Markov Chains:

Stochastic Process \(\{ X_t : t \in T \} \) (assume that \(T = \{1, 2, 3, \ldots \} \)) with the property that \(f(x_t | x_{t+1}) = f(x_t | x_{t+1}) \)

\[f(x_1, x_2, \ldots, x_n) = f(x_1) f(x_2 | x_1) f(x_3 | x_2) \cdots f(x_n | x_{n-1}) . \]

State space: \(X \) (define for now)

"States": 1, 2, ...

![Diagram of Markov chain]

The matrix \(P \) of transition probabilities is the transition matrix. \(P_{ij} = p_{ij} \).

Two properties:
1. \(p_{ij} > 0 \)
2. \(\sum_j p_{ij} = 1 \) (Typo in book.)

In each row, \(i \), in \(P \) is a probability mass function.
n-step transition probability: \(P(X_{m+n} = j \mid X_m = i) = p_{ij}(n) \)

Theorem (Chapman-Kolmogorov): The n-step transition probabilities satisfy:
\[
p_{ij}(m+n) = \sum_k p_{ik}(m) p_{kj}(n) = (P(m) P(n))_{ij}
\]

\[\Rightarrow P(2) = P \cdot P = P^2\]
\[\Rightarrow P(3) = P^3\]
\[\Rightarrow P(n) = P^n\]

This means that if at time 0, my probability of being in state \(i \) is \(\mu_i \), and define
\[
\mu(0) = (\mu_0, \mu_0, \ldots, \mu_0)
\]
\[\Rightarrow \mu(n) = \mu(0) P^n \]

Question: As \(n \to \infty \), is \(\mu_i(n) > 0 \)? Or is \(p_{ij} > 0 \) for all \(i, j \)?

Def: state \(i \) reaches state \(j \) (\(j \) is accessible from \(i \)) if \(p_{ij}(n) > 0 \) for some \(n \)
\[\Rightarrow i \rightarrow j\]
\[\Rightarrow \text{if } i \rightarrow j \text{ and } j \rightarrow i, \text{ then } i \leftrightarrow j \text{ is ''communicate''} \]
Thus

1. \(i \leftrightarrow i \)
2. \(i \leftrightarrow j \Rightarrow j \leftrightarrow i \)
3. \(i \leftrightarrow j \) and \(j \leftrightarrow k \) then \(i \leftrightarrow k \).

4. The state space \(X \) can be written as a disjoint union of classes

\[X = X_1 \cup X_2 \cup \ldots \]

where \(i, j \) communicate iff \(i, j \in X_k \).

Def: If all states communicate, then the chain is **irreducible**.

Closed: set of states is closed if the chain enters but never leaves.

Closed set with a single state: an absorbing state.

Recurrent/persistent: \(P(X_n = i \text{ for some } n \geq 1 \mid X_0 = i) = 1 \)

Transient: \(\text{else} \).

Stationarity: \(\pi \) is a stationary (or invariant) distribution if

\[\pi = \pi P. \]

\[\Rightarrow \pi \text{ is a row eigenvector of } P \]

\[\Rightarrow P^T \pi = \pi \]

\[\Rightarrow \text{with eigenvalue } 1. \]
Idea: Draw X_0 from π, a stationary distribution of P.

Next, draw $X_1 \sim \pi P$.

Notationally: $X_1 \sim \mu_1 = \mu_0 P = \pi P = \pi$

\Rightarrow If $X_2 \sim \mu_2 = \mu_1 P = \mu_0 P^2 = \pi P = \pi$

\Rightarrow that $X_2 \sim \pi$

When a chain has distribution π, it will forever.

Def A Markov Chain has limiting distribution π if $P^n \to \left(\begin{array}{c} \pi \\ \pi \\ \vdots \\ \pi \end{array}\right) = \left(\begin{array}{c} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_N \end{array}\right)$

$\Rightarrow \mu_0 P^n = \pi$

$\left(\begin{array}{c} \pi_i \\ \pi_i \\ \vdots \\ \pi_i \end{array}\right) = \left(\begin{array}{c} \pi_1 \sum_{M} \pi_j \\ \pi_2 \sum_{M} \pi_j \\ \vdots \\ \pi_N \sum_{M} \pi_j \end{array}\right)$

Detailed Balance π satisfies detailed balance if

for all $i, j$$\pi_i P_{ij} = \pi_j P_{ji}$

$\frac{P(X_n = i) P(X_{n+1} = j \mid X_n = i)}{P(X_{n+1} = j, X_n = i)}$
Thus if \(\Pi \) satisfies detailed balance, then
\(\Pi \) is a stationary distribution.

Proof: Detailed balance says \(\Pi_i P_{ij} = \Pi_j P_{ji} \)

We need to show that \(\Pi P = \Pi \). The \(j \)th element
of \(\Pi P = (\Pi P)_j = \sum_{k=1}^{N} \Pi_k P_{kj} \).

\(\Pi P = \sum_{k=1}^{N} \Pi_k P_{kj} = \sum_{k=1}^{N} \frac{\tau_k}{\sum_{j=1}^{N} \tau_j} \pi_j P_{kj} = \frac{\sum_{j=1}^{N} \tau_j P_{jk} \pi_j}{\sum_{j=1}^{N} \tau_j} \pi_j = \pi_j \). \(\checkmark \)

Markov Chain Monte Carlo (MCMC)

Goal: Estimate an integral \(E(h(X)) = \int h(x) f(x) \, dx \).

