Honors Numerical Analysis
Lector 14

Some notation:
Split the Frobenius norm into two pieces:
Let $\|A\|_{F}^{2}=S(A)=\sum_{i, j}\left|a_{i j}\right|^{2}$
$D(A)=\sum_{i}\left|a_{i i}\right|^{2} \quad$ diagound part
$L(A)=\sum_{i \neq j}\left|a_{i j}\right|^{2} \quad$ off. diagonal part

$$
\Rightarrow \quad S(A)=D(A)+\underline{L(A)}=\|A\|_{F}^{2} .
$$

Theorem Let $A^{(L)}$ be the $L^{\text {th }}$ iterate in the Jacobi Algorithm.
Then $\quad \lim _{k \rightarrow \infty} L\left(A^{(L)}\right)=0$

$$
\lim _{h \rightarrow \infty}^{\operatorname{lom} \infty} D\left(A^{(4)}\right)=\operatorname{truc}\left(A^{2}\right) . \quad \xi
$$

Proof: Let $a_{p q}$ be the off-diagonal element of A with the largest absolute value.
Let $B=R^{P \varphi}(\varphi)^{\top} A R^{p \varphi}(\varphi) \quad$ (a single Jacobi Rotation)
Then $\frac{\left(\begin{array}{ll}b_{p p} & b_{p q} \\ b_{q p} & b_{q q}\end{array}\right)}{\tilde{B}}=\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)^{\top} \frac{\left(\begin{array}{ll}a_{p p} & a_{p q} \\ a_{q p} & a_{q q} \\ \tilde{A}\end{array}\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)\right.}{}$
and dort forget $b_{p q}=b_{q p}=0$. (by construction).
But from the lemma, $\|\tilde{B}\|_{F}^{2}=\left\|R^{T} \tilde{A} R\right\|_{F}^{2}=\|\tilde{A}\|_{F}^{2}$.
\Rightarrow This implies that $b_{p p}^{2}+b_{99}^{2}=a_{p p}^{2}+a_{99}^{2}+2 a_{p q}{ }^{2}$.
Forthermon, $\quad S(\tilde{B})=D(\tilde{B})+L(\tilde{B})$

$$
\begin{aligned}
& =S(\hat{A}) \\
& =D(\hat{A})+L(\hat{A})
\end{aligned}
$$

So this means that $D(\bar{B})=D(\tilde{A})+L(\tilde{A})$

$$
\begin{aligned}
&=D(\tilde{A})+2 a_{p q}^{2} . \\
& \Rightarrow \quad L(\tilde{B})=L(\tilde{A})-2 a_{p q}^{2} \quad=0 \text { for } \hat{A}, \widehat{B} .
\end{aligned}
$$

But, the sam argument work for A and B, the original $n \times n$ matrix:

$$
\begin{aligned}
S(B) & =D(B)+\frac{L(B)}{\neq 0} \text { is general } \\
& =S(A) \\
& =D(A)+L(A) \\
\Rightarrow \quad L(B) & =L(A)-2 \underbrace{a_{p}^{2}}_{\uparrow>0} . \\
\Rightarrow \quad L(B) & <L(A)
\end{aligned}
$$

Continuing: Since app was the largest off diagonal element of A, we han that $L(A) \leqslant n(n-1) a_{p q}^{2}$

$$
\Leftrightarrow \quad a_{p q}^{2} \geqslant \frac{L(A)}{n(n-1)}
$$

Therefor, $L(B)=L(A)-2 a_{p q}^{2}$

$$
\begin{aligned}
& \leq L(A)-\frac{2 L(A)}{n(n-1)} \\
& =L(A)\left(1-\frac{2}{n(n-1)}\right)
\end{aligned}
$$

Re-label the matres:

$$
\begin{aligned}
A^{(0)} & =A \\
A^{(1)} & =B \\
\Rightarrow \quad L\left(A^{(1)}\right) & \leq\left(1-\frac{2}{n(n-1)}\right) L\left(A^{(0)}\right) \\
\Rightarrow \quad L\left(A^{(2)}\right) & \leq\left(1-\frac{2}{n(n-1)}\right) L\left(A^{(0)}\right) \leq\left(1-\frac{2}{n(n-1)}\right)^{2} L\left(A^{(0)}\right) .
\end{aligned}
$$

