Statistics

March 24, 2021

 $\overline{\left[\right]}$

Often for this reason, we will write
$$f(\theta | \overline{x}) \propto J(\theta) f(\theta)$$
.
posterior modul prior

To generate a point estimate compute a functional of
the posterior
$$f(\theta|\vec{x})$$
:
 $\vec{D} = \vec{E}(\theta|\vec{x}) = \int \theta f(\theta|\vec{x}) d\theta = \int \theta f(\theta) f(\theta) d\theta$
Bayesian estimator
 \vec{Z}

Posterior
$$x$$
 interval $(not + \alpha \text{ confidence interval})$
Find a,b such that
 $P(\theta)\overline{x} \in (a,b)$ = $1-\alpha = \int_{a}^{b} f(\theta|\overline{x}) d\theta$.
Example $X_{1,...,} X_{n} \sim Breachli(p)$ random variable
Our model : $f(\overline{x}|p) = I(p)$
 $= \overline{\pi}_{iii}^{n} p^{X_{i}}(1-p)^{i-X_{i}}$
 $prior : p \sim Unibram(0,1)$
 $f(p) = 1 \text{ on } (0,1)$.
 $posterior f(p|\overline{x}) \propto I_{i}(p) f(p)$
 $= \overline{\pi}_{iii}^{n} p^{X_{i}}(1-p)^{i-X_{i}}$
 $= p^{S}(1-p)^{n-S}$ $S = \frac{S}{2}X_{i}$.
There of this as a function of p p not
the data X: any more
 $= p^{(sy)-1}(1-p)^{n-1}$
Now identify which fumily of polarbitility distribution
 $f(p)$ f(p) belongs to.
Recall: Beta(κ_{i} p) density : $f(p_{i}, \alpha_{j}$ p) = $\frac{\Gamma(\alpha, \beta)}{\Gamma(\alpha)} p^{\alpha-1}(1-p)^{\alpha-1}$
 $\Rightarrow f(p|\overline{x}) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} p^{\alpha-1}(1-p)^{\alpha-1}$ with $\alpha = 1 + Ex_{i}$
 $p = 1 + n - Ex_{i}$
 $\Rightarrow p|\overline{x} \sim Beta(\alpha, p)$.

Bayes estimator:

$$\overline{p} = \overline{E}(p|\overline{x}) = \frac{s+1}{n+2}$$

mean of $\overline{\beta}(x,\overline{p}) = \frac{\alpha}{\alpha+\beta}$.

Functions of parameters

• Recall from MLE that if
$$\beta$$
 is the MLE estimate
for p , then the MLE estimate for $T = g(p)$ was
just $t = g(\beta)$.
• Furthermore if $Y = g(X)$, then
 $F(y) = P(Y = y) = P(g(X) = y) = \int_{M = y} f(X) dX$
and $f(y) = F'(y)$.
We can use then ideas for Bayesian inference as well.
Let $T = g(\theta)$.
Bayes says : $f(\theta|\vec{x}| \times I(\theta) f(\theta)$.
Postorion CDF for $T = g(\theta) | \vec{x} = H(T|\vec{x})$
 $= P(g|\theta| \le T | \vec{x})$
 $= \int_{M = y} f(\theta|\vec{x}|) d\theta$
 $g(\theta| \le T | \vec{x})$
 $= \int_{M = y} f(\theta|\vec{x}|) d\theta$
 $g(\theta| \le T | \vec{x})$.
Example $X_{i} \sim Beta(sti, n-sti)$, Let $\Psi = \log(\frac{P}{1-p})$.
 $p(0,1) = \Psi = (-\pi, \pi)$
 $= H(\Psi | \vec{x}) = P(\log \frac{P}{1-p} \le \Psi | \vec{x})$

 $= P\left(p \leq \frac{e^{\gamma}}{1+e^{\gamma}} \mid \vec{x}\right)$

.

$$= \int_{0}^{e^{\gamma}/e^{\gamma}} f(p|\vec{x}) dp$$

$$= \int_{0}^{e^{\gamma}/e^{\gamma}} \frac{f(p|\vec{x})}{f(s+1)f(n+s+1)} p^{s}(1-p)^{n-s} dp$$
To compute $h(\gamma|\vec{x})$, boundule $\frac{d}{d\gamma} H(\gamma|\vec{x})$:
 $h(\gamma|\vec{x}) = \frac{d}{d\gamma} H(\gamma|\vec{x})$

$$= \frac{d}{d\gamma} \left(\int_{0}^{e^{\gamma}/\mu s^{\gamma}} \frac{f(n+2)}{f(s+1)f(n-s+1)} p^{s}(1-p)^{n-s} dp \right)$$

$$= \frac{f(n+2)}{f(s+1)f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} e^{\gamma} \left(\frac{e^{-\gamma}}{1+e^{\gamma}} \right)^{s} \left(\frac{1}{1+e^{\gamma}} \right)^{n-s}$
Types $\frac{d}{d\gamma} \frac{f(n-s)}{f(n-s+1)} e^{\gamma} e^$

This is known as an improper print, but Bayes
can formally be carried out:

$$f(\mu|x) = J(\mu) \cdot f(\mu)$$

 $\int I(\mu) \cdot f(\mu) d\mu$.
 $= \frac{J(\mu) \cdot \mu}{\int I(\mu) \cdot \mu} = \frac{J(\mu)}{\int J(\mu)} d\mu$.
 $= \frac{J(\mu) \cdot \mu}{\int I(\mu) \cdot \mu} d\mu$
 $\int \frac{J(\mu) \cdot \mu}{\int I(\mu) d\mu} d\mu$.
 $= \int \mu|x \sim N(x, \sigma^{*})$
In general, improper priors are not a problem
so long as $f(x|\theta)$ decays fast enough as a function
of θ .
Flat priors are not transformation invariant
Legically, if we know nothing about a parametr p,
the are should also know nothing about a parametr p,
the are should also know nothing about $h = \log(f_{\mu})$;
but $f(p|z|) = \sum f(r_{\mu}) \neq 1$. Contradictori?
My interpletation: flat priors do not mean non-informatic.

of variable formal.