Idea: Construct a Markov Chain \(X_1, X_2, \ldots \)
whose stationary distribution is \(\Pi \)

\[\Rightarrow X_n \sim F = \int f \]

We're specifying \(\Pi_i \) and trying to find \(P \)
such that \(\Pi = \Pi P \).

If this can be done, then under certain assumptions

\[\frac{1}{N} \sum_{i=1}^{N} h(X_i) \xrightarrow{P} E(h(X)) \].

For example: Draw from posterior in Bayesian calculation:

\[f(\theta | x) = \frac{L(\theta) f(\theta)}{\int L(\theta) f(\theta) \, d\theta} \]
Specific Algorithm: Metropolis - Hastings.

Listed as one of top 10 algorithms of 20th century (along with FFT, FMM, QR, Fortran).

Goal: Draw samples from X with density f.

M-H Algorithm

1. Choose X_0 arbitrarily. Assuming that we have generated X_0, \ldots, X_i:
 - **Generate Y from density $q(y|X_i)$**
 - q is a density that is easy to draw from: proposal distribution.
 - Example: $q(y|x) \sim N(x, \sigma^2)$.

2. Evaluate $r = r(X_i, Y)$ where
 $$r(x,y) = \min \left\{ \frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)}, 1 \right\}$$

3. Set $X_{i+1} = \begin{cases} Y & \text{with probability } r \\ X_i & \text{with probability } 1-r \end{cases}$

Completely opaque algorithm: look at specific example first before understanding why it works.
Ex: Draw from Cauchy distribution $f(x) = \frac{1}{\pi(1+x^2)}$. Take $q(y|x) = \frac{1}{\sqrt{2\pi}b} e^{-|y-x|^2/2b^2}$. So then $r(x,y) = \min\left\{ \frac{f(y)q(x|y)}{f(x)q(y|x)}, 1 \right\}$

$$= \min\left\{ \frac{1+x^2}{1+y^2} \frac{e^{-(x-y)^2/2b^2}}{e^{-(y-x)^2/2b^2}}, 1 \right\}$$

$$= \min\left\{ \frac{1+x^2}{1+y^2}, 1 \right\}$$

So the algorithm reduces to following:

$$X_{c+1} = \begin{cases} Y \sim N(X_c, b^2) \text{ with probability } r(x,y) \\ X_c \text{ with prob. } 1 - r(x,y) \end{cases}$$

Note:

Why does this algorithm work at all? Short answer: we enforce detailed balance in the chain, therefore guaranteeing the existence of a stationary distribution.
Recall: \(p_{ij} \pi_i = p_{ji} \pi_j \)

Continuous version of detailed balance:
\[
p_{ij} \to p(x,y) \propto \Pi(x_{n+1} = y \mid x_n = x) \]
\[
\pi_i \to f(x) \propto \Pi(x_n=x) .
\]

The function \(f \) is a stationary distribution if
\[
f(y) = \int p(x,y) f(x) \, dx
\]

\[\Rightarrow \text{ Detailed Balance then means that} \]
\[
f(x) p(x,y) = f(y) p(y,x)
\]

If this equation holds, then just integrate each side to show that \(f \) is a stationary distribution.

Using the construction of the M-H algorithm, show that detailed balance is satisfied, and therefore \(f \) is the stationary distribution.

Consider \(x, y \) (i.e. \(x = X_i \), and \(y = Y \), the proposal value).

Either
\[
f(x) q(y \mid x) < f(y) q(x \mid y)
\]
or
\[
f(x) q(y \mid x) > f(y) q(x \mid y)
\]
Without loss of generality, assume that (*) holds, and we then have:

\[
\frac{f(y) \cdot q(x \mid y)}{f(x) \cdot q(y \mid x)} > 1
\]

and therefore

\[
r(x \mid y) = \frac{f(y) \cdot q(x \mid y)}{f(x) \cdot q(y \mid x)}.
\]

(And obviously \(r(y, x) = \min \left\{ \frac{f(x) \cdot q(y \mid x)}{f(y) \cdot q(x \mid y)} \right\} = 1 \).

Next, compute the transition probabilities:

\[
p(x \mid y) = P(x \rightarrow y) \quad \text{and require that}
\]

\begin{enumerate}

\item generate \(y \)
\item accept \(y \)
\end{enumerate}

\[\Rightarrow p(x \mid y) = q(y \mid x) \cdot r(x \mid y) = q(y \mid x) \cdot \frac{f(y) \cdot q(x \mid y)}{f(x) \cdot q(y \mid x)} = \frac{f(y) \cdot q(x \mid y)}{f(x)}\]

\[\Rightarrow f(x) \cdot p(x \mid y) = f(y) \cdot q(x \mid y)\]

On the other hand, \(p(y, x) = P(y \rightarrow x) \) and require:

\begin{enumerate}
 \item generate \(x \)
 \item accept \(x \)
\end{enumerate}
\[p(y|x) = \frac{q(x|y)}{r(y,x)} = q(x|y) \]

And then for \(f(x) p(x|y) = f(y) p(y,x) \). \(\checkmark \)

This is detailed balance.

Monte Carlo methods:

\[\int h(x) f(x) \, dx \approx \frac{1}{N} \sum_{j=1}^{N} h(X_i) \quad \text{when } X_i \sim \text{samp\ from } f \]

\[I \]

\[E(I) = \int h f \]

\[\text{Var}(I) \propto \frac{1}{N} \quad \Rightarrow \quad \text{std}(I) \sim \frac{1}{\sqrt{N}} \]