\Rightarrow After k steps, $L\left(A^{(k)}\right) \leq \underbrace{\left(1-\frac{2}{n(n-1)}\right)^{k}}_{\angle 1} L\left(A^{(0)}\right)$
\Rightarrow So thenfor, $L\left(A^{(n)}\right) \rightarrow 0$ as $k \rightarrow \infty$.
And since $S\left(A^{(k)}\right)=D\left(A^{(k)}\right)+L\left(A^{(k)}\right)$

$$
\begin{gathered}
=\tan \left(A^{2}\right) \\
\left.\lim _{k \rightarrow \infty}\left(D\left(A^{(h)}\right)+L / A^{(k)}\right)\right)=\lim _{k \rightarrow \infty} D\left(A^{(h)}\right)=\operatorname{true}\left(A^{2}\right)
\end{gathered}
$$

What gurantees that $\lim _{k \rightarrow \infty} D\left(A^{(H)}\right)=$ true $\left(A^{2}\right)$
implies that $A^{(n)} \rightarrow\left(\begin{array}{llll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right)$?

Idea Apply Gerschgorin's Theorm:
$A^{(n)}$ and A have the same eigenvalues, and $L\left(A^{(n)}\right)=0$.
Thenfin the Gerschgorin disks of $A^{(k)}$ have radii going to 0 as well. Thenfure, the eigenvalues of $A^{(k)}$, and therefor A, are the limit of the dinjourel of $A^{(n)}$.

What about the rate of convergence?
We showed that $L\left(A^{(k)}\right) \leq\left(1-\frac{2}{n(n-1)}\right)^{k} L\left(A^{(0)}\right)$

$$
\begin{aligned}
& \text { if } n=1000,1-\frac{2}{n(n-1)}=.99999799799 \ldots \\
& \text { A if } k=100,\left(1-\frac{2}{n(n-1)}\right)^{k} \sim .999799 \\
& k=10000,()^{k} \sim .98
\end{aligned}
$$

Deal-life converguce is often main faster than indicated in the proof.

One final note:
Jacobi's Alyoritho can be terminated when $L\left(A^{(n)}\right) \leq E$

$$
\begin{aligned}
\Rightarrow A^{(h)} & =\underbrace{R^{p q}\left(\varphi_{k}\right)^{\top} \cdots R^{p q}\left(\varphi_{1}\right)^{\top}}_{R^{\top}} A \underbrace{R^{p q}\left(\varphi_{1}\right) \cdots R^{p q}\left(\varphi_{k}\right)}_{R} \\
& \approx \underbrace{{ }^{\text {a }}}_{\text {diagonal }} \\
& =\underbrace{R}_{\uparrow} A^{(h)} \underbrace{T} \\
& \approx \text { diagowl } \quad R \text { diagonalizes } A .
\end{aligned}
$$

$\Rightarrow R$ is the matrix of eigenuatis of A (approximate eigenveutas).
$\Rightarrow A^{(n)}$ has eigenvalues (approximations of 1 on the diagonal

This means that Jacobi algorithm computes all eigenvalues and eigenvectors at the same time.

The QR Method
For geneal matries, the QR method can be used to find all eigenvalues. Examine algorithm, then analyze:

Algorithm

$$
A^{(0)}=A
$$

For $k=1,2, \ldots$
Factor $\quad A^{(k-1)}=Q^{(k)} R^{(k)}$
Compute $A^{(k)}=R^{(k)} Q^{(k)}$

Under certain assumptions, $A^{(n)} \rightarrow$ upper triangular, and $\sin u \quad R^{(b)}=Q^{*(h)} A^{(k-1)}$

$$
\Rightarrow \quad A^{(L)}=Q^{*(h)} A^{(h-1)} Q^{(L)}
$$

so $A^{(k)}$ and A have the same eigenvalues.

Three things must be dare in order for this to be a useable, accelerated algorithm:
(1) First reduce A to tridiagonal, or thessenkery, form using Hussholdr reflection
(2) Apply to shifted matrix, $A^{(h)}-\mu^{(h)} I$, with $\mu^{(n)}$ an estimate for some λ.
(3) Use deflation - decoupling into smaller problems

To understand the "pure" QR algorithm abort, first study subspace iteration (basically pans method on groups of vectio):

Subspace Iterator
Pick $\hat{Q}^{(0)} \in \mathbb{R}^{m \times n}$, orthonormal
For $k=1,2, \ldots$
Set $Z=A \hat{Q}^{(k-1)}$
Factor $Z=\hat{Q}^{(n)} \hat{R}^{(n)}$
Then $\hat{Q}^{(h)} \rightarrow$ top ecyenvilues of A at a rate of

$$
\max _{p \in 1,2, n}\left(\frac{x_{p+1}}{x_{p}}\right)^{h} .
$$

More details later...

