First topic: Solving a nonlinear equation

Linear: \(3x + 7 = 2 \)
Can solve by hand, explicit form of solution

Nonlinear: \(\cos x + x^2 - 7 = 5 \)
No closed form solution, must use a numerical method

General form of the problem:

Solve \(f(x) = 0 \) \(\Rightarrow \) Root finding

A sufficient condition for a solution to exist on the interval \([a, b]\): \(f(a) < 0 \) \& \(f(b) > 0 \)

or \(f(a) > 0 \) \& \(f(b) < 0 \)
Theorem: If f is continuous and real-valued on $[a,b]$, and if $f(a) \cdot f(b) < 0$, then there exists an $x \in (a,b)$ s.t. $f(x) = 0$.

Proof: Merely apply the Intermediate Value Thm. (Calc I).

Can we use this Thm to design a numerical method for solving $f(x) = 0$?

Bisection

If $f(a) \cdot f(b) < 0$, then $f(x) = 0$ has a solution on $[a,b]$.

Idea: Split the interval in half, apply the same Thm:

If $f(\frac{a+b}{2}) < 0$, then $f(x) = 0$ has a solution on $[\frac{a+b}{2}, b]$.

If $f(\frac{a+b}{2}) > 0$, then $f(x) = 0$ has a solution on $[a, \frac{a+b}{2}]$.

Split interval in half, and repeat.

Let $a_0 = a$, $b_0 = b$, the original interval.

$[a_{l-1}, b_{l-1}]$ be the interval obtained after l splittings.

Then $b_l - a_l = \frac{b_0 - a_0}{2^l} = \frac{L}{2^l}$ with $L = b_0 - a_0$.

Let $x_l = \frac{a_l + b_l}{2}$ be our approximation of the solution to $f(x) = 0$ on step l.

\[x_l = \frac{a_l + b_l}{2} \]
When do we stop the splittings? How many steps of bisection do we take?

If we want to guarantee that \(|x_e - x^*| < \varepsilon \),

then we need to choose \(l \) such that

\[
|x_e - x^*| \leq \frac{b_e - a_e}{2} = \frac{1}{2} \frac{b_0 - a_0}{2^l} = \frac{1}{2^{l+1}} L \leq \varepsilon
\]

\[
\Rightarrow 2^{l+1} > \frac{L}{\varepsilon} \quad \Rightarrow \quad l > l + \log_2 \frac{L}{\varepsilon}.
\]

If \(e_l = \text{error on } l^{th} \text{ step} \)

\[
= |x_e - x^*| = \text{absolute error in } x_e.
\]

then \(e_{l+1} \leq \frac{1}{2} e_l \).

\[
\Rightarrow \text{The error goes down by a factor of 2.}
\]

This is not very fast.

Bisection only used the sign of the function \(f \) at \(a \) and \(b \).
Can we derive a better (faster) method by using the actual values \(f(a) \) and \(f(b) \)?
The Bisection Method used two pieces of information to approximate the solution to \(f(x) = 0 \) — the sign of the function.

What if we use values? The result is the **Secant Method**.

Start with two guesses for the root, \(x_0, x_1 \).

Graphically:

![Graph showing secant method](image)

Find the root of the secant line:

\[
s(x) = \frac{f(x_1)f(x_0)}{f(x_1) - f(x_0)} (x - x_0) + f(x_0)
\]

The root of the secant line satisfies \(s(x) = 0 \):

\[
s(x) = 0 \Rightarrow x = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)} (x_1 - x_0)
\]

Call this root \(x_2 \), the next approximation to the root of \(f \). Also, define \(f(x_2) = f_x \).

The secant method generates a sequence of approximations to the root of \(f \) by:

\[
x_{k+1} = x_k - f_x \left(\frac{x_k - x_{k-1}}{f_x - f_{x-1}} \right).
\]

We will revisit the convergence properties of this method later.

Summary Approximate \(f \) by a secant line, find root of secant line, repeat using new approximate root.
Newton's Method

What if we are now allowed to use derivative information to approximate f? (And then find the root of this approximant.)

Suppose we know $f(x_0)$ and $f'(x_0)$, then we can draw the tangent line.

![Tangent Line Diagram]

The equation of the tangent line is given as:

$$ t(x) = f(x_0) + f'(x_0)(x-x_0) $$

The root of the tangent line satisfies $t(x) = 0$

$$ \Rightarrow x = x_0 - \frac{f(x_0)}{f'(x_0)} = x_1 $$

x_1 is the next approximation to the root of f.

