Honors	Numerical	Analysis		Lecture
			L	

13/

Eigenvalue Algorithms

How do we compute eigenvalues in the middle? I.e., if $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_{n-1} > \lambda_n$ then Power Muthod w/ Shift can compute either λ_1 or λ_n . To compute $\lambda_2 \dots \lambda_{n-1}$, we need a different idea.

- Idea Two Apply the power method to find the enginvolves of (A-sI)". This is called the Inverse Power Muthod with Shift.
- If A has eigenvalue λ_{1} then A^{-1} has eigenvalue $\frac{1}{\lambda_{1}}$. A $\vec{v} = \lambda \vec{v} = \gamma \frac{1}{\lambda} \vec{v} = A^{-1} \vec{v}$

Furthermon: (A-SI) has eigenvalue 1/2-5.

If we choose s proporty to make $\frac{1}{\chi-s}$ large, then the Inverse Power Method with shift can converge very rapidly.

Choosing s close to λ_{ℓ} causes $\frac{1}{\lambda_{j-s}}$ to hecome very large in absolute value, while $\frac{1}{\lambda_{j-s}}$ for $j \neq \ell$ remains bounded.

This scheme is of course much mor expensive since "applying" A^{-1} requires solving a linear system ($\mathcal{O}(n^2)$ vs. $\mathcal{O}(n^2)$ flops).

The algorithm () Set two to be random. (2) Solve $(A-SI)g_i = w_0$. $(=> g_i = (A-SI)^{-1}w_0$ (3) Set $w_i = g_i/(g_i)!$ (4) Proceed as in the Power Method. The hard part is benowig what to choose for S. You rued estimats for the eigenvalue. Both schemes only compute one eigenvalue/vector at a time. [1]

Jacobi's Method

Can we compute all eigenvalues and victors at the same time. If A were digonal, then we immediately know the eigenvalues. Can we make A diagonal?

<u>Recall</u> Similarity transform: B=M⁻¹AM then B is <u>Similar</u> to A, i.e. they have the same eigenvalues.

$$\begin{array}{l} P_{\text{roof}}: \text{ Look at their characteristic polynomials}:}\\ \rho(\lambda) &= \det(A - \lambda I) \quad \text{degnee } n \quad \text{polynomial}\\ \rho_{0}(\lambda) &= \det(B - \lambda I)\\ &= \det(M^{-1}AM - \lambda I)\\ &= \det(M^{-1}AM - \lambda M^{-1}M)\\ &= \det(M^{-1}(A - \lambda I)M)\\ &= \det(M^{-1}) \det(A - \lambda I) \det(M)\\ &= \rho_{A}(\lambda). \end{array}$$

If M wer chonn to be the matrix of eigenvalue of A, then A = MDM⁻¹ => D = M⁻¹ A M l'eigenvalues L Diagonalization of A.

Ex: Let A ke a real symmetric 2 x2 matrix.
A=
$$\begin{pmatrix} a & b \\ b & d \end{pmatrix}$$
 => Eigenvalues are real, and it is diagonalized
by an orthogonal matrix V.
[2]

All 2x2 orthogonal matrices can be parameterized as:

$$V = \begin{pmatrix} \cos q & \sin q \\ -\sin q & \cos q \end{pmatrix}$$
 (2x2 rotation matrix).

We want

To summarize:

Apply a segurne of R(qu)'s to A that zero out all off-diagonal elements.

What can we say about the convergence of Jacobiis Method?

First a Lemma: Lemma: If R is an orthogonal transformation and $A^{T} = A$, then $\|A\|_{F} = \|R^{T}AR\|_{F}$ Frobenius Norm $\|A\|_{F} = (\sum_{ij} |a_{ij}|^{2})^{\frac{1}{2}}$

<u>Proof</u>: Let $B = R^{T}AR$. Then A and B have the same eigenvalues, and $B^{2} = (R^{T}AR)(R^{T}AR)$ $= R^{T}A^{2}R$.

=>
$$A^2$$
 and B^2 have the same eigenvalues, and then for
trace $(A^2) = trace (B^2)$.
But II $A ||_{F}^2 = trace (A^TA) = trace (AA) = trace (B^2) = ||B||_{F}^2$.
[This was proven in Honework.] \square .
[5]