{f^{\prime \prime}(x)}{f^{\prime}(y)}\right| \leq A \quad$ for all $x, y \in I_{\delta}$.

If $\left|\xi-x_{0}\right| \leq h$, with $h \leq \min \left(\delta, \frac{1}{A}\right)$, then the sequence $\left\{x_{k}\right\}$ defined by Nestors Method $x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$, (with starting guess x_{0}) converges quadratically to $乡$.

Proof By Taylor's Theonm,

$$
f(s)=0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\xi-x_{0}\right)+\frac{f^{\prime \prime}\left(\eta_{0}\right)}{2}\left(\xi-x_{k}\right)^{2} \text {. }
$$

And since by Newton's Method $\xi-x_{1}=\left\{-x_{0}+\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right.$,

$$
(*) \quad \xi-x_{1}=-\frac{f^{\prime \prime}\left(\eta_{0}\right)}{2 f^{\prime}\left(x_{0}\right)}\left(\xi-x_{0}\right)^{2}
$$

And thenfur $\left.\left|\xi-x_{1}\right| \leq \frac{1}{2}\left|\frac{f^{\prime \prime}\left(y_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right| \right\rvert\,\left\{-\left.x_{0}\right|^{2}\right.$

$$
\begin{aligned}
& \left.\leq \frac{1}{2} A \right\rvert\,\left\{-x_{0}|\cdot|\left\{-x_{0} \mid\right.\right. \\
& \leq \frac{1}{2} A \frac{1}{A} h=\frac{1}{2} h .
\end{aligned}
$$

And once again, $\left|\xi-x_{1}\right| \leq h$, so $\Rightarrow \quad\left|\xi-x_{2}\right| \leq \frac{1}{2^{2}} h$.

Repeating k times we han that

$$
\begin{aligned}
\left|\xi-x_{k}\right| \leq \frac{1}{2^{k}} h \quad & \Rightarrow \quad \lim _{k \rightarrow \infty} x_{k}=\xi \\
& \Rightarrow \text { Convergence }
\end{aligned}
$$