Repeating this procedure at x_1, we obtain Newton's Method:

$$ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} $$

Alternative interpretation: the tangent line is a first-order Taylor approximation to f.

Recall: The Taylor series of f about x_0 (assuming f has infinite derivatives):

$$ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n $$

$$ = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 + \frac{f'''(x_0)}{3!} (x-x_0)^3 + \ldots $$
Truncating this series after the first two terms gives:
\[f(x) \approx f(x_0) + f'(x_0)(x-x_0) \]

If \(x_0 \) is close to the root of \(f \), i.e., \(f(x) = 0 \), then we get that
\[f(x) = 0 \approx f(x_0) + f'(x_0)(x-x_0) \]

Solve for \(x \Rightarrow x \approx x_0 - \frac{f(x_0)}{f'(x_0)} \). This is Newton's Method.

Summary
The Secant Method and Newton's Method both work by the same mechanism: approximate \(f \) by a linear function, find the root of that linear function.

Update and repeat.

Convergence Behaviour
Let \(s \) be the true root of \(f \), i.e. \(f(s) = 0 \).
We are interested in how the absolute error of \(x_k \) changes from iteration to iteration, \(e_k = |s-x_k| \).

For the bisector method:

\[e_{k+1} \approx \frac{1}{2} e_k \]

It turns out that Newton converges quadratically:

\[e_{k+1} \approx A e_k^2 \]

If \(e_0 = 10^{-1} \)
\[e_1 \sim 10^{-2} \]
\[e_2 \sim 10^{-4} \]
\[e_3 \sim 10^{-8} \]
\[e_4 \sim 10^{-16} \]

We will prove this rate next class.
Analysis of Newton's Method

Recall: Newton's Method approximates a function by its tangent line and then finds the root of the tangent line. And then repeats this:

\[f(s) = 0 \]
\[t_0(x) = f(x_0) + f'(x_0)(x-x_0) \]
\[t_0(x_1) = 0 \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \]

Newton iteration

In general, Newton's method is:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}. \]

Two questions to ask:

1. Does Newton's method converge?
 - I.e., Does the sequence \(\{x_n\} \) converge to \(s \)?
 - I.e., Is \(\lim_{k \to \infty} x_k = s \)?

2. If it converges, how fast does it converge?

We answer these questions via Theorem / Proof, placing certain assumptions on \(f \).
Theorem (1.8 from Suli & Mayers)

Suppose that \(f \) is twice continuously differentiable (i.e., \(f, f', \) and \(f'' \) are continuous) on the interval \(I_\delta = [s - \delta, s + \delta] \), \(\delta > 0 \), and that \(f(s) = 0 \) and \(f''(s) \neq 0 \).

![Graph of function](image)

Also assume that there exists \(A > 0 \) such that
\[
\left| \frac{f''(x)}{f'(y)} \right| \leq A \text{ for all } x, y \in I_\delta.
\]

If \(|s - x_0| \leq h \), with \(h \leq \min \left(\delta, \frac{1}{A} \right) \), then the sequence \(\{x_k\} \) defined by Newton's Method
\[
x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},
\]
(with starting guess \(x_0 \)) converges quadratically to \(s \).

Proof By Taylor's Theorem,
\[
f(s) = 0 = f(x_0) + f'(x_0)(s - x_0) + \frac{f''(\xi)}{2}(s - x_0)^2.
\]

And since by Newton's Method
\[
s - x_1 = s - x_0 + \frac{f(x_0)}{f'(x_0)} - \frac{f''(\xi)}{2f'(x_0)}(s - x_0)^2
\]

\(\Rightarrow \)
\[
s - x_1 = -\frac{f''(\xi)}{2f'(x_0)}(s - x_0)^2
\]

And therefore
\[
|s - x_1| \leq \frac{1}{2} \left| \frac{f''(\xi)}{f'(x_0)} \right| |s - x_0|^2
\]

\[
\leq \frac{1}{2} A |s - x_0| \cdot |s - x_0|
\]

\[
\leq \frac{1}{2} A \cdot \frac{1}{A} h = \frac{1}{2} h.
\]

And once again, \(|s - x_1| \leq h \), so \(\Rightarrow \)
\[
|s - x_2| \leq \frac{1}{2} h.
\]
Repeating k times we have that

$$|s - x_k| \leq \frac{1}{2^k} h \implies \lim_{k \to \infty} x_k = s$$

\(\iff \) convergence