Honors Numerical Analysis
Lecture 13
Elgenvalu Algorithms
How do we compute eiginualus in the middle?

$$
\text { Ie, if } \lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots,>\lambda_{n-1}>\lambda_{n}
$$

then Power Method w/ Shift can compose either λ_{1} or λ_{n}.
To compute $\lambda_{2} \ldots \lambda_{n-1}$, we ned a different idea.
Idea Two Apply the poorer method to find the exininulues of $(A-s I)^{-1}$. This is called the Inverse Power Method with Shift.

If A has eigenvalue λ_{1} then A^{-1} has elginvale $\frac{1}{\lambda}$.

$$
A \vec{v}=\lambda \vec{v} \Rightarrow \frac{1}{\lambda} \vec{v}=A^{-1} \vec{v}
$$

Fortherman: $(A-S I)^{-1}$ has elginuralue $\frac{1}{x-5}$.
If we chook s properly to make $\frac{1}{x-s}$ large, then the Inverse Power Method with shift can converge very rapidly.
Choosing s close to λ_{l} causes $\frac{1}{\lambda_{l}-5}$ to become very large in absolve value, while $\frac{1}{x_{j}-s}$ for $j \neq l$ remains bonded.
This scheme is of course much mon expensin since "applying" A^{-1} requires solving a linear system $\left(\theta\left(n^{3}\right)\right.$ vs. $\theta\left(n^{2}\right)$ flops).

The algorithm
(1) Set \vec{w}_{0} to be random.
(2) Solve (A-sI) $\vec{y}_{1}=\vec{w}_{0}$.

$$
\Leftrightarrow \vec{y}_{1}=(A-s I)^{-1} \vec{w}_{0}
$$

(3) Set $\vec{w}_{1}=\vec{y}_{1} / 1, y_{1}, 11$
(4) Proceed as in the Pomermethod.

The hard part is knowing what to choose for s. You ned estimates for the eiginenls.

Both schemes only compute one eigenvalua/vectior at a timon.

Jacobi's Method
Can we compute all eigenvalue) and rotors at the same time. If A were digonal, then we immediately know the eryenvalus. Can us make A diagonal?

Recall Similarity transform: $\quad B=M^{-1} A M$ then B is similar to A, ire they have the same eigenvalue.

Proof: Look at their characteristic polynomials:

$$
\begin{aligned}
\rho_{A}(\lambda) & =\operatorname{det}(A-\lambda I) \quad \text { degree } n \text { polynomial } \\
\rho_{B}(\lambda) & =\operatorname{det}(B-\lambda I) \\
& =\operatorname{dit}\left(M^{-1} A M-\lambda I\right) \\
& =\operatorname{dt}\left(M^{-1} A M-\lambda M^{-1} M\right) \\
& =\operatorname{dt}\left(M^{-1}(A-\lambda I) M\right) \\
& =\operatorname{dt}\left(M^{-1}\right) \operatorname{dit}(A-\lambda I) \operatorname{dtt}(M) \\
& =\rho_{A}(\lambda)
\end{aligned}
$$

If M wen chosen to be the matrix of eigennetur of A, then $A=M D M^{-1} \quad \Rightarrow \quad D=M^{-1} A M$ Teijenvalus

Diagonolization of A.
Ex: Let A be a veal symmetric 2×2 matrix.
$A=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right) \quad \Rightarrow$ Eigenvalus are real, and it is diagonalized by an orthogonal matrix V.

All 2×2 orthogonal matrices can be parameterized as:

$$
V=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) \quad(2 \times 2 \text { rotation matrix }) .
$$

We want

$$
\begin{aligned}
& V^{\top} A V=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \quad \text { Write at components for } 12,21 \text { entries } \\
& \text { of TTAV: } \\
& \left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \underbrace{\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)}=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
& \left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
a \cos \varphi-b \sin \varphi & a \sin \varphi+b \cos \varphi \\
b \cos \varphi-d \sin \varphi & b \sin \varphi+d \cos \varphi
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right) \\
& \Rightarrow a \cos \varphi \sin \varphi+b \cos ^{2} \varphi-b \sin ^{2} \varphi-d \cos \varphi \sin \varphi=0 \\
& a \cos \varphi \sin \varphi-b \sin ^{2} \varphi+b \cos ^{2} \varphi-d \cos \varphi \sin \varphi=0
\end{aligned}
$$

Next: Find φ.
Add equati(ju): $(a-d) \cos \varphi \sin \varphi+b\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)=0$

$$
\begin{aligned}
& \Rightarrow(a-d) \frac{1}{2} \sin 2 \varphi+b \cos 2 \varphi=0 \\
& \Rightarrow \tan 2 \varphi=\frac{2 b}{d-a} \Rightarrow \varphi=\frac{1}{2} \operatorname{atan}\left(\frac{2 b}{d-a}\right) .
\end{aligned}
$$

If $d-a=0$, then $\frac{2 b}{d-a}=\infty$,
\Rightarrow in C or Fortran use

$$
q=\frac{1}{2} \operatorname{atan} 2(d-a, 2 b) .
$$

So we fund φ such that $V^{\top} A V=D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.

The Jacobi Method for an $n \times n$ matrix
Define $R^{p a}(\varphi)=$

$R^{p q}(q)$ can be used to set the $p q$ and $q p$ elements of a real symmetric matrix A to zen.
$R^{p q}(\varphi)^{\top} A R^{p q}(\varphi)$ leans all sous and columns unchanged except for now/slumn p and cow/slomn 9 .
The algorithm:
(1) Set $A^{(0)}=A$
(2) Find $p q$ element in $A^{(k)}$ with maximum absolute value.
(3) Compute $q_{k}=\frac{1}{2} \operatorname{atan}\left(\frac{2 a_{p q}^{(k)}}{a_{91}^{(k)}-a_{p p}^{(k)}}\right)$
(4) Set $A^{(l+1)}=R^{p q}\left(\varphi_{w}\right)^{\top} A^{(k)} R^{p q}\left(\varphi_{k}\right)$

Continue this algorithm until all $\left|\begin{array}{c}(h) \\ a_{p q}\end{array}\right|<\epsilon, p \neq q$. Then $A^{(k)} \rightarrow\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ 0 & \ddots & 0 \\ 0 & & \lambda_{n}\end{array}\right)$ as $k \rightarrow \infty$
and firthermove : $\left.R^{(k)}=R\left(\varphi_{1}\right) R\left(\varphi_{2}\right) \ldots R\left(\varphi_{w}\right) \rightarrow \widetilde{(\vec{V}}_{1} \ldots \vec{V}_{n}\right)$

To summarize:
Apply a sequence \& $R\left(\varphi_{k}\right)$'s to A that zero out all off-diagoal elements.

Qustown: Do elements that wen sit to zee stay zero forever in the Jacoli method? No

Idea behind convergence: Every $\underbrace{\text { mons }}_{\text {Jacobi rotation } R^{\top} \text { and } R}$ some "mass" of the matrix apply R^{\top} and R from off-diagounal positions to diagonal positions.

What can we say about the convergence of Jacobins Method?
First a Lemma:
Lemma: If R is an orthogonal transformation and $A^{\top}=A$, then

$$
\|A\|_{F}=\left\|R^{\top} A R\right\|_{F}
$$

Fobenius Norm

$$
\|A\|_{F}=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Proof: Let $B=R^{\top} A R$. Then A and B han the same eigenvalues, and

$$
\begin{aligned}
B^{2} & =\left(R^{\top} A R\right)\left(R^{\top} A R\right) \\
& =R^{\top} A^{2} R .
\end{aligned}
$$

$\Rightarrow A^{2}$ and B^{2} han the same eigenvalues, and then fur $\operatorname{tran}\left(A^{2}\right)=\operatorname{trac}\left(B^{2}\right)$.
But $\|A\|_{F}^{2}=\operatorname{true}\left(A^{\top} A\right)=\operatorname{true}(\underbrace{A A}_{A^{2}})=\operatorname{true}\left(B^{2}\right)=\|B\|_{F}^{2}$. (This was proven in Homework.) ${ }^{A^{2}}